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Abstract: The volume of 28Si spheres of about 94 mm diameter is an input datum for the determination of 
the Avogadro constant. We report about a finite element analysis of the self-weight effect on the volume de-
termination via optical interferometric measurements of the sphere diameters. The self-weight expansion or 
shrinkage of the equatorial diameters, which ranges from 31 pm to +180 pm, depends on the southern latitude 
of the supports. 
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1. Introduction 

A deep revision of International System of units (SI) is going to be implemented, where fixed conventional 
values will be given, among others, to the Planck and Avogadro constants [1-3]. Afterwards, the unit of 
mass, the kilogram, might be realized by counting the atoms in perfect-crystal 28Si spheres of known lattice 
parameter, volume, surface status (as regards as geometry, physics, and chemistry), isotopic composition, 
and chemical purity [4-6]. The sphere diameter is about 94 mm, giving a mass close to 1 kg. The artefact cal-
ibration will require periodic surface characterizations and volume measurements. 

Since the form error, defined as the maximum radial peak-to-valley distance, is less than 100 nm, the 
volume is determined as D where D is the mean diameter [7]. Starting from about 103 diameter values 
obtained by repeating optical-interferometric measurements after rotation and repositioning of the sphere on 
three kinematic supports, NMIJ estimates the mean diameter to within a fractional uncertainty of 6.6 nm/m 
[5,8]. To support and to complement the measurements, this paper reports on a finite element analysis [9] of 
the self-weight deformation of the sphere. 
 

2. Measurement of the sphere diameters 

The sphere diameters are measured by optical interferometry. At the NMIJ, the sphere is placed in a fused-
quartz Fabry–Perot etalon enclosed in a vacuum chamber equipped with an active temperature control. The 
sphere is supported by three pins placed at 120° azimuthal distance. The interferometer senses the sphere di-
ameter in the horizontal plane, in a fixed direction at 30° azimuthal distance from one of the pins. A two-axis 
rotation mechanism is placed under the sphere, to repositioning it and to measure the diameters in directions 
distributed as uniformly as possible. After reorienting the sphere, measurements are repeated to collect and to 
average more than 103 diameter values. The uncertainty of the mean diameter (not corrected for the phase 
shift due to the surface oxide layer) is 0.62 nm, to which a fractional uncertainty of 6.6 nm/m will correspond 
[5]. The diameter measurements are made after repositioning the sphere so that, when measured, each diame-
ter locates always in the same direction with respect to the supports. Therefore, the self-weight of the sphere 
might originate a systematic measurement bias. 
 

3. Finite element analysis 

The Young modulus (the stress to strain ratio in the stretching direction, E) and the Poisson ratio (trans-
verse-strain to stretching-strain ratio, ) of silicon depend on the load direction, that is, on the sphere orienta-
tion with respect to gravity. We used the elastic constants given in [10], that is, for the <100> directions, c11 
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= 165.6 GPa, c12 = 63.9 GPa, and c44 = 79.5 GPa. The stiffest direction is about [111], where E = 189 GPa; 
the stretchiest is [100], where E = 130 GPa. The silicon density was set to 2329 kg m-3, the gravity 
acceleration to 9.807 m s-2. 
To make the analysis the simplest, since the expected strain is less than 10 nm/m and we are not interested in 
the sphere deformation but only in the mean diameter as experimentally determined, we used a linear and 
isotropic model, where the /E ratio, 1.42 x 10-3 GPa-1, was set equal to the ratio average over all the crystal-
lographic directions. In practice we set E = 160 GPa and  = 0.228. Heuristically, we assumed that the mean  
of the measured diameters of an anisotropic sphere is equal to the diameter measured by using an isotropic 
sphere whose /E ratio is averaged over the crystallographic directions. Moreover, since the diameters are 
always measured in the same direction with respect the supporting pins, the isotropy assumption avoids a de-
tailed simulation of the measurement procedure, as the result depends only on the measurement direction and 
not on the orientation of the sphere in the gravitational field.  Therefore, only one computation of the elastic 
deformation is necessary. 

As results of a trade-off between processing time and accuracy, about 57000 tetrahedral mesh elements 
were used. Boundary conditions must be specified to fix the finite element model in space. Since the pre-
scription of Dirichlet boundary conditions on the surface elements (that is, the prescription of fixed transla-
tional and rotational degrees of freedom) originates non-physical effects, the sphere supports were included 
in the analysis. In practice, we united the sphere and supports by generating a composite object consisting of 
connected domains of different material sharing the boundaries between the neighbours. In this way, the 
needed Dirichlet boundary conditions were prescribed on the supports’ backside-elements. 
 

3.1 Accuracy of the finite element model 
 
The finite element model [9] must not depend on the mesh used. Hence, when the isotropy assumption is 
made and the constraints are azimuthally invariant, the self-weight deformation must be axially symmetric 
and must depend only on the polar angle. Therefore, to investigate the numerical accuracy achievable by the 
finite element model, we carried out studies where – to ensure axial symmetry – the sphere is supported by a 
steel ring and flared cylinder as shown in Figs. 1 and 2. The material parameters of the support are 7850 kg 
m-3 density, 200 GPa Young’s modulus, and 0.30 Poisson’s ratio. The deformations of the equatorial diame-
ters were calculated for different azimuths, with steps of 1°; the results are shown in the Figs. 3, 4, 5, and 6, 
where the diameters are identified by the elevation (latitude) of their northern extremes. As expected, the di-
ameters of the deformed sphere are independent of the azimuthal coordinate. The azimuthal deviations from 
the mean diameter shown in Figs. 4 and 6 are less than 1 pm. The equatorial diameters deviate from a con-
stant less than 0.1%. 
 

 
Figure 1. Silicon sphere with a steel ring support. The ring external and internal heights are 9.565 mm and 6.230 mm, 
the thickness is 5 mm, the external radius is 56.5 mm. 
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Figure 2. Silicon sphere with a steel flared cylindrical support. The support height is 20 mm, the thickness is 1.79 mm. 
 

 
Figure 3. Ring support: Self-weight deformation of the sphere diameters as a function of the azimuth (left) and eleva-
tion of the northern extremes (right). Positive deformations indicate larger diameters. The mean deformation of the 
equatorial diameters is 154.5 pm. 

 
Figure 4. Deviations from the mean diameter deformation, dm, at an elevation of the northern extreme of 0° and 30° 
(ring support).  
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Figure 5. Flared cylindrical support: Self-weight deformation of the sphere diameters as a function of azimuth (left) and 
elevation of the northern extremes (right). Positive deformations indicate larger diameters. The mean deformation of the 
equatorial diameters is 137.8 pm.  

 
Figure 6. Deviations from the mean diameter deformation, dm, at an elevation of the northern extreme of 0° and 30° 
(flared cylindrical support). 

 
1.1 Support modeling 

As shown in Fig. 7, the sphere model is supported by three pins, having 4 mm diameter and tip radius equal 
to 2 mm. The pins are placed at 0°, 120°, and 240° azimuths and 128.8° polar angle (38.8° south latitude) in 
accordance with the experimental layout adopted by NMIJ [5]. The line AB is the measured (equatorial) di-
ameter at 30° east of the first pin. 

As said, we united the sphere and supports into a composite object consisting of connected domains of 
different material sharing the contact area. To illustrate the impact of the pin material and contact area on the 
analysis, Fig. 8 shows the deformation of the measured equatorial diameter (at 30° azimuth) sensed the laser 
beam as a function of the contact area (ranging from 0.0036 mm2 to 28 mm2) and material, steel, aluminium, 
and polyether ether ketone (PEEK). The material properties used are listed in table 1. The maximum defor-
mation difference, between steel and PEEK, is 7 pm. The positive mean-deformation originates from the 
equatorial bulging of the sphere. As it is shown in Figs. 9 and 10, the indentation of the sphere surface by the 
supports modulates the deformation of the equatorial diameters with a 60° periodicity. The minima occur at 
the longitudes of the supports and of their antipodes, the maxima at the indentation ridges. The 30° azimuth 
of the measured diameter corresponds to a deformation maximum; therefore, the smaller the contact area, the 
larger the measured diameter. 
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Figure 7. Left: silicon sphere with the supporting pins. Right: top view of the sphere resting on three support at 128.8° 
polar angle (38.8° south latitude) and spaced by 120° azimuthal angles. The zero meridian goes through the first pin and 
the azimuths are positive in the counterclockwise direction. The measured diameter AB lies in the equatorial plane at 
30° east of the first pin. 
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Table 1. Material properties of the sphere support. 
 density / kg m-3 Young’s modulus / GPa Poisson coefficient 

steel 7850 200 0.30 
Al 2700 70 0.33 
PEEK 1320 3.6 0.38 

 

 
Figure 8. Self-weight deformations of the measured diameter as a function of the contact area between the sphere and 
the supports. Positive deformations indicate larger diameters. 

              

Figure 9. Left: map of the radial deformation of the sphere (0.076 mm2 contact area). The colour scale is from 300 pm 
(violet) to 60 pm (red). The contact areas are excluded from the map because of the large deformation, more than 1 nm 
(saturated area). The green line indicates the laser beam and the measured equatorial diameter at 30° east with respect 
the first-pin meridian. Right: polar plots of the radial deformation at the equator and ±15° elevations. The red line is the 
measured diameter. 

 

Figure 10. Strains of the equatorial diameters (PEEK supports, 3.5 mm2 contact area); the red marker indicates the 
measured diameter. Positive deformations indicate larger diameters. 
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Figure11. Self-weight deformation of the sphere diameter as a function of azimuth (left) and elevation (right, PEEK 
supports, 3.5 mm2 contact area). Positive deformations indicate larger diameters. 

  

Figure 12. Left: self-weight deformation of the measured diameter (at zero elevation and 30° azimuth) as a function of 
the polar angle of the PEEK supports (3.5 mm2 contact area). Right: zoom for polar angles from 115° to 125°. Positive 
deformations indicate larger diameters. 
 

1.2 Results 
In the NMIJ set-up, the pins are made of aluminium and are coated with a PEEK layer. In the case of 

PEEK supports, the depth of the Hertzian indentation between the Si and PEEK spheres [11], about 4 m, is 
less than the coating thickness, which was estimated to be a few tens of micrometres. Therefore, to calculate 
the deformation of the diameters measured at the NMIJ, we assumed that the supports are entirely made of 
PEEK and estimated the contact area, about 0.076 mm2, by using the Hertz theory of spherical indentation. 
Figure 9 shows the radial deformation of the sphere. The indentations due to the supports, which amount to 
more than 1 nm, are clearly visible as well as the equatorial ridges midway the indentations. The measured 
diameter, at 30° east of the first pin, was found to expand by 82 pm, corresponding to a strain of 0.88 nm/m. 
Therefore, the diameter measured by the interferometer is larger by 82 pm than the diameter of the unde-
formed sphere. 

Figures 10 and 11 show the results of the finite element analysis for PEEK supports and 3.5 mm2 con-
tact area, where the azimuth and elevation coordinates refer to the northern extreme of the diameter. As ex-
pected, a three-fold rotational symmetry substitutes for the axial symmetry around the vertical. The large de-
formations having 120° periodicity are due to the indentations of the sphere surface by the three supports, 
whose antipodes’ azimuths are 60°, 180°, and 300°. The higher the elevation, the greater the deformation. 
Besides, at the 38.8° elevation and 60°, 180°, and 300° azimuths, the southern extremes of the diameters will 
cross the supports. 

The equatorial diameters are affected by the smallest deformation, 710-10d on the average, having 60° 
periodicity and 610-11d amplitude. The deformation periodicity doubles because now one or the other 
diameter extremes crosses the indentations. 

Figure 12 shows the impact of the polar angle of the PEEK supports on the measured equatorial diame-
ter at 30° azimuth, calculated in the case of a 3.5 mm2 contact area. There exists an optimal support location, 
at about 119° polar angle, ensuring that the strain of the measured diameter is null. 
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3. Conclusions 

We studied, by finite element analysis, the impact of gravity on NMIJ’s volume-determination of a silicon 
sphere, where, after repositioning of the sphere, the measured diameter is always in the equatorial plane, at 
the same azimuthal distance from three kinematical supports. To make the analysis the simplest, we used a 
linear and isotropic model, where the /E ratio was equal to its average over the crystallographic directions. 

Firstly, we investigated the numerical accuracy of the finite element model by studying axisymmetric 
geometries, where the sphere strain must not depend on the azimuthal angle. The calculation of the equatori-
al strain was validated to within a numerical accuracy better than 1%. The accuracy of the final model has 
been confirmed by observing a strain field having the same three-fold rotational symmetry of the supports 
and boundary conditions. Secondly, we assessed the modelling of the sphere supports, as regards as material 
and contact area, and the effect of the boundary conditions. 

In the case of the NMIJ measurement geometry, with PEEK-coated aluminium supports – placed at 
38.8° south latitude and having a 0.076 mm2 contact area – and the isotropy approximation, we estimated a 
systematic expansion of the measured diameter equal to 82 pm, corresponding to a fractional error of 0.88 
nm/m. This corresponds to a fractional overestimation of the sphere volume equal to 2.610-9, to be com-
pared with a fractional uncertainty of the apparent volume measurement (not corrected for the phase shift 
due to the surface oxide layer) equal to 2010-9 [5]. The effect of the self-weight deformation on the volume 
determination is therefore negligibly small. Eventually, it was found that an optimal location of the sphere 
support exists, which nullifies this error. 

Recent results reported by the Physikalische Technische Bundesanstalt (PTB) have shown that achiev-
ing a fractional uncertainty of the apparent sphere volume as small as 4.510-9 is possible [12] and that the 
sphere topography can be optically reconstructed to within a few tens of picometers sensitivity [13]. There-
fore, future works will extend the analysis to take the crystal asymmetry into account and investigate the fea-
sibility of experimental tests of the finite element model. 
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