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Laser interferometry, as applied in cutting-edge length and displacement metrology, requires detailed analysis of
systematic effects due to diffraction, which may affect the measurement uncertainty. When the measurements aim
at subnanometer accuracy levels, it is possible that the description of interferometer operation by paraxial and
scalar approximations is not sufficient. Therefore, in this paper, we place emphasis on models based on non-
paraxial vector beams. We address this challenge by proposing a method that uses the Huygens integral to propa-
gate the electromagnetic fields and ray tracing to achieve numerical computability. Toy models are used to test the
method’s accuracy. Finally, we recalculate the diffraction correction for an interferometer, which was recently
investigated by paraxial methods. © 2015 Optical Society of America
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Metrology.

http://dx.doi.org/10.1364/JOSAA.32.001403

1. INTRODUCTION

Soon after the invention of the laser, its applicability to unex-
celled measurements of lengths and displacements by interfer-
ometry was recognized [1]. Plane or spherical waves were
assumed to relate the phase of the interference fringes to the
measurand, but, as early as 1976, Dorenwendt and Bönsch
pointed out that this is not correct and that diffraction brings
about systematic errors [2]. Since then, metrologists have rou-
tinely applied corrections based on scalar and paraxial approx-
imations of the interferometer operations [3–13]. In recent
years, cutting-edge interferometric measurements carried out
to determine the Avogadro constant are looking at 1 × 10−9

relative accuracies over propagation distances of the order
of 1 m and propagation differences of many centimeters.
Consequently, metrologists are drawing attention to nonparax-
ial vector models, with a goal to verifying the validity of the
scalar and paraxial approximations or to improving the correc-
tion calculation. Since these measurements use continuous-
wave lasers, which are stabilized and have an extremely narrow
bandwidth, monochromatic light propagation can be assumed.

Optical interferometers may combine many optical compo-
nents in a potentially complex geometry. Wolf and Richards
carried out early work in 1959 on diffraction in optical systems,
but that work provided only a description of the image or focal
region [14,15]. Among the tools based on the paraxial approxi-
mation, a common one is the Collins integral, which allows the
electromagnetic field at the output plane to be calculated from
the field in the input plane and the ray matrix of the optical

system [16]. Ray matrices have been also applied to propagate
Gaussian beams, as well as higher-order Laguerre–Gaussian or
Hermite–Gaussian beams, which are solutions of the paraxial
scalar wave equation [17,18]. Finally, Fourier optics is used
together with the thin lens approximation [19].

In regards to nonparaxial models, in 1980, Byckling and
Simola [20] proposed a sequential application of spherical
harmonic Green’s functions and the evaluation of the relevant
diffraction integral by the stationary phase method, but their
method is limited to the scalar approximation and to spherical
interfaces.

Geometric optics and ray tracing allow nonparaxial propa-
gation to be considered, but usually they do not include dif-
fraction [21]. Some aspects of diffraction can be caught by
associating phase information, in terms of the optical path
length, to each ray. Douglas et al. simulated the operation of
an interferometer by ad hoc assumptions that allowed comput-
ability to be simplified, but this waived the exact description of
diffraction [22]. Improvements were made by Riechert et al.,
but at the cost of sampling issues and relatively large compu-
tation times [23].

There exist several commercial software packages, where the
segments of an optical system are tackled by different propa-
gation techniques, e.g., ZEMAX, GLAD, and LightTrans
VirtualLab. The latter is described in detail by Wyrowski
and Kuhn [24]. While free-space propagation is handled by
Fourier optics methods, segments with interfaces are modeled
either by the thin lens approximation or the geometrical optics
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field tracing. At the interfaces, the input field is locally decom-
posed, assuming local plane waves propagating in a direction
perpendicular to the wavefront. These plane waves define
the launch directions of ray tubes, which are traced through
the subsequent subdomain, taking the amplitude changes into
account by Fresnel equations and actual geometrical conver-
gence or divergence. However, because they do not interact
at the output plane, diffraction is not modeled. For this reason,
LightTrans VirtualLab does not continuously model diffraction
throughout the optical system; therefore, it is not suited for our
purposes.

A different approach, which is common in optical design
and is the basis of at least two software packages, was pro-
posed by Greynolds in 1985 [25]. This approach is based on
the input-field decomposition into Gaussian beams [26],
which, in turn, are represented by base rays along with a
set of characteristic parabasal rays. After tracing the base
and parabasal rays, the beams are recombined to form the
output field [27,28]. However, Gaussian beams do not form
a complete orthogonal set of basis functions; the decompo-
sition is not unique and produces artifacts in the output
field. Moreover, this method is reliable only if the parabasal
rays are paraxial everywhere, and it is not clear how, for in-
stance, coma can be modeled by basis beams that, at most,
describe astigmatism.

The method called stable aggregate of flexible elements
(SAFE) relies on a similar but improved concept, which allows
the estimation of its own accuracy. Alas, so far it has not yet
been extended to 3D problems [29,30]. Recently, a quantum-
mechanical method has been proposed, by using Feynman path
integrals and stationary-phase approximation to link geometric
and scalar wave optics [31,32].

When the measurements aim at subnanometer accuracy lev-
els, it is possible that the description of interferometer operation
by paraxial and scalar approximations is not sufficient. The soft-
ware package CodeV exploits a method called beam synthesis
propagation that might meet the case. However, to the authors’
knowledge, no detailed description of this method is available
to carry out an uncertainty analysis when applied to compen-
sate for phase delays due to diffraction in state-of-the-art
dimensional metrology. Extensive investigations of the propa-
gation of electromagnetic waves and diffraction can be found in
the literature of the radio wave and microwave communities
[33], where significant effort was put into the efficient calcu-
lation of large-scale antenna fields as well as of radar cross
sections and where computationally efficient ray tracing tech-
niques were developed [34–43].

In order to provide an efficient, vectorial, and nonparaxial
model of the operation of laser interferometers, as applied in
length and displacement metrology, and to calculate the rel-
evant diffraction corrections, we developed a ray-based method
to integrate diffraction integrals (VRBDI, vectorial ray-based
diffraction integral). An early scalar version of this method is
described in [44]. Although it was independently developed,
the main concept is the same as proposed by Ling et al.,
who, in 1989, published a comprehensive ray method, later
known as SBR-PO for shooting and bouncing rays and physical
optics [39,43].

Ling et al. approximated the ray-based field on the detector
grid locally by plane waves [39], although in 1988, they de-
scribed the far-field contribution of a ray tube by an approxi-
mate solution of an integral taken on the ray-tube wavefront
[40]. In this paper, we calculate the field on the detector grid
by using a ray aiming approach together with a local repre-
sentation of the wavefront, which is based on matrix optics
[16–18,45] and differential ray tracing [34,46]. In [39], the
input field was assumed to be a single plane wave.
Therefore, a single set of parallel rays entered the investigated
optical system. Here, we decompose the input field into nu-
merous components, which are either spherical or plane waves
and are represented by sets of divergent or parallel ray tubes,
respectively. The output field is then obtained by an integral
superposition of the traced components. Ling et al. applied the
phase matching technique to describe the local curvature and,
hence, the divergence assigned to a single ray [34]. In [39], it
is noted that an alternative description by differential ray
tubes, which, in turn, consist of base and parabasal rays, does
not deliver a correct description of the Gouy phase as, poten-
tially, too many ray path crossings that are difficult to detect
could not be considered. In Appendix B of this paper, it is
shown how the correct Gouy phase can indeed be obtained
from differential ray tubes without the tracking of ray path
crossings. In addition to the perfectly reflecting surfaces con-
sidered in [39], we extended the material equations to include
transparent dielectrics. Finally, much effort was put into a
stepwise, i.e., surface to surface, integral method, for which
numerical tests of energy conservation were carried out
in order to check physical consistency.

The VRBDI method is described in Section 3. In
Section 2, the exact treatment of vector diffraction theory
in linear, homogeneous, and isotropic dielectrics is reviewed
to set the basis for the VRBDI and a touchstone of its per-
formance. Section 4 compares this more rigorous method to
the VRBDI methods by applying them to a simple toy
model. Finally, to illustrate the applicability of the
VRBDI, it is used in Section 5 to simulate an interferometer
setup. Furthermore, these results are compared to an earlier
paper where paraxial methods were utilized to describe the
same setup.

2. VECTORIAL DIFFRACTION THEORY

A. Derivation of Vectorial Diffraction Integrals

For the following treatment, the same boundary conditions as,
e.g., in Chen et al. [47] are assumed. The derivation of the
diffraction integrals follows the one found in a book by
Smith [48]. The harmonic time dependence exp�iωt� is con-
sequently omitted.

A monochromatic continuous electromagnetic wave in a
linear, homogeneous, isotropic, and transparent dielectric is
fully characterized by knowing the components of either
the electric field E or the magnetic field H tangential to a
plane. For the sake of simplicity, let this plane be the
x, y plane of a Cartesian coordinate system and let
Ex�x0; y0� as well as Ey�x0; y0� be initially known. Then
the angular plane-wave spectrum can be obtained by
Fourier transform [19]:
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Ex;y�kx; ky� �
ZZ �∞

−∞
dx0dy0Ex;y�x0; y0� exp�i�kxx0 � kyy0��;

(1)

where kx and ky are components of the wave vector k in
the respective medium. From the transversality condition
E�kx; ky� • k � 0, one can obtain the z component [49,50]:

Ez � −
Exkx � Eyky

kz
; (2)

where kz � �k2 − k2x − k2y �1∕2, k � jkj, and for kz > 0 the
field is propagating in the positive direction. The respective
field vectors of the magnetic plane wave spectrum
H�kx; ky� can be obtained from [49]

H�kx; ky� � n
ffiffiffiffiffi
ϵ0
μ0

r
k̂ × E�kx; ky�; (3)

where k̂ � k∕k is the normalized wave vector. The electric
field at any point inside the same medium can be expressed
as [19,48]

E�x; y; z� � 1

4π2

ZZ �∞

−∞
dkxdky

· E�kx; ky� exp�−i�kxx � kyy � kzz��: (4)

The identical relation is obtained for H�x; y; z� by replacing
E�kx; ky� with H�kx; ky�. It is worth noting that, for
E�kx; ky�, a relation analogue to Eq. (3) exists, which like-
wise allows the full characterization of the electromagnetic
field, in the case that only Hx and Hy are initially
known.

The following derivation is done solely for the electric field,
as it is fully analogous to the one for the magnetic field. Setting
Eq. (2) back into Eq. (4) and using the versors x̂, ŷ, and ẑ of the
coordinate system, one obtains

E � 1

4π2

ZZ �∞

−∞
dkxdky

�
Ex x̂� Eyŷ

−

�
Ex

kx
kz

� Ey
ky
kz

�
ẑ
�
exp�−i�kxx � kyy � kzz��; (5)

where the function dependences are dropped for the sake of
brevity. Equation (5) can equivalently be written as [48]

E�x; y; z� � 2∇ ×
ZZ �∞

−∞
dx0dy0ẑ

× E�x0; y0�
�

−i

8π2

ZZ �∞

−∞
dkxdky

·
exp�−i�kx�x − x0� � ky�y − y0� � kzz��

kz

�
: (6)

The expression f…g is known as the Weyl representation of a
spherical wave and can be integrated in closed form. The result
for z ≥ 0 is the free-space scalar Green’s function for harmonic
time dependence [48,51]:

exp�−ikr�
4πr

� −i

8π2

ZZ �∞

−∞
dkxdky

·
exp�−i�kx�x − x0� � ky�y − y0� � kzz��

kz
; (7)

where r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x − x0�2 � �y − y0�2 � z2

p
. Setting Eq. (7) into

Eq. (6) yields

E�x; y; z� � 1

2π
∇ ×

ZZ �∞

−∞
dx0dy0ẑ × E�x0; y0�

exp�−ikr�
r

: (8)

Now we assume that only the integral over a finite area S0 deliv-
ers nonzero contributions:

E�x; y; z� � 1

2π
∇ ×

Z Z
S0
dx0dy0ẑ × E�x0; y0�

exp�−ikr�
r

: (9)

The above-mentioned expression is formally identical to
Smythe’s integral equation [49,52,53]. In the given references,
it is derived in different ways for the open aperture S0 in an
infinite metallic (perfectly conducting) screen. In this special
case, it is an exact solution [49,52,53]. However, since we as-
sume the field on S0 initially to be known, we have x ≠ x0,
y ≠ y0, and z > 0. Therefore, in our case Eq. (9) is not an in-
tegral equation. Thus, it can be further simplified. But first, by
means of simple coordinate transformations, the more general
result

E�P1� �
1

2π
∇ ×

Z
S0
dA0N̂0 × E�P0�

exp�−ikr�
r

; (10)

for an arbitrarily oriented plane with normal N̂0, surface
element dA0, P0 ∈ S0, S0 now lying in this plane and
r � jrj � jP1 − P0j is obtained. Consequently, P1 must lie
in the half-space limited by this plane and into which N̂0 is
pointing and, therefore, �P1 − P0� • N̂0 > 0.

With the short notation E�Pj� � Ej, the versor r̂ � r∕r,
and, after pulling the curl operator into the integral, one
obtains

E1 �
i

λ

Z
S0
dA0

exp�−ikr�
r

�
1 −

i

kr

�
�N̂0 × E0� × r̂

� 1

2π

Z
S0
dA0

exp�−ikr�
r

∇ × �N̂0 × E0�; (11)

with λ � 2π∕k and where λ � λ0∕n is the wavelength in
the respective medium with refractive index n, and λ0 is
the wavelength in vacuum. In our situation, the curl oper-
ator can only act on functions depending on P1 because P0

is excluded. Therefore, the second integral is 0, and the
final result,

E1 �
i

λ

Z
S0
dA0

exp�−ikr�
r

�
1 −

i

kr

�
�N̂0 × E0� × r̂; (12)

is obtained. Analogously, for the magnetic field, one obtains

H1 �
i

λ

Z
S0
dA0

exp�−ikr�
r

�
1 −

i

kr

�
�N̂0 ×H0� × r̂: (13)

The derived diffraction integrals are solutions of the
Maxwell equations when the integration surface is a plane.
Furthermore, direct substitution with the kernels of
Eqs. (12) and (13) satisfies the Helmholtz equation,
ΔF� k2F � 0, where F � E;H. It is worth noting that
the kernels permit only field components orthogonal
to r̂.
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Because we are interested in the simulation of physical light
beams, we also request that the field on S0 is a section of a field
satisfying the Maxwell equations. Practically, this condition can
only be met asymptotically, because a finite and discrete calcu-
lation window where the initial field is calculated by Eqs. (1)–
(4) from two given components involves a cut at the border of
the calculation window and finite sampling resolution.
However, with sufficient resolution and a large enough com-
putation window, which encloses a square integrable field,
the error can be made negligible.

A necessary but not sufficient check of physical correct-
ness can be done by applying the law of energy conservation.
For a time-averaged continuous wave, this implies conserva-
tion of power. The respective numerical tests will be treated
after the next subsection. For these tests, we also require
that the initial field is a restriction of a solution of the
Maxwell equations to S0 in order to calculate the initial
power.

B. Propagation through an Interface

Although the boundary conditions for the initial field applied
to Eqs. (12) and (13) require the definition on a plane, arbi-
trarily curved interfaces are assumed here. The impact of this
approximation is checked later by numerical tests.

An alternative method, based on the Stratton–Chu dif-
fraction integrals [54], was introduced by Guha and Gillen
[55], but it lacked the possibility to test power conservation.
We compared numerically the Stratton–Chu diffraction in-
tegrals with Eqs. (12) and (13) by checking power conser-
vation. We found that Eqs. (12) and (13) ensure power
conservation several orders of magnitude more accurately
than the Stratton–Chu diffraction integrals. A thorough re-
port of this issue will be given in a separate paper; for now,
we do not see advantages in using the more complex
Stratton–Chu diffraction integrals in our kind of propaga-
tion problems.

A sketch of the situation is shown in Fig. 1. For each versor
r̂, the respective reflected versor r̂r and refracted one r̂t are cal-
culated by assuming for an infinitesimally small patch around
the intersection point local planarity for the wavefront and
interface. Furthermore, in transparent isotropic media, the
Poynting vector, which describes the transport of energy by
electromagnetic radiation [49,50],

S � 1

2
Re�E ×H��; (14)

is always parallel to the wave vector k. By substitution of the
kernels of Eqs. (12) and (13) into Eq. (14), one finds that the
local Poynting vector

dS � dA0

2λr2

�
1� 1

k2r2

�
Refr̂�r̂ • N̂�N̂ • �E0 ×H0���g‖r̂ (15)

and, therefore, the assumed local plane wave vector k̄‖r̂.
Then, the kinematic properties of the boundary conditions
of the Maxwell equations for plane waves can be used [49,50]:

r̂r � r̂ − 2�r̂ • N̂1�N̂1; (16)

r̂t �
n1
n2

�r̂ − �r̂ • N̂1��

� σ�r̂ • N̂1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
n1
n2

�
2

�1 − �r̂ • N̂1�2�
s

N̂1; (17)

where Eq. (16) is the reflection law, Eq. (17) is Snell’s law
[49,50], and σ�s� � −1, 0, 1 for s < 0, s � 0, s > 0, is a sign
operator. The surface normal N̂1 can also be a local function on
S1. For example, if S1 is spherical, N̂1 can be found by sub-
traction of the actual position P1 from the sphere center C
and subsequent normalization: N̂1 � �C − P1�∕jC − P1j.

It is useful to define the reference frames �ξ̂; η̂; r̂�, �ξ̂r; η̂; r̂r�,
and �ξ̂t; η̂; r̂t�, with

ξ̂� r̂×�N̂1× r̂�
jr̂×�N̂1× r̂�j

; η̂� r̂× ξ̂; ξ̂r� η̂× r̂r; ξ̂t� η̂× r̂t: (18)

In the case where r̂ and N̂1 are parallel, an arbitrary
orientation orthogonal to r̂ can be chosen for ξ̂, e.g.,
ξ̂ � �r̂z0 − r̂x �T∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2x � r̂2z

p
. The versor η̂ is orthogonal to the

plane of incidence, and all other versors lie in this plane.
The dynamic properties of plane waves lead to the Fresnel

equations [49,50]:

rTM � n2 cos θ − n1 cos θt
n2 cos θ� n1 cos θt

; rTE � n1 cos θ − n2 cos θt
n1 cos θ� n2 cos θt

;

tTM � 2n1 cos θ

n2 cos θ� n1 cos θt
; tTE � 2n1 cos θ

n1 cos θ� n2 cos θt
;

(19)

where cos θ � r̂ • N̂1 and cos θt � r̂t • N̂1. In the case of
normal incidence, it is rTE � −rTM � �n1 − n2�∕�n1 � n2�
and tTE � tTM � 2n1∕�n1 � n2�. For the applicability of
Eq. (19), local planarity and direction conformity are exploited
again. The Fresnel equations are exact only in the case of an
infinite plane wave at an infinite plane boundary. Therefore,
we expect some accuracy loss, which we will quantify by tests
of power conservation.

It is convenient to express the field calculations at the inter-
face by differentials and perform the integration afterward.
With the quantities defined above, one can write

dE1�
in1
λ0

dA0

exp�−ik0n1r�
r

�
1−

i

k0n1r

�
�N̂0×E0�× r̂; (20)

dE1;r � rTM�dE1 • ξ̂�ξ̂r � rTE�dE1 • η̂�η̂; (21)

dE1;t � tTM�dE1 • ξ̂�ξ̂t � tTE�dE1 • η̂�η̂; (22)

E H0 , 0

N0
^

N1
^

r̂

rt̂rr̂

z

x

y

n1 n2

S0

S1

S2

Fig. 1. Propagation through interface. The versors for reflection r̂r
and refraction r̂t are calculated for each versor r̂.
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dH1 �
in1
λ0

dA0

exp�−ik0n1r�
r

�
1 −

i

k0n1r

�
�N̂0 ×H0� × r̂;

(23)

dH1;r � rTM�dH1 • ξ̂�ξ̂r � rTE�dH1 • η̂�η̂; (24)

dH1;t �
n2
n1

�tTM�dH1 • ξ̂�ξ̂t � tTE�dH1 • η̂�η̂�: (25)

It should be noted that Eqs. (24) and (25) can be deduced from
Eqs. (21) and (22) by patient use of Eq. (3) and one or two
vector identities. Now, the integrals can be expressed as
F � R

S0
dF, where F ∈ �E1;E1;r;E1;t;H1;H1;r;H1;t�.

The next step is the propagation from S1 to S2, where
Eqs. (12) and (13) can be used by replacing E0, H0, k and
λ with E1;t, H1;t, k0n2 and λ0∕n2, respectively. If an integration
is performed on a curved interface, the surface element dAmust
be changed. For the �x; y� plane, one has dA � dxdy. To define
a surface, the z coordinate can be given by the 2D function
z � f �x; y�. Then, the surface element can be calculated ac-
cording to dAf �x;y��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��∂f ∕∂x�2��∂f ∕∂y�2

p
dxdy [56].

For example, a hemisphere is uniquely described by

z � f �x; y� � Cz − σ�Cz�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − �x − Cx�2 − �y − Cy�2

q
;

(26)

with Cz ≠ 0. Therefore,

dAsph�x; y� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

R2 − �x − Cx�2 − �y − Cy�2

s
dxdy: (27)

Note, however, that tilt operations (as well as translations)
applied to grids of points do not change dA.

C. Numerical Tests of Power Conservation

The transport of energy by electromagnetic radiation is
described by Eq. (14). Taking the scalar product with a surface
normal N̂i yields the irradiance,

I i � jSi • N̂ij; (28)

which has the dimension of power per area. Therefore, integrat-
ing I i over the surface Si yields the respective power:

Pi �
Z
Si
dAiI i: (29)

For the following numerical tests, the fields are discretely rep-
resented on equidistant Cartesian sampling grids in the case of
planes or on surface points generated by Eq. (26) from those
grids. Therefore, dxidyi as well as Eq. (27) are finite quantities,
and the integrals are replaced by sums over all respective sam-
pling points Pi.

The simulated toy models are depicted in Fig. 2. In accor-
dance with [47], the input field on surface S0 is defined by

E0;x � exp�−�x2 � y2�∕w2
0� V∕m; (30)

where w0 � 0.5 mm and E0;y � 0, while the other compo-
nents are obtained by Eqs. (1)–(4). In the first tests, the refrac-
tive indices n1 and n2 are kept identical. Therefore, the

intermediate surface is not a real interface, and a comparison
to the direct propagation between the first and the last surface is
possible. The respective quantities on S2 obtained by the direct
propagation receive the index i � 2 0. The first test comprises
an arbitrarily oriented plane as an intermediate surface.
Differently than shown in Fig. 2, two successive rotations about
the y and x axes are applied to an x, y mesh to generate S1
(Table 2, Test 1). The power conservation can be described
by the relative errors:

• δ1;0 � P1−P0

P0
� −8.6 · 10−15,

• δ2;1 � P2−P1

P1
� −9.6 · 10−15,

• δ2 0 ;2 � P2 0−P2

P2
� −1.2 · 10−14.

The field values on S2 from the direct propagation are pre-
sented in Fig. 3. For sake of brevity, in the main article only the
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Fig. 2. Toy models 1 (top) and 2 (bottom) for the numerical test of
power conservation for reflection, refraction, and propagation of
electromagnetic fields by vectorial diffraction integrals. An interface
separates two transparent, isotropic, homogeneous, and nonmagnetic
media with refractive indices n1 and n2. The fixed parameters are listed
in Table 1; the variable parameters are given in Table 2.

Table 1. Fixed Simulation Parameters for the ToyModels
Shown in Fig. 2

λ0∕μm z1∕mm z2∕mm b0∕mm b1∕mm

20 25 50 5 7

Table 2. Variable Simulation Parameters for Toy Models
Shown in Fig. 2a

Test no. 1 2 3 4 5

Toy
model

1 2 1 2 2

n1 1.5 1.5 1.3 1.3 1.05
n2 1.5 1.5 1.5 1.5 3.17
x2∕mm 0 0 2.669 0 0
b2∕mm 10 10 20 10 4
α1 α1;y � 17° – 22° – –

α1;x � 15°
α2 0 0 −63° 10° 10°
R∕mm ∞ 20 ∞ �20 20.113852
Pixel 2552 2552 2552 �2552 �1992

aValues denoted by an asterisk may be varied explicitly.
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electric field components are shown. The corresponding
magnetic components can be found in Appendix C. It can
be seen that the y component of the electric field, E2 0 ;y, vanishes
everywhere.

The field that is propagated over S1 does not vanish exactly,
as can be deduced from the relative deviations plotted in Fig. 4.
However, the residual values are small and likely numerical
artifacts. Because the directly propagated E2 0 ;y is exactly zero,
the relative deviation for E2;y, as it is defined in Fig. 4, is
formally up to 1. However, since, in absolute terms
jE2;yj < 4 · 10−15 Vm−1, it is of no physical relevance. The
irradiance from the directly propagated beam and its
relative deviation to the indirectly propagated one is presented
in Fig. 5. One can see that the size of the calculation window
is indeed amply chosen. The peak-to-valley (PV) deviation of
the irradiances is found to be ΔIPV � �max�I2 0 − I2�−
min�I2 0 − I2��∕max�I 2� � 4.8 · 10−13. One can state that this
first test reveals the magnitude of the residual numerical
errors because no systematic errors of the theory can be
identified.

For Test 2, the tilted plane is replaced by a spherical surface
while again n1 � n2. As mentioned earlier, in this case the
found integrals in Eqs. (12) and (13) can only be approxima-
tions whose viability is tested now. The relative deviation of the
field components is given in Fig. 6. Again, the y component of
the electric field is nonzero. Its absolute value as well as the

relative deviation of the irradiance from the directly propagated
one is shown in Fig. 7.

Now, with S1 curved, the deviations can no longer be clas-
sified as numerical artifacts. These regular patterns of larger
magnitude must be caused by systematic effects. By inspection
of Eq. (12) and comparison to Test 1, it turns out that two
reasons can be recognized as necessary and sufficient to explain
at least the nonzero y component shown in Fig. 7 (left):

Fig. 3. Directly from S0 to S2 [Fig. 2 (top), Test 1 in Tables 1 and 2] propagated electric field components of a linearly x-polarized Gaussian beam
by use of vectorial diffraction integrals. The viewing angle is perpendicular to S2. The corresponding magnetic components can be found in
Appendix C.

Fig. 4. Relative deviations of directly [S0 to S2, Fig. 2 (top), Test 1 in Tables 1 and 2] propagated electric field components of a linearly
x-polarized Gaussian beam by use of vectorial diffraction integrals from indirectly propagated ones (S0 via S1 to S2). The viewing angle is
perpendicular to S2. The large relative deviation for the y-component results from the fact that the y-component of the directly propagated field,
i.e., E2 0 ;y , is exactly zero. The corresponding magnetic components can be found in Appendix C.

Fig. 5. Irradiance (left) and its relative deviation of the directly [S0
to S2, Fig. 2 (top), Test 1 in Tables 1 and 2] propagated linearly x-
polarized Gaussian beam by use of vectorial diffraction integrals from
the indirectly propagated one (S0 via S1 to S2). The viewing angle is
perpendicular to S2.
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• The cross product term in Eq. (12) produces a y compo-
nent if the normal vector contains a y component.

• On the sphere surface, all normals are oriented differently.

The first reason is also true for the arbitrarily tilted plane.
However, the second, which enables the (almost) utter cancel-
lation, is not. For the sphere case, cancellation is not perfect due
to the different normal orientations; thus, the residual regular
pattern is allowed (Fig. 7, left). The regular deviation patterns
for the other components are likely caused in an analogue way,
i.e., by parasitic contributions, which did not cancel out be-
cause of the different normal directions and the vectorial nature
of the integral kernels. However, the impact on the irradiance is
still quite small: ΔIPV � 9.1 · 10−13 (Fig. 7, right). Since the
residual irradiance error is quite symmetrically modulated
around zero, upon integration the positive and negative parts
almost cancel each other out. Therefore, the respective relative
error of power conservation δ2 0 ;2 is even smaller:

• δ1;0 � P1−P0

P0
� −6.0 · 10−15,

• δ2;1 � P2−P1

P1
� −2.6 · 10−14,

• δ2 0 ;2 � P2 0−P2

P2
� 2.1 · 10−15.

Thus, in rotationally symmetric setups, relying on power
conservation alone can potentially lull us into a false sense

of security. This symmetry can be broken when S2 is tilted,
as is the case for the remaining tests.

Table 3 lists the power conservation errors for the Tests 3
(plane interface) and 4 (curved interface). The relevant test
parameters are given in Table 2. Now, the refractive indices
n1 and n2 are different and S1 becomes a real interface. The
largest error appears in the calculation of reflected and refracted
power and is more pronounced with a curved interface.
Strangely, the error for the propagation step to or from the
curved interface is smaller than for the tilted plane case by 1
order of magnitude. This may be explained by the symmetry
effect mentioned above. On the other hand, these values are
already quite small and in the range of the numerical limit.
Therefore, it is questionable if they are interpretable this way.

To check the influence of the sample intervals on the error,
Test 4 is repeated for different sampling resolutions. Table 4
shows the results together with the needed calculation times
on a personal computer with 64 bit MATLAB, 24 GB
RAM and two Intel Xeon X5680 @3.33 GHz, i.e., altogether
12 cores, each working in parallel at 100% workload by use of
MATLAB’s Parallel Processing Toolbox. Also, all computation
times given later refer to the above hardware and software con-
ditions. While δ1;0 and δ2;1 always are in the range of the
numerical limit, jδ1j decreases with increasing resolution to
1.3 · 10−9, which is likely a lucky value beyond the reachable
numerical limit for this type of calculation in this setup, because
the values for 4442 and 5552 pixels are larger than for 3332

pixels. Therefore, this numerical error appears to be in the
range of ≈5 · 10−9, and it is reached at a certain resolution
threshold, somewhere between 2552 and 3332 pixels.

Fig. 6. Relative deviations of directly [S0 to S2, Fig. 2 (bottom), Test 2 in Tables 1 and 2] propagated electric field components of a linearly x-
polarized Gaussian beam by use of vectorial diffraction integrals from indirectly propagated ones (S0 via S1 to S2). The viewing angle is perpendicular
to S2. The large relative deviation for the y-component results from the fact that the y component of the directly propagated field, i.e., E2 0 ;y , is exactly
zero. The corresponding magnetic components can be found in Appendix C.

Fig. 7. Left: from S0 via S1 to S2 [Fig. 2 (bottom), Test 2 in
Tables 1 and 2] propagated y component of the electric field of a lin-
early x-polarized Gaussian beam by use of vectorial diffraction inte-
grals. Right: relative deviation of the irradiance between the
directly from S0 to S2 and the indirectly (S0 via S1 to S2) propagated
beam. The viewing angle is perpendicular to S2.

Table 3. Numerical Test of Power Conservation for
Propagation through a Real Interface between Two
Transparent, Isotropic, Homogeneous, and Nonmagnetic
Mediaa

Power
Conservation Error

Test 3
(plane int.)

Test 4
(curved int.)

δ1;0 � �P1 − P0�∕P0 2.0 · 10−14 1.1 · 10−15
δ1 � �P1r � P1t − P1�∕P1 3.5 · 10−10 −9.0 · 10−9
δ2;1 � �P2 − P1t�∕P1t −1.6 · 10−14 −7.2 · 10−15

aFig. 2, Table 2, Test 3 (plane interface) and Test 4 (curved interface).
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The dependence on the sphere radius R is also checked. In
order to keep the calculation time low, the sampling resolution
was chosen to be 199 × 199. The results are listed in Table 5.

Now, δ1 is always ≈ − 4 · 10−8, while δ1;0 and δ2;1 are again
governed by numerical noise.

The purpose of the last numerical test in this section is two-
fold. First, it checks whether the field in a focal plane can be
calculated. Second, it delivers error values for a stronger refrac-
tive index contrast. The refractive index values are changed to
n1 � 1.05 and n2 � 3.17. Then, the paraxial focus is obtained
at z2 for R� z1z2�n2 −n1�∕�z1n2�z2n1��20.113852mm.
The results are shown in Table 6 for various sampling
resolutions.

The values for δ1;0 and δ2;1 are again in the range of the
numerical limit. Therefore, it would be daring to obtain signifi-
cant trends from three data points. Comparison of the column
at 1992 pixels to the R � 20 mm column of Table 5 reveals for
jδ1j a strong proportionality to the refractive index contrast.
Due to this scaling effect, the decreasing of jδ1j with increasing
resolution is now more resolvable. However, again there ap-
pears to be a limit in the range of 10−9. As mentioned earlier,
the Fresnel equations are only exact for infinite plane waves at
infinite plane boundaries. Thus, the violation of this condition
may reveal itself here.

It could be shown that the above stepwise method describes
the transport of radiation power through an interface between
two transparent, isotropic, homogeneous, and nonmagnetic

media with reasonable accuracy for quite large wavelengths,
small curvature radii, and strong refractive index contrasts.
However, it should be noted here that this method is not im-
mune to undersampling, which can always prevent proper re-
sults. Due to the sampling requirements of the exp�−ikr� term
in Eqs. (12) and (13), which have already been extensively dis-
cussed in the literature, e.g., see [57], the simulation of a mac-
roscopic optical system with many (close-by) interfaces can
easily inflate the computation time to astronomic scale. This
consideration has led to a different approach that is not limited
by the number and distance of interfaces in an optical system.
This method is presented in the next section. Fortunately, it can
be compared to the stepwise method in simple toy models, such
as the ones shown above. This is done after the next section.

3. VECTORIAL RAY-BASED DIFFRACTION
INTEGRAL

In this section, the vectorial ray-based diffraction integral
(VRBDI) is presented. In order to increase readability, it is
structured into several subsections. First, a brief introduction
into the used geometrical ray tracing is given. Then, a method
to get close to specific sampling points behind an optical system
is briefly presented while the details can be found in
Appendix A.

Afterward, the extension of ray tracing to gather all relevant
information for the VRBDI is introduced while the details of
the method, i.e., how matrix optics [16–18,45] and differential
ray tracing [34,46] can be used to calculate the field at the sam-
pling grid points, have been moved to Appendix B. The
VRBDI itself concludes this section.

A. Ray Tracing

Geometrical ray tracing is a common technique used in optical
design software [21,50]. A ray is defined by position P0 and
versor r̂. Then, the question as to how to scale the versor in
order to intersect the next surface, i.e., P1 � P0 � l r̂, leads
to an equation system that needs to be solved. One has to dis-
tinguish between sequential ray tracing, where the next surface
is given by the next entry in a list, and nonsequential ray

Table 4. Numerical Test of Power Conservation for Different Sampling Resolutions for Propagation through an Interface
between Two Transparent, Isotropic, Homogeneous, and Nonmagnetic Mediaa

Pixel 1992 2552 3332 4452 5552

δ1;0 −1.4 · 10−14 1.1 · 10−15 −6.2 · 10−15 4.8 · 10−15 −1.2 · 10−14
δ1 −3.6 · 10−8 −9.0 · 10−9 1.3 · 10−9 5.0 · 10−9 6.0 · 10−9
δ2;1 −2.3 · 10−14 −7.2 · 10−15 −1.3 · 10−15 1.6 · 10−16 −4.3 · 10−15
Calculation time/h 0.1 0.4 1.3 4.5 11
aFig. 2, bottom, Table 2, Test 4.

Table 5. Numerical Test of Power Conservation for Different Radii of Curvature of an Interface between Two
Transparent, Isotropic, Homogeneous, and Nonmagnetic Mediaa

R∕mm 20 50 200 1000 104 105

δ1;0 −1.4 · 10−14 2.1 · 10−15 9.6 · 10−16 1.7 · 10−14 8.8 · 10−15 1.3 · 10−14
δ1 −3.6 · 10−8 −4.1 · 10−8 −4.2 · 10−8 −4.2 · 10−8 −4.2 · 10−8 −4.2 · 10−8
δ2;1 −2.3 · 10−14 4.8 · 10−16 2.4 · 10−14 −2.7 · 10−14 7.2 · 10−15 −4.8 · 10−15

aFig. 2, bottom, Table 2, Test 4.

Table 6. Numerical Test of Power Conservation for
Different Sampling Resolutions for Propagation in a
Focusing Toy Model with Stronger Refractive Index
Contrast n2∕n1 ≈ 3a

Pixel 1992 3332 5552

δ1;0 −4.4 · 10−14 −2.4 · 10−14 −1.6 · 10−14
δ1 −1.9 · 10−6 −2.1 · 10−7 −3.8 · 10−9
δ2;1 1.2 · 10−15 0 −5.8 · 10−15

aFig. 2, bottom, Table 2, Test 5.
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tracing, where the next surface has to be determined for each
ray individually. The latter one prevents effective parallel im-
plementation, i.e., the tracing of many rays at once rather than
one after another. Therefore, we chose sequential ray tracing in
order to implement a parallel computation.

A plane is fully characterized by pivot vector T and normal
N̂z . Then, the condition �P0 � l r̂ − T� • N̂z � 0 directly
yields

l � �T − P0� • N̂z

r̂ • N̂z
: (31)

A sphere is fully characterized by radius R and center location
C. However, because a sphere is a closed convex surface, a
quadratic equation system yields two solutions in the general
case:

l 1;2 � �C − P0� • r̂	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��C − P0� • r̂�2 − jC − P0j2 � R2

p
:

(32)

Therefore, the correct solution for the respective physical sit-
uation must be chosen. There are other surface types that
can be handled in a similar way, such as ellipsoids, paraboloids,
cones, and cylinders. More complicated and only possible to be
tackled by numerical iterations are general surface functions,
such as different kinds of polynomials. However, here we re-
strict ourselves to planes and spheres.

When the intersection point is found, the reflected or re-
fracted versor is calculated by Eq. (16) or (17), respectively.
Then, the next ray is defined by the intersection point and
the respective versor. If a ray intersection lies outside of allowed
positions, i.e., outside an aperture, it is marked as terminated.
The first and last surfaces are usually planes, the input plane
and the detector plane, respectively.

B. Ray Aiming

A ray starting from the input plane of an optical system is de-
fined by position P0 and versor r̂. There are two possible cases,
depending on the chosen decomposition of the input field:
which parameter is fixed and which one is free for aiming.
For a plane wave decomposition, r̂ is fixed and the starting
point on a plane, which is normal to r̂ and shares its origin
with the input plane, is the free parameter. In contrast, for
spherical wave decomposition, P0 is a fixed sampling grid point
and r̂ is free. Both cases are sketched in Fig. 8. Initially, a grid
on the aperture plane defines the ray spacing.

By tracing test rays through the optical system, various start-
ing conditions can be related to positions on the detector plane.
A fit by Zernike polynomials [50] is then utilized to obtain a
functional relation between the starting condition and the de-
tector position. Then, it is possible to aim for specific points on
the detector sampling grid. A detailed explanation of the used
ray-aiming procedure and the description of a test tool for the
reachability of detector positions and quality of the ray aiming
is given in Appendix A. Generally, with this kind of ray aiming,
the targeted positions on the detector cannot be reached exactly.
There is always a smaller or larger displacement between the
targeted grid point and the ray intersection. This displacement
will also be important for the next subsection.

There are also situations where certain regions in the area of
the detector cannot be reached by rays, while in other regions
the relation between starting condition and position on the de-
tector plane is not unique, i.e., where the different test rays
intersect each other. This is the case at caustics, focal, and image
regions.

C. Tracing the Electromagnetic Field

From each aimed ray, i.e., a ray that gets close to an assigned
detector pixel and is found by ray aiming, a differential ray tube
is constructed at an input position [34,46]. To each ray tube,
an electric field contribution is assigned by

dE0 �
dA0dkxdky

4π2
E�kx; ky�; (33)

with plane or

dE0 � dA0�N̂0 × E0� × r̂initial; (34)

with spherical wave decomposition of the input field. During
ray tracing at each interface, the reflected or refracted field is
calculated in analogy to Eqs. (21) or (22) and without using
Eq. (20). After m − 1 surfaces, dEm−1 is obtained. By use of
Eq. (3), one also obtains the magnetic field contribution:

dHm−1 � nm−1

ffiffiffiffiffi
ϵ0
μ0

r
r̂ × dEm−1; r̂ � r̂final: (35)

The traced ray tubes are evaluated to obtain information about
the respective optical path

OPL �
Xm−1
i�0

nijPi�1 − Pij; (36)

input plane aperture plane output plane

plane wave front

optical system

input plane aperture plane output plane

spherical wave front optical system

Fig. 8. Types of used input field decompositions in the ray picture.
Only one component is shown, respectively. Initially, a grid on the
aperture plane defines the ray spacing. Top: decomposition into plane
waves: each component is represented by parallel rays starting from the
wave front, which intersects the origin of the input plane, i.e., the
plane where the decomposition is done by Eqs. (1) and (2).
Bottom: decomposition into spherical waves: each component is rep-
resented by divergent rays starting from one of the sampling points
where the input field is given.
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the amplitude factor AFPW;SW, and paraxial eikonal SPW;SW
[16,58] at the sampling grid points on the detector plane. A
detailed description of the evaluation procedure, which utilizes
matrix optics [16–18,45] and differential ray tracing [34,46], is
given in Appendix B. Finally, the field on a detector sampling
grid point can be written as

�dE;dH�sgp�AFPW exp�−ik0OPL�exp�−ik0SPW��dE;dH�m−1;
(37)

with plane or

�dE; dH�sgp �
i

λ0
AFSW exp�−ik0OPL�

�
1 −

i

k0OPL

�
· exp�−ik0SSW��dE; dH�m−1; (38)

with spherical wave decomposition of the input field.

D. VRBDI

The VRBDI itself is then given by

�E;H�sgp �
Z
input plane

�dE; dH�sgp: (39)

It should be noted that, if a member of a ray tube is terminated,
the whole ray tube gets terminated. Furthermore, it is worth
noting that the VRBDI, in contrast to the geometrical optics
field tracing of Wyrowski and Kuhn [24], is a numerical im-
plementation of a diffraction integral. Therefore, all input field
components interact with each other on the output plane ac-
cording to the Huygens–Fresnel principle [50] or its equivalent

description by plane waves [19]. In Fig. 9, a flow chart of the
full algorithm is shown. The irradiance can then be calculated
by use of Eqs. (14) and (28).

4. COMPARISON BY A TOY MODEL

In this section, the VRBDI is compared to the stepwise propa-
gation method of the second section. The second toy model
from Fig. 2 is chosen, and the parameters are changed according
to Table 7. Again, the input field is given by Eq. (30) with
w0 � 0.5 mm, E0;y � 0, and using Eqs. (1)–(4) for the other
components. It is worth noting that the optimal conditions for
the plane wave decomposition are reciprocal to the optimal con-
ditions for the spherical wave decomposition. For instance, in
Table 7 the input field for the plane wave decomposition is
chosen on a wider spatial mesh (the number of pixels is main-
tained while the overall dimensions of the mesh are increased),
which yields the needed higher spatial frequency resolution. In
contrast, for the spherical decomposition, a sufficient spatial res-
olution is most important. Therefore, a denser spatial mesh is
better.

The stepwise method is again checked for power
conservation:

• δ1;0 � P1−P0

P0
� 6.7 · 10−13,

• δ1 � P1r�P1t−P1

P1
� −3.6 · 10−8,

• δ2;1 � P2−P1t

P1t
� 1.3 · 10−12.

From the plane wave decomposition, 1069 components,
i.e., plane waves, and from the spherical decomposition,
59,381 points were chosen for the VRBDI. In both cases, a
relative threshold, 10−9 for the spherical wave decomposition
and 10−10 for the plane wave decomposition, in relation to
the strongest component, defines a cut-off level. The following
calculation times are obtained for the three methods:

• stepwise: 27 min,
• VRBDI-SW: 198 min,
• VRBDI-PW: 3.5 min.

Obviously, choosing lower cut-off levels increases calcula-
tion time but, of course, also accuracy. Therefore, a trade-off
between accuracy and computation time has to be
found. However, most important is the proper choice of the

input field

ray aiming

proper
decomposition

calculate ray tubes
from aimed rays

trace ray tubes

evaluate
ray tubes

calculate field at
detector grid points
and add to stored

values

more
compo-
nents?

YES

NO

Fig. 9. Flow chart of the VRBDI algorithm.

Table 7. Simulation Parameters for the Comparison
Between the Vectorial Ray-Based Diffraction Integral
and Stepwise Method Based on Vectorial Diffraction
Integralsa

λ0∕nm z1∕mm z2∕mm R∕mm

532 500 100 50

n1 n2 b1∕mm b2∕mm Pixel

1.003 1.5 4.5 1.5 2552

method b0∕mm

stepwise, VRBDI-SW 4
VRBDI-PW 6
aSecond toy model shown in Fig. 2 is chosen. For the VRBDI, two types of

input field decompositions are compared: spherical wave (SW) and plane wave
(PW) decomposition.
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decomposition type. In the presented case, VRBDI-PW is
roughly 57 times faster than VRBDI-SW, which corresponds
to the number of the respective input components:
59; 381∕1069 ≈ 56. The results are quite comparable, as can
be seen in Fig. 10. However, some distinctions are observable:

in the VRBDI-PW deviations from the stepwise method, one
can see some numerical noise in the low-field regions.

The irradiance calculated by VRBDI-SW and its relative
deviation from the stepwise method as well as the relative
deviation of VRBDI-PW from VRBDI-SW are shown in Fig. 11.

Fig. 10. Comparison between different propagation methods by toy model 2 shown in Fig. 2 with the parameters from Table 7. Left: electric field
components propagated by a vectorial ray-based diffraction integral where a linearly x-polarized Gaussian beam is decomposed by spherical waves
(VRBDI-SW). Middle: relative deviation from a stepwise propagation by vectorial diffraction integrals. Right: relative deviation of the electric field
components propagated by a VRBDI with plane wave decomposition (VRBDI-PW) from the ones obtained by the stepwise method. The viewing
angle is perpendicular to S2. The corresponding magnetic components can be found in Appendix C.

Fig. 11. Comparison between different propagation methods by toy model 2 shown in Fig. 2 with the parameters from Table 7. Left: irradiance
obtained by a vectorial ray-based diffraction integral where a linearly x-polarized Gaussian beam is decomposed by spherical waves (VRBDI-SW).
Middle: relative deviation from a stepwise propagation by vectorial diffraction integrals. Right: relative deviation of the irradiance obtained by a
vectorial diffraction integral with plane wave decomposition (VRBDI-PW) from the one obtained by VRBDI-SW. The viewing angle is
perpendicular to S2.

Research Article Vol. 32, No. 8 / August 2015 / Journal of the Optical Society of America A 1413



The latter is quite small, ΔIPV ≈ 	6 · 10−8, and seems to be
caused by sampling issues. Therefore, the uncertainty for both
is represented by the relative deviation of VRBDI-SW from
the stepwise method, which isΔIPV ≈ −6 · 10−6. From the shape
of the deviation, one can deduce that the beam spot generated by
the stepwise method is slightly broader. By consideration of power
conservation,

• δSW;2 � PSW−P2

P2
� −1.6 · 10−5,

• δPW;2 � PPW−P2

P2
� −1.6 · 10−5,

and the bound that essentially is set by the above δ1 �
−3.6 · 10−8, one can conclude that the stepwise method delivers
the more exact solution. The relative deviations between the field
components calculated by VRBDI-PW and VRBDI-SW are plot-
ted in Fig. 12. Now, the numerical noise can be clearly seen.

5. INTERFEROMETER SIMULATION

In order to illustrate the versatility of the VRBDI method, it is
applied to the calculation of the diffraction correction for an
interferometer, as it was used to measure the diameter of silicon
spheres [11–13]. The parameters of the simulated setup are
identical to the ones in [13], where a Gaussian beam-tracing
algorithm, known as vectorial general astigmatic Gaussian
beam (VGAGB) tracing, was utilized.

As a rule of thumb, when deciding which decomposition
type for the input field is preferable, i.e., the one that needs
the fewest components, it is suggested to consider two extreme
situations:

• A large collimated beam close to the first aperture can ef-
ficiently be composed from a few plane waves,⇒ VRBDI-PW.

• A small divergent source far away from the first aperture
can efficiently be composed from a few point sources, ⇒
VRBDI-SW.

Following this rule, VRBDI-SW is chosen because the
source, a Gaussian beam with waist radius w0 �
0.28562 mm, can be sufficiently sampled by 31 × 31 pixels
at its waist location, which is 683.6 mm away from the first
interferometer component. Furthermore, a relative threshold
of 10−6 yields 793 components for each VRBDI run.

The resolution and size of the detectors were chosen to
be 255 × 255 pixels over 8 × 8 mm2. The interferometer is

operated by wavelength shifting. As in [13], the full procedure
is simulated here as well but only for the ideal configuration of
the interferometer (no Monte Carlo simulations). For each
measurement, i.e., for an empty and loaded cavity, indicated
as E and L, respectively, seven interferograms IE;L�λ�, one
for each wavelength, are captured and fed into the phase
retrieval formula of [13]. For each wavelength, three beam
paths are considered: corresponding to zero, one, and two
round trips in the empty or loaded gap. Therefore, 2 × 7 × 3 �
42 VRBDI runs have to be performed. With Eqs. (14) and
(28), the interferograms IE;L�λ� are obtained from the respec-
tive sum of the (complex-valued) fields from each path. In
Fig. 13, the phase biases ΔϕE;L are plotted. We refer to bias
as the difference between measured value and correct value
of a quantity. Therefore, a correction to a measured value is
the respective negative bias. The difference to the VGAGB cal-
culation, δΔϕE;L � ΔϕE;L;VRBDI − ΔϕE;L;VGAGB, is shown in
Fig. 14. Table 8 compares the resulting measurement biases
for empty gap, loaded gap, and resulting sphere diameter from
VRBDI-SW and VGAGB. These values are calculated directly
from δΔϕE;L�0; 0�. Since an odd sampling was chosen, the cen-
tral value already exists and needs not to be interpolated. The
agreement is quite remarkable. By inspection of Fig. 14, one
can see that this is only true in a relatively small central area,

Fig. 12. Comparison between different propagation methods by toy model 2 shown in Fig. 2 with the parameters from Table 7: relative deviation
of the electric field components propagated by a vectorial diffraction integral with spherical wave decomposition (VRBDI-SW) of a linearly x-
polarized Gaussian beam from the ones propagated by a VRBDI with plane wave decomposition (VRBDI-PW). The viewing angle is perpendicular
to S2. The corresponding magnetic components can be found in Appendix C.

Fig. 13. Phase bias for empty and loaded cavity in the ideal con-
figuration of the interferometer described in [11–13] but calculated
by the vectorial ray-based diffraction integral with spherical wave
decomposition (VRBDI-SW).
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i.e., the paraxial regime, where the VGAGB method can be
considered to be accurate. It should be noted here that the
meaning of paraxial and nonparaxial depends on the desired
accuracy. On that note, nonparaxial means that the paraxial
approximation can no longer be applied because the desired
accuracy is no longer met. For a metrologist working in the
field of ultraprecision interferometry, the paraxial approxima-
tion can potentially be much more restrictive than commonly
assumed. However, it is shown here that it is well justified for
the desired accuracy at the extremal position of the interfero-
gram phases in the described interferometer, i.e., the location
where the interferograms obtained from this setup are usually
evaluated. Dividing the calculation time of 16.6 h by 42 yields
a mean calculation time per run of ca. 24 min; further division
by 793 results in ca. 1.8 s per input field component.

6. DISCUSSION

The stepwise method, as it is introduced in the second section,
represents to our knowledge the most rigorous and still practi-
cally computable propagation method applicable to the optical
interface problem, where it can be successfully used to test
other propagation methods such as the VRBDI.

To provide a more physically motivated and intuitive inter-
pretation, we refer to the Huygens–Feynman–Fresnel principle
[31,32]. Provided that the Huygens–Fresnel principle and the
Maxwell equations [48–50] are equivalent to the quantum-
mechanical description of a single photon, the stepwise method
solves the path integral problem for each segment of the optical
system individually. It constitutes the full brute-force approach:
for every point on the target surface, the coherent sum of all
wavelets emerging from all possible input positions is calculated
numerically, although spatial discretization is unavoidable.

Following this picture, the VRBDI would be an approxima-
tion whose main assumption is that the light interaction at the
interfaces of an optical system can be approximately described
deterministically. In this sense, the traced rays represent the
different possibilities that remain when the influence of an aper-
ture on the photon’s momentum uncertainty is neglected [59]:

Δx · Δpx ≥
ℏ
2
⇔ sinΔαx ≥

λ

4πΔx
: (40)

Although the right-hand side of Eq. (40) is equivalent to the left-
hand side, the cautious reader may consider this analogy only as a
rude estimation. In any case, for a valid description of light
propagation by the VRBDI, the apertures in an optical system
should be much larger than the wavelength.

More generally, any confinement of photon trajectories
should increase the momentum uncertainty. This could explain
why focal regions cannot be described by deterministic and
straight photon trajectories. The question as to whether it is
possible to properly describe the situation by curved trajectories
goes beyond the scope of this paper [60].

Beside these fundamental considerations, there are also
technical issues that prevent the proper usage of the VRBDI
in focal regions. However, by using Eqs. (12) and (13) or, al-
ternatively, Eqs. (1)–(4), one can easily close this reachability
gap. Alternatively, it seems natural to assume that proper usage
of respective angle-to-angle and point-to-angle eikonals [58]
could also solve this issue. However, this has not been at-
tempted by the authors so far.

For proper handling of small apertures, an intermediate field
has to be sampled on the apertured surface. Approximately, by
assuming Kirchhoff boundary conditions [50], the field in the
aperture can simply be obtained by multiplication to the
respective aperture function. Then, further propagation can
be started from there.

7. CONCLUSION

In order to simulate the operation of laser interferometers, a
vectorial ray-based diffraction integral method has been
developed. The tangential electric components of a continuous
monochromatic wave field on a plane, which is immersed in a
transparent nonmagnetic homogeneous medium, are necessary
and sufficient to obtain the other electromagnetic components

Fig. 14. Difference of the phase bias for empty (top) and loaded cav-
ity in the ideal configuration of the interferometer described in [11–13]
between the calculation by a vectorial ray-based diffraction integral
with spherical wave decomposition (VRBDI-SW) and a vectorial gen-
eral astigmatic Gaussian beam-tracing algorithm (VGAGB) [13].

Table 8. Measurement Bias for Empty Gap ΔDE, Loaded
Gap ΔDL, and Resulting Sphere Diameter ΔDa

Method ΔDE∕nm ΔDL∕nm ΔD∕nm
Calc.
Time

VRBDI-
SW

−0.747119 −0.0492295 −0.64866 16.6 h

VGAGB −0.747113 −0.0492297 −0.64865 2.5 s
aFor the ideal configuration of the interferometer described in [11–13],

calculated by a vectorial ray-based diffraction integral with spherical wave
decomposition and a vectorial general astigmatic Gaussian beam tracing
algorithm [13].
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by use of the angular plane wave spectrum. From the latter,
vectorial diffraction integrals are deduced, which satisfy
Maxwell and Helmholtz equations. By exploitation of the
kinematic and dynamic boundary conditions of the Maxwell
equations, a stepwise surface-to-surface propagation method
is established, which is still a good approximation when the
interface between two linear, transparent, nonmagnetic, and
homogeneous media is curved.

For application of the VRBDI method, an input field for a
general optical system is decomposed either into spherical
waves, i.e., point sources, or plane waves. By means of ray aim-
ing, an input position of a point source or, alternatively, an in-
put angle of a plane wave can be related to a certain sampling
position on a detector plane at the end of this optical system.
Differential ray tubes, each consisting of an aimed base ray and
four close, i.e., paraxial, parabasal rays, are launched and traced
in parallel through the optical system to their respective sam-
pling point on the detector plane. The optical path length and a
ray matrix are obtained for each ray tube. By use of the respec-
tive paraxial eikonals and further adaptation of the diffraction
integrals, the electromagnetic field at all sampling points is cal-
culated and summed to all the other traced contributions from
the decomposed input field. For the location of the detector
plane, caustics as well as focal and image regions have to be
avoided. However, propagation to these regions can be carried
out by common free-space propagation methods.

Direct comparison of the VRBDI with the stepwise method
in a simple curved interface toy model using power conservation
as a criterion reveals that the stepwise method is most exact, but
the VRBDI is a good approximation when the apertures are
much larger than the wavelength. In the chosen toy model,
the remaining error of the simulated irradiance is at the parts
per million level, which should be almost unresolvable by experi-
ment. By proper choice of the input field decomposition, the
VRBDI is already faster than the stepwise method. Improper
choice can lead to longer computation times, though, albeit this
drawback applies only to simple systems, which can only just be
modeled by the stepwise method. Macroscopic optical systems
with many (closely spaced) surfaces cannot be modeled with the
stepwise method in reasonable computation times.

The simulation of an interferometer, which was previously
described by a paraxial Gaussian beam tracing method, showed
very good agreement in the paraxial regime, whereas deviations
between the VRBDI and the paraxial method at more distant
locations from the optical axis already indicate the expectable
failure of the paraxial method in the nonparaxial regime.

APPENDIX A: DETAILED DESCRIPTION OF RAY
AIMING AND TEST TOOL

For the sake of brevity, only the ray aiming for the spherical
wave decomposition case is explained here. Then, P0 is a fixed
sampling grid point and r̂ is free. More exactly, the continuous

independent variables are r̂x and r̂ y when r̂z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r̂2x − r̂2y

q
is

chosen to be dependent. When the intersection point Pi on the
detector plane is expressed in the local detector frame defined
by the orthonormal set �N̂x ; N̂y; N̂z� and pivot vector T,

x 0 � �Pi − T� • N̂x ;

y 0 � �Pi − T� • N̂y; (A1)

r̂x and r̂ y can formally be expressed as functions of these
coordinates:

r̂x � r̂x�x 0; y 0�;
r̂y � r̂ y�x 0; y 0�: (A2)

Now, (A2) can be approximated by proper interpolation func-
tions. For this purpose, we chose Zernike polynomials [50].
The definition space of the Zernike polynomials requires

ρ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x 0�2 � �y 0�2

p
ρmax

;

φ � atan2�y 0; x 0�: (A3)

The largest reachable radius ρmax is used to confine ρ to [0,1].
Our goal is to write r̂ as ΣZ j�ρ;ϕ�aj. The following equation
system must then be solved:

�Z�a �

2
664
Z 0

0�ρ1;φ1� Z −1
1 �ρ1;φ1� …

… … …

Z 0
0�ρν;φν� Z −1

1 �ρν;φν� …

Zu
u�ρ1;φ1�
…

Zu
u�ρν;φν�

3
775
2
64
a1
…

aζ

3
75

�

2
64
F �ρ1;φ1�

…

F�ρν;φν�

3
75 � F; (A4)

where F � r̂x or r̂ y. Thus, F must contain uncorrelated values,
e.g., randomly chosen or discretely sampled, for r̂x or r̂ y, respec-
tively. In Eq. (A4), the number of Zernike polynomials ζ, i.e.,
the number of columns in �Z�, should match the number of
detected ray intersections ν, i.e., the number of rows in �Z�.
However, a least-squares solution for ν ≫ ζ is readily obtained
by [61]

a � ��Z�T�Z��−1�Z�TF: (A5)

When a is determined, the sought versor components to reach
the sampling grid points are obtained directly from

Fsgp � �Z�sgpa; (A6)

where �Z�sgp is constructed by use of the local coordinates
�xsgp; ysgp� of the chosen detector sampling grid points and
(A3). Then, with r̂x;sgp and r̂ y;sgp, new rays are traced that
should “hit” the sampling grid points.

In order to evaluate the quality of the ray aiming and the
reachability of the detector sampling grid points, a test tool
has been developed. Figure 15 illustrates the test method.
To the aperture plane a sampling grid is assigned, holding ei-
ther zero for blocking or one for passing a ray. From each source
point, whose intensity corresponds to the numbering in Fig. 15
(left), a ray is directed onto each of the nonblocking aperture
grid points and traced to the detector. Then, a simple incoher-
ent additive sampling is done on the detector grid.

For the central source point, i.e., point 9 in Fig. 15, ray
aiming is carried out and the positioning error is evaluated
according to
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δra �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x 0 − xsgp�2 � �y 0 − ysgp�2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2sgp � Δy2sgp

q ; (A7)

where �x 0; y 0� are already the ray intersection coordinates and
Δxsgp and Δysgp are the sampling intervals of the detector-plane
grid. Therefore, successful ray aiming should at least result in
δra < 0.5 but preferably into a very small number thereof.
Thus, when δra ≥ 0.5 the ray aiming is poor.

In Fig. 16, the result for a simple imaging system [distance
g � 200 mm from input (b0;x � b0;y � 5 mm) to lens
middle plane], consisting of a biconvex spherical lens (focal
length f 1 � 50 mm, diameter dL1 � 40 mm, thickness
t1 � 10 mm) and a circular aperture (diameter dA1 � 4 mm)
directly in front of the lens, is shown at Δz ≈ 51.7 mm behind
the rear lens surface. One can see that the nine source points
(Fig. 15, left) yield separated spots. Thus, there is almost no
overlap. The values for bx;y and b̄x;y given in Fig. 16 are quite
different. For a good overlap, these values should become

almost equal. The ray aiming error for the central source point
is quite small. Figure 17 shows the same for different image
distances and a larger aperture dA2 � 30 mm. Directly behind
the lens (Δz � 1 mm) and far away (Δz � 1 m) overlap and
ray aiming are good, although the ray aiming for the larger

input
plane

aperture
plane

optical system

g

t

z

detector
plane

9

7

3

1

8

2

5
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4

b0,x

b0,y x

y

Fig. 15. Left: distribution of chosen source points on the input
plane for the test of reachability of the detector sampling grid positions
of an optical system. The numbering corresponds to the respective
source intensity. Right: example of an optical system under test (only
marginal rays from a single source point are shown).

Fig. 16. Test of overlap and ray aiming for a simple imaging system
with a 4 mm aperture. Left: additive sampling of the rays from the nine
input source points yields nine separated spots on the detector grid.
The plotted quantity is arbitrary and corresponds to the ray density
times the respective source intensity. The depicted values are bx;y , total
point spread width including all sources; b̄x;y , mean of the point spread
widths taken from the individual source points; b, largest width of the
point spread of the central source point, i.e., source point 9 in Fig. 15,
which is also the calculation window size of the right picture; Δz, dis-
tance from the last lens surface apex to the detector plane. Right: the
ray aiming error according to Eq. (A7) for the central source point.
The viewing angle is perpendicular to the detector plane.

Fig. 17. Test of overlap and ray aiming for a simple imaging system
with a 30 mm aperture. Left: additive sampling of the rays from the
nine input source points on the detector grid. The plotted quantity is
arbitrary and corresponds to the ray density times the respective source
intensity. The depicted values are bx;y , total point spread width includ-
ing all sources; b̄x;y , mean of the point spread widths taken from the
individual source points; b, largest width of the point spread of the
central source point, i.e., source point 9 in Fig. 15, which is also
the calculation window size of the right picture; Δz, distance from
the last lens surface apex to the detector plane. Right: the ray aiming
error according to Eq. (A7) for the central source point. The viewing
angle is perpendicular to the detector plane.
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aperture is not as good as for the small aperture. Close to the
image plane at Δz ≈ 61.7 mm, there is insufficient to no over-
lap, and the ray aiming error becomes very large.

In order to illustrate the application to a different optical
system and to show that the optimal overlap and ray aiming
are not always close to or far away from the last lens surface,
a second lens (f 2 � 100 mm, dL2 � 40 mm, t2 � 10 mm) is
placed confocally to the image position of the first lens. The
results for various distances are shown in Fig. 18. At
Δz � 50 mm, the ray aiming and overlap are better than at
Δz � 5 mm. For Δz � 5 m, both are poor.

At caustics, image, or focal regions, certain locations in the
area of the detector cannot be reached by rays, while in other
locations rays accumulate in vicinity to certain sampling coor-
dinates, i.e., the overlap is poor. Therefore, the relation between
starting condition and position on the detector plane is not

unique, i.e., Eq. (A2) is no longer bijective. Use of Eq. (A6)
yields distances much larger than Δxsgp or Δysgp between
�x 0; y 0� and �xsgp; ysgp� and δra gets poor.

One can conclude that the test tool enables one to find po-
sitions where the features, which are necessary for the calcula-
tion of a ray-based diffraction integral, i.e., overlap and hitting
of sampling points, are established. Generally, it should now be
clear that caustics as well as image and focal regions have to be
avoided.

APPENDIX B: DETAILED DESCRIPTION OF
FIELD TRACING

From each aimed ray, i.e., a ray that gets close to an assigned
detector pixel and is found by ray aiming, a ray tube is con-
structed at an input position. Such a ray tube consists of the
base ray, which is identical to the aimed ray, and four parabasal
rays. The ray tubes are generated by either translating the base
ray along orthogonal directions or by tilting the base ray around
two orthogonal axes. The finite differences, i.e., the translation
of magnitude D or the tilt angle β, should be chosen to be as
small as numerically reasonable [46]. The orthogonal directions
can be obtained from the arbitrary orthonormal
set �êx ; êy; r̂�, which is defined by

êx �
2
4 r̂z

0
−r̂x

3
5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2x � r̂2z
p ; êy � r̂ × êx : (B1)

Then, the parallel rays start from

P0;	x � P0 	 D · êx ;

P0;	y � P0 	 D · êy; (B2)

while the divergent ray directions are given by

r̂	x � r̂ cos β	 êx sin β;

r̂	y � r̂ cos β	 êy sin β: (B3)

Parallel ray initialization is used when a plane wave decompo-
sition of the input field is chosen, while a spherical wave
decomposition implies the use of the divergent one.

When the rays of a ray tube are traced through an optical
system, they stay sufficiently paraxial to the base ray if D or
β are chosen sufficiently small, so that the positions and
directions of the output rays can be described by matrix
optics [45,46]:2

664
x̆
y̆
x̆ 0

y̆ 0

3
775
2

�
�
A B
C D

�2664
x̆
y̆
x̆ 0

y̆ 0

3
775
1

�

2
664
A11 A12 B11 B12

A21 A22 B21 B22

C11 C12 D11 D12

C21 C22 D21 D22

3
775
2
664
x̆
y̆
x̆ 0

y̆ 0

3
775
1

: (B4)

It is worth noting that, in this paper, the reduced slope, e.g.,
x̆ 0 � n�z̆�dx̆�z̆�∕dz̆, is used [18]. The coordinates x̆ and y̆ live
in a plane orthogonal to the base ray r̂, i.e., the base plane,
while their slopes x̆ 0 and y̆ 0 are taken along r̂. Obviously, êx
and êy can be readily used to initially define the base plane.

Fig. 18. Test of overlap and ray aiming for a telescope with a
30 mm aperture. Left: additive sampling of the rays from the nine
input source points on the detector grid. The plotted quantity is ar-
bitrary and corresponds to the ray density times the respective source
intensity. The depicted values are bx;y , total point spread width includ-
ing all sources; b̄x;y , mean of the point spread widths taken from the
individual source points; b, largest width of the point spread of the
central source point, i.e., source point 9 in Fig. 15, which is also
the calculation window size of the right picture; Δz, distance from
the last lens surface apex to the detector plane. Right: the ray aiming
error according to Eq. (A7) for the central source point. The viewing
angle is perpendicular to the detector plane.
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Thus, the orthonormal set �êx ; êy; r̂� defines the base ray
frame, i.e., the coordinate system that is fixed to the respective
base ray. However, when the base ray undergoes refractions or
reflections its direction changes. Therefore, at every interface
of the optical system, when r̂r;t � Mr̂ the same rotation OM
has to be applied to êx or êy. For example, êx;r;t � Mêx , while
êy;r;t � r̂r;t × êx;r;t ensures the right-hand chirality of the ortho-
normal set. In order to find OM , Rodrigues’ rotation formula
[62] is used, which describes how a vector is rotated around an
arbitrary rotation axis that is given by a versor v. For the
present problem, one can obtain v by

v � r̂ × r̂r;t
jr̂ × r̂r;tj

; (B5)

while the rotation angle is

θ � arc cos�r̂ • r̂r;t�: (B6)

The special case r̂r;t � r̂ would yield division by zero in
Eq. (B5), which has to be prevented by explicitly setting
v � 0 in this case. There are two possible rotation directions,
which have to be considered by probing with 	v and taking
the solution that minimizes jM�v�r̂ − r̂r;tj, where M�v� is
obtained by Rodrigues’ rotation formula [62]:

M�v� � I� sin θV× � �1 − cos θ�V2
×; (B7)

where I is the identity matrix and

V× �
2
4 0 −vz vy

vz 0 −vx
−vy vx 0

3
5: (B8)

Extensive matrix multiplication yields

M�v� �

2
64
1� �1 − cos θ��−v2y − v2z �
vz sin θ� �1 − cos θ�vxvy
−vy sin θ� �1 − cos θ�vxvz

−vz sin θ� �1 − cos θ�vxvy
1� �1 − cos θ��−v2x − v2z �
vx sin θ� �1 − cos θ�vyvz

vy sin θ� �1 − cos θ�vxvz
−vx sin θ� �1 − cos θ�vyvz
1� �1 − cos θ��−v2x − v2y �

3
75: (B9)

It is worth noting that, in the special case where v � 0, it
follows that M�v� � I.

While the initial ray vectors are simply given by [46]

p1;	x �

2
6664
	D

0

0

0

3
7775; p1;	y �

2
6664

0

	D

0

0

3
7775;

q1;	x �

2
6664

0

0

	n0 tan β

0

3
7775; q1;	y �

2
6664

0

0

0

	n0 tan β

3
7775; (B10)

where the p1;	x;y are needed for the plane wave decomposition
and the q1;	x;y for the spherical wave decomposition of the
input field, the final ray vectors must be obtained from the
intersections of the parabasal rays with the x̆, y̆ plane of
the base ray frame where, in turn, the base ray intersects the

detector plane. Figure 19 illustrates the problem of finding
these intersection points. In analogy to Eq. (31), one can obtain
the sought intersection points from any known ray positions
and versors by

Q	x;y �
�P − P	x;y� • r̂

r̂	x;y • r̂
r̂	x;y � P	x;y : (B11)

The points Q	x;y are still 3D vectors in the global frame. The
local coordinates on the x̆, y̆-plane can be obtained from

x̆	x;y � �Q	x;y − P� • êx ; y̆	x;y � �Q	x;y − P� • êy: (B12)

The versors r̂	x;y also have to be transformed into the base ray
frame:

ŝ	x;y �
2
4 r̂	x;y • êx
r̂	x;y • êy
r̂	x;y • r̂

3
5: (B13)

Now the final ray vectors can be obtained:

p2;	x ; q2;	x �

2
6664

x̆	x

y̆	x

nm−1 ŝx̆;	x∕ŝz̆;	x

nm−1 ŝy̆;	x∕ŝz̆ ;	x

3
7775;

p2;	y; q2;	y �

2
6664

x̆	y

y̆	y

nm−1 ŝx̆;	y∕ŝz̆;	y

nm−1 ŝy̆;	y∕ŝz̆ ;	y

3
7775: (B14)

The A, B, C, and D matrices are directly related to the input
and output ray vectors, whose components are denoted by the
pre-superscripts [46]:

r̂

r x y,
^

P x y,
Q x y,

P

base plane

detector plane

Fig. 19. Situation after ray tracing: the points Q	x;y on the plane
normal to r̂ have to be found from known intersections P and P	x;y
and known versors r̂ and r̂	x;y .
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�
A B
C D

�
�

2
6664

1p2;	x∕1p1;	x
1p2;	y∕2p1;	y

2p2;	x∕1p1;	x
2p2;	y∕2p1;	y

3p2;	x∕1p1;	x
3p2;	y∕2p1;	y

4p2;	x∕1p1;	x
4p2;	y∕2p1;	y

1q2;	x∕3q1;	x
1q2;	y∕4q1;	y

2q2;	x∕3q1;	x
2q2;	y∕4q1;	y

3q2;	x∕3q1;	x
3q2;	y∕4q1;	y

4q2;	x∕3q1;	x
4q2;	y∕4q1;	y

3
7775: (B15)

Therefore, the parallel initial ray vectors are chosen if A and C
are sought, while the divergent initial ray vectors lead to B and
D. Fortunately, as is shown below, the VRBDI also needs no
more than either A and C in the plane wave or B and D in the
spherical wave decomposition case.

With Eqs. (33) and (34) repeatedly using Eqs. (21) or (22)
after m − 1 surfaces and with Eq. (35), a field contribution on
the base plane can now be given either as [16,58]

�dE;dH�bp �
exp�−ik0OPL�ffiffiffiffiffiffiffiffiffiffiffiffiffi

det�A�
p exp

�
−

ik0
2 det�A�

· �x̆2�C11A22 − C12A21� � y̆2�C22A11 − C21A12�

� x̆ y̆�C12A11 − C11A12 � C21A22 − C22A21��
�

· �dE; dH�m−1 (B16)

for the plane or

�dE;dH�bp �
i

λ0

exp�−ik0OPL�ffiffiffiffiffiffiffiffiffiffiffiffiffi
det�B�

p �
1 −

i

k0OPL

�
exp

�
−

ik0
2 det�B�

· �x̆2�D11B22 −D12B21�� y̆2�D22B11 −D21B12�

� x̆ y̆�D12B11 −D11B12 �D21B22 −D22B21��
�

· �dE;dH�m−1 (B17)

for the spherical wave decomposition and the optical path OPL
obtained by Eq. (36).

However, the field in the base plane �dE; dH�bp is not the
sought quantity. Additionally, the opportunity to choose only
one of four possible	-combinations for the ray vectors implies
an ambiguity. Figure 20 illustrates these problems and offers
solutions. First, the nearby sample-grid point Psgp is expressed
in the base ray frame:

" x̆L
y̆L
z̆L

#
�

2
4 �Psgp − P� • êx
�Psgp − P� • êy
�Psgp − P� • r̂

3
5: (B18)

Depending on the signs of x̆L and y̆L, the initial and final ray
vectors are chosen as indicated by Fig. 20. Then, by use of
Eq. (B15), the corresponding submatrices A and C or B
and D are calculated. Further propagation into base ray direc-
tion can simply be described by�

Ã B̃
C D

�
�

�
I Δz∕nm−1I
0 I

��
A B
C D

�
: (B19)

Therefore, only

Ã � A� Δz∕nm−1C or B̃ � B� Δz∕nm−1D (B20)

has to be calculated. It is worth noting that Eq. (B20) holds also
if Δz < 0, which corresponds to a backward propagation. For
example, this is the case when Psgp lies on the other side of P in
Fig. 20 (left).

To properly include the well-known Gouy phase anomaly,
which causes a π∕2 shift at each astigmatic focus (π at a
symmetric double focus) [39,63] and which was also confirmed
experimentally [64], it is still necessary to modify det �Ã�−1∕2 or
det �B̃�−1∕2, respectively. It can be shown that

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
det�Ã�

p →
σ�À11�ffiffiffiffiffiffiffi

À11

p σ�À22�ffiffiffiffiffiffiffi
À22

p ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
det�B̃�

p →
σ�B̀11�ffiffiffiffiffiffiffi

B̀11

p σ�B̀22�ffiffiffiffiffiffiffi
B̀22

p ; (B21)

where À and B̀ are the diagonalized matrices of Ã and B̃,
respectively, describes the Gouy phase correctly. It should
be noted that, e.g., in the case of a higher-order Hermite–
Gaussian beam, additional order-dependent contributions to
the Gouy phase, as they typically appear in respective analytical
formulas, are implicitly included by the integration of all input
field components at the output plane and need not to be
considered explicitly here.

Eventually, a field contribution on a detector sampling grid
point can be written as

�dE;dH�sgp �
σ�À11�ffiffiffiffiffiffiffi

À11

p σ�À22�ffiffiffiffiffiffiffi
À22

p exp�−ik0OPL�

· exp
�
−

ik0
2 det�Ã� �x̆

2
L�C11Ã22 −C12Ã21�

� y̆2L�C22Ã11 −C21Ã12�

� x̆Ly̆L�C12Ã11 −C11Ã12�C21Ã22 −C22Ã21��
�

· �dE;dH�m−1 (B22)

P

Psgp

base plane

detector plane

base ray

z êx

êy

P

Psgp

?

(+ ,+ )x y(- ,+ )x y

(- ,- )x y (+ ,- )x y

Fig. 20. Situation after ray tracing. Left: the intersection P of the
base ray with the detector plane defines the orthogonal base plane,
which does, in general, not contain the nearby sample-grid point
Psgp. Further propagation by Δz along the base ray is necessary.
Right: the four possible ±- combinations of ray vectors are decided
by the position of Psgp.
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for the plane or

�dE;dH�sgp �
i

λ0

σ�B̀11�ffiffiffiffiffiffiffi
B̀11

p σ�B̀22�ffiffiffiffiffiffiffi
B̀22

p exp�−ik0OPL�

·
�
1 −

i

k0OPL

�
exp

�
−

ik0
2 det�B̃�

· �x̆2L�D11B̃22 −D12B̃21�� y̆2L�D22B̃11 −D21B̃12�

� x̆Ly̆L�D12B̃11 −D11B̃12 �D21B̃22 −D22B̃21��
�

· �dE;dH�m−1 (B23)

for the spherical wave decomposition. Therefore, AF PW;SW and
SPW;SW in Eqs. (37) and (38) are

AF PW � σ�À11�ffiffiffiffiffiffiffi
À11

p σ�À22�ffiffiffiffiffiffiffi
À22

p ;

SPW � 1

2 det�Ã� �x̆
2
L�C11Ã22 − C12Ã21�

� y̆2L�C22Ã11 − C21Ã12�
� x̆Ly̆L�C12Ã11 − C11Ã12 � C21Ã22 − C22Ã21��

(B24)

for the plane or

Fig. 22. Magnetic field components corresponding to Fig. 4.

Fig. 23. Magnetic field components corresponding to Fig. 6.

Fig. 21. Magnetic field components corresponding to Fig. 3.
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AF SW � σ�B̀11�ffiffiffiffiffiffiffi
B̀11

p σ�B̀22�ffiffiffiffiffiffiffi
B̀22

p ;

SSW � 1

2 det�B̃� �x̆
2
L�D11B̃22 −D12B̃21�

� y̆2L�D22B̃11 −D21B̃12�
� x̆Ly̆L�D12B̃11 −D11B̃12�D21B̃22 −D22B̃21�� (B25)

for the spherical wave decomposition. The term SSW is the
paraxial point-to-point and SPW the paraxial angle-to-point
eikonal, respectively [58].

APPENDIX C: MAGNETIC FIELD COMPONENTS

In this section, the magnetic field components corresponding
to the main text figures showing the electric ones are collected
in Figs. 21–25 the sake of completeness.

Fig. 24. Magnetic field components corresponding to Fig. 10.

Fig. 25. Magnetic field components corresponding to Fig. 12.
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