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Abstract 
 

This report describes the open software tool developed in the scope of TracePQM project using the 
outputs coming from A2.1.1-A2.1.4, A2.2.1-A2.2.5, A2.3.1-A2.3.6 and A2.4.1-A2.4.4 activities. The 
main throughput of the open software tool was to integrate the control, the data acquisition and the 
data processing modules to optimize the operation and configuration of different hardware platforms 
and transducers, which will speed up the developing of metrology grade modular setups designed for 
traceable measurements of power and PQ quantities from industrial frequency up to 1 MHz.  
The most relevant feature of the open software tool concerns its capability of implementing 
commonly used equipment and algorithms that combined with the concept of the modular design 
facilitates the easy incorporation of new equipment and algorithms. 

 
The project 15RPT04 TracePQM has received funding from the EMPIR programme co-financed by 
the Participating States and from the European Union’s Horizon 2020 research and innovation 
programme. This collection reflects only the author’s view and EURAMET is not responsible for any 
use that may be made of the information it contains.      
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Chapter 1 

1. OVERVIEW AND PRELIMINARY GUIDELINES ON OPEN SOFTWARE 
TOOL 

 

1.1 Introduction 
 
This chapter gives a general overview of the Open Software Tool (OST) suitable for handling the high 
performance and precise state-of-the art sampling systems, based on analogue-to-digital converters (ADCs), 
identified for power and PQ measurements. The sampling systems were opportunely identified during a 
survey conducted among the project’s partners and to the members of the EURAMET-TC-EM power and 
energy sub-committee. In particular, the OST will help the end-users to gain further insights into modern and 
traceable power and power quality (PQ) measurements from power line frequency to 1 MHz.      
The main features of the OST are:  

• the ability to identify the sampling hardware equipment - to interact with the experimental modular 
measurement setup, and to ensure a direct means for the simultaneous sampling of waveforms from 
voltage and current transducers employed in the modular measurement setup; 

• provide fast and transparent calculation of power and PQ parameters using suitable algorithms. 

Furthermore, the OST briges the gap between existing hardware platforms, already in use in many NMIs, 
based on virtual high speed digitizers and sampling DMMs, which have been proposed for decades for 
sampled power measurements.    
 
The open tool software handles different hardware platforms such as NI 5922 digitizers and sampling DMM 
3458As, which, to our knowledge, are already in use in many NMIs.  It handles both the macro-setups 
developed in WP1 and is composed  sub-routines for conducting of specific tasks. In particular, one part is 
dedicated to measurement setups based on two triggered high resolution multimeters, configured as 
digitizers, e.g. sampling DMMs 3458A, with the possible extension for longer duration measurements. The 
second part is based on virtual reconfigurable platforms employing high precision ADCs, e.g. NI 5922 
digitizers.   
Furthermore, the data processing module, described in chapter 3, was primarily intended for numerical 
computations, but has been enriched using dedicated high-level interpreted languages, such as Matlab and 
GNU Octave.  
At the end, all parts of the system, the digitizer control and data acquisition module and the data processing 
module, have been integrated using a special software interface so it appears to the final user as one 
interactive application. Moreover, the algorithms are made as m-files instead of compiled code with the 
software environment so they can be used or can be modified for both power and PQ parameter end 
uncertainty calculation without a need for recompiling the entire application. 
In particular, the requirements that the open software fulfills are: 
• Fast identification of the hardware installed (e.g. DMM 3458A or PXI NI-5922); 
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• Initialization of the ADC  acquiring parameters with the possibility of changing them ,e.g. sampling 
frequency, amplitude range, number of points and triggering parameters, during the acquisition process; 

• The possibility of interchanging  the roles of the triggering process of master-slave ADCs especially in the 
macro-setup employed for LF power measurements; 

• Storage and pre-elaboration of sampled data; 
• Data processing for estimation of the parameters for power and PQ and uncertainty calculation  
• Advanced method to communicate and transfer data quickly with the experimental modular 

measurement setup.  
     
All specific drivers necessary for the reconfigurable platform and the  Guide User Interfaces (GUIs) of the 
open software tool projects,  have been developed using development environments such as LabVIEW and 
LabWindowsTM/CVI.   
  
 
    
1.2 Software download 
 
The open software tool project can be download from the project website, http://tracepqm.cmi.cz/, or from 
the GitHub domain: 

• https://github.com/smaslan/TWM for the LabVIEW version entitled “TWM-TracePQM Wattmeter”; 

• https://github.com/btrinchera/TPQA for the LabVindows/CVI version entitled “TPQA-Traceable 
Power & Power Quality Analyzer”. 

 

1.3 Software installation 
 
Both TWM and TPQA open-source software tools require no installation. Both distributions can be 
downloaded and copied to any disk location. However, it is recommended to copy the distribution folder to 
the primary hierarchy root of the system, e.g.: 

• C:\TWM\TWM-1.X.0.0\TWM for LabVIEW; 

• C:\TPQA\TPQA-1.X.0.0 for LabWindowsTM/CVI.  

• Installation of following Runtime Engines: 

- LabVIEW 2013 Runtime Engine for TWM; 

- LabWindows/CVI Runtime Engine for TPQA. 

• Installation of drivers of all integrated instruments, and in particular: 

- NI-VISA drivers for handling instruments connected via GPIB NI-488.2 interface;  

- niScope drivers for handling NI digitizers  

• Installation of GNU Octave and/or MATLAB Runtime Engine (it is mandatory for TPQA) for data 

processing. 

http://tracepqm.cmi.cz/
https://github.com/smaslan/TWM
https://github.com/btrinchera/TPQA
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• Registration of Dynamic Link Libraries (DLL)  of Matlab, i.e. for 32-bit Matlab version the dlls are 

situated in  C\Program Files\Matlab\R2013a\bin\win32. 

Further information about the prerequisites for TWM and TPQA installation can be found in the folder 
\TWM\TWM-1.X.0.0\TWM\doc or \TPQA\TPQA-1.X.0.0\doc of the respective distributions.  
 

1.4 Macro-setup requirements for use with the open tool software 
 
The new modular setups designed for the measurement of power and PQ quantities are based on the “best-
in-class” equipment identified in A1.1.4.  The main requirement for the new system is to ensure both the 
lowest possible uncertainty and the highest possible bandwidth using commercially available devices. Since 
these contradictory requirements cannot be met by means of a single setup it was decided that the new 
system will comprise two macro-setups, one for low frequency (LF) measurements with low uncertainties 
and a frequency range limited by the sampling rate of the digitizer employed, and the second setup will use 
high sampling frequency digitizers which offer high-bandwidth. 
 

1.4.1 LF measurement setup 
 
The hardware requirements for the building of a low frequency metrological grade measurement setup for 
power and PQ measurements up to few kilohertz are as follows:   

• Two sampling DMMs 3458 A; 

• One/two IEEE-488.2 interfaces; it is recommended to use GPIB-USB-HS as well as GPIB-USB-HS+ 
devices; 

• Clock generator or Arbitrary Wave Generator, e.g.,   Agilent 331/332xxA, Agilent 335/336xxA, SRs 
CG635; 

• PC with OS Windows 7 or higher.  
 

1.4.2 Wideband measurement setup 
 
The hardware requirements for the building of a wideband metrological grade measurement setup for power 
and PQ measurements up to 1 MHz are as follows:    

a) The first configuration is based on the use of a PC 

• PXIe chassis, e.g. model 1082 or equivalent; 

• x4/MXI-express for PXIe control, possibility with fiber optic cable;  

• Two high-bandwidth digitizers NI PXI-5922, to carry out differential sampled voltage 
measurement; 

• Arbitrary waveform generator or clock generator, e.g.,   Agilent 331/332xxA, Agilent 335/336xxA, 
SRs CG635; 

• PC with MS Windows 7/8/10 equipped with two or more USB ports.  
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b) The second configuration is based on the use of a mainstream unit as follows: 
  

• PXIe chassis, e.g. model 1082, 1085 or equivalent; 
• Two high-bandwidth digitizers NI PXI-5922, to carry out differential sampled voltage 

measurement; 
• Arbitrary waveform generator or clock generator, e.g.,   Agilent 331/332xxA, Agilent 335/336xxA, 

SRs CG635; 
• NI PXI-8840 or equivalent mainstream unit with MS Windows Windows 7 or higher equipped with 

two or more USB ports. 

 

1.4.3 Macro-setups design 
 
Based on the review of existing measurement setups three candidates were identified for the new LF system 
based on 3458A multimeter and one candidate for the new WB system based on NI-5922 digitizer. 

• The three candidate LF-systems are:  

1) Synchronized by external 10 MHz, 3458A ext trig from Arbitrary Waveform Generator(AWG) – both 
generation of waveforms and measurements are synchronized via a common 10 MHz. When 3458A 
multimeters are used as samplers, they have no 10 MHz synchronization input so the sampling must 
be derived from a synchronized pulse generator or arbitrary waveforem generator;  

2) Synchronized by software or hardware – the sampling is derived from a trigger synchronization 
hardware, either built around a phase-locked loop or a synchronized pair of frequency counter and 
pulse generator;  

3) Non/semi-synchronous sampling – synchronization is achieved by post-processing the simultaneous 
waveforms, e.g. re-sampling based on sinc interpolation method and FFT.  

Each design has advantages and drawbacks, the final choice depending on which is deemed most important. 

• The WB system is based on single or dual NI-5922 digitizers. The macro setup based on NI-5922 digitizers 
has the advantage of being easily adaptable from a single phase to three phase measurements system. It 
is applicable not only to emerging research activities conducted in NMIs but also for direct calibration of 
the  new class of polyphase PQ  analyzers, which are designed for power network monitoring  and able to 
reach an accuracy of the order of 0.03%.  
With respect to the use of precision digitizers for the design of the WB system, the main features are: 
- flexible vertical resolution depending on the sampling frequency; 
- several synchronization and clocking strategies depending on the kind of PQ parameters under 

investigation;   
- reconfigurable digital platforms for traditional, real time measurements and continuous acquisition 

for long time measurements beyond the capabilities of internal memory;   
- simple synchronization of all digitizers employed  for three-phase power and PQ measurements. 
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Fig. 1 shows a prototype modular system, which comprises both LF and WB macro-setups developed at 
INRIM. Both LF and WB digitizers are handled by the same PXI chassis, which has a control unit for remote 
control of both LF and WB digitizers based on a NI mainstream unit.   

 

 
Fig 1. Fig 1. INRIM prototype of the newly developed modular system developed, which comprises 
two macro-setups, one for LF measurements based on DMMs 3458A digitizers, and the other based 
on high-bandwidth digitizers configured for differential sampling measurements. Both macro-setups 
are equipped with wideband voltage and current coaxial transducers, i.e. compensated resistive 
voltage dividers and current shunts.    

 

1.4.4 Power and PQ sources 
 
As power and power quality source to be used with the two macro-setups it is possible to equip the 
experimental setup with a power and power quality calibrator or a dedicated system for waveform synthesis 
having at minimum two frequency-locked outputs, also known as biphase-synthesizer, equipped with 
suitable voltage and transconductance amplifiers. So the solutions proposed could comprise: 
• Power and power quality calibrator: Fluke 6105A, 6100B able to generate a wide variety of complex 

signals, including: 

- Flicker 
- Harmonics 
- Dips and swells 
- Interharmonics 
- Fluctuating harmonics 
- Simultaneous application, ecc. 

• Dedicated biphase generators or digital-to-analog converters (DACs) which offer more flexibility and 
higher vertical resolution ranging from 16 to 24 bits suitable for synthesizing of sine-waves with high 
spectral purity and complex waves having harmonics extending up to 1 MHz or beyond. A DAC’s output 
capability doesn’t always match the practical capability of power and PQ  measurements. In many 
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practical applications, suitable voltage and transconductance amplifiers are employed to extend their 
output capabilities.      

 
 

1.5 Software structure concept 

The basis for the design of the concept was the results of the study on the choice of the best available 
components of ADCs as well as voltage and current transducers, which culminated in the design of new 
modular measurement setups by the NMIs involved in the project.  

Based on their experience of existing systems developed by some NMIs, the choice of the software 
environment(s) was defined with the possibility to integrate as many as possible of the existing acquisition, 
scaling voltage and current devices and processing algorithms already in widespread use for power and PQ 
measurements in NMIs. The open software environment strengthens the measurement capacities of NMIs 
that already perform power measurements and wish to extend their capabilities to PQ measurements, 
without exchanging their existing platform and scaling devices.  

Further details about the concept and flow chart with a partiall description for the software structure for 
NMIs who use DMMs 3458A or NI 5922 digitizers for primary power metrology are reported in [1] and [2]. 
Furthermore, the concept and the plan of the software and the modular measurement setup suitable to 
include multiple sampling DMMs or multiple NI 5922 is given in Appendix #1. 

A key component in the realization of the open software tool was the development of the concept for the 
interface between the data processing module and the data control and data acquisition module. The 
concept was developed for the interface between LabVIEW to Octave and Matlab and for the interface 
between LabWindows/CVI to Matlab. 

Two variants of SW environments were chosen: LabVIEW and LabWindows/CVI for control and user interface 
and GNU Octave and/or Matlab for data processing.  

Flow charts of the open SW tool projects and drivers are described in the reports [15] and [17] and attached 
in the Appendix #10 and Appendix #11. 

 

 

1.5.1 Initial concept of drivers for open SW tool 

This section also partially covers A2.1.2 and A2.1.3. 

1.5.1.1 Introduction 

Following document is a first draft summarizing the possible concept and plan of the modular drivers for the 
digitizers. It is a general document that suggests preferred methods to be used for the development of 
drivers, however it is not mandatory plan. It is likely the implementation will differ depending on the inputs 
from other activities, e.g. A2.2.3 – streaming mode for 3458A. 
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1.5.1.2 Driver concept 

The ADC driver will consist of two parts. The first, low level part, will be the device specific functions/VIs. 
Second layer will be wrapper around these low level functions which will generalize all configuration and 
accesses to the particular ADCs to a unified format. So we will have only one control module that will be able 
to work with any ADC via the wrapper.  

The discussions made so far the system (let’s call it Digital Sampling Wattmeter (DSW)) will for this moment 
contain at least following ADCs: 

Type Comment 

3458A Multiple DMMs synchronized together by some of the many possible techniques. The 
proper technique for TracePQM must be defined from the concept of new DSW. There 
may be even multiple synchronization methods but in end the driver of the ADC must 
appear to the outside world as one multichannel digitizer.  

5922 1 to N digitizers 5922 (using 1 or 2 channels per digitizer) will be linked together using 
ni-TClk drivers so it will appear like one N channel digitizer. 

 

1.5.1.3 Generalized ADC 

As mentioned in introduction the goal is to make generalized ADC driver (wrapper) that will allow control any 
physical ADC using the same function calls so the rest of DSW will remain unchanged when new ADC is 
implemented. This document cannot describe the low level device drivers since it is not known at this stage 
how exactly the setup will look like. So this chapter will describe recommendations for the top layer (wrapper) 
and the drivers will be written accordingly to fulfill the requirements. 

The configuration parameters of the particular ADC types must be generalized as much as possible so 
interchanging them will require minimum device specific configurations. Exception is for instance address 
and setup of the sync. unit for 3458A which obviously will not be present for 5922. But even these device 
specific setups will be accessed only via the wrapper. No direct access to the low level drivers will be made 
in order to keep the SW structure clear. 

Control module will identify supported/unsupported features of the generalized ADC by calling specialized 
functions. Unsupported features will be simply ignored. So for instance there will be function 
“adc_has_apperture()” that will be used to find out whether the ADC can set sampling aperture. If not the 
control module (and eventually GUI) will simply disable/ignore this feature. Function “adc_set_apperture()” 
will simply do nothing for unsupported ADC and GUI will gray the control with this parameter. Such 
“get_capability_...()” functions will be implemented for every potentially device specific function. However 
whenever possible the parameters of the device drivers shall be generalized to minimize these exceptions.  

Basic wrapper function reference: 

[adr_type] = adc_get_address_type(adc_type) 
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Will return device address(es) type required to designate it. Addresses of the particular ADCs can 
have completely different types.  

So for instance to describe channel locations of PXI5922 it will require vector of items 
{device_address, channel_id} for every virtual channel of the multichannel ADC.  

3458A will require at least vector of VISA addresses (for each DMM) + address for the 
synchronization unit (also VISA or some proprietary bus). 

MIKES adc will probably require only single address. 

So it will return one of enumerated values based on which the control module will open the device 
and GUI will “ungray” the controls. 

[error, idn(s)] = adc_open(&adc_session, adc_type, address, reset) 
 

Will open the ADC of type “adc_type” using variable “address”. The address variable will be possibly 
of “variable” type (LV) or pointer (CVI) to cover different address types by single function call. The 
function will store working data to “adc_session” structure (opened bus references, etc.). The 
session will carry everything related to the ADC. No variables/data will be stored in global variables! 

This function should return identification strings of the devices. If there are multiple physical devices 
it should return idn. and serial numbers for each so it can be stored to the measurement report. The 
function should also enable “reset” function so the ADC will be set to some default and SAFE mode. 
So for instance force 1MΩ input for PXI5922 just in case someone connects high voltage to input. 

 

Address format example for two channels for 3458A: 

addr.channel[] = {VISA1; VISA2} 
addr.sync_unit_address = VISA3 
 

Address format example for 3 channels for 5922: 

addr[0].ivi_address = PXI:4 
addr[0].channel_id = 0 
addr[1].ivi_address = PXI:4 
addr[1].channel_id = 1 
addr[2].ivi_address = PXI:5 
addr[2].channel_id = 0 
… 

 

[error] = adc_close(&adc_session, reset) 
 

Will close the ADC session. All physical devices that were opened (opened reference to some bus) 
shall be closed. Optionally they may be reset to safe default state. For example DMMs to DCV with 
auto trigger. This function should also force instruments back to the local control mode (set REN 
state of GPIB) so one does not have to always press “local” to gain control.  

[error, idn(s)] = adc_get_idn(&adc_session) 
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Will return clear identification of each component of the virtual ADC. Whenever possible the driver 
should query serial number, fw revision, etc. 

[error, rates] = adc_get_sampling_rates(adc_type, mode) 
 

This function should return available range of sampling rates for the device of type “adc_type” and 
measurement “mode”. The mode is single shot or continuous. Evidently it will differ and this 
function should clearly state the ranges. It must return in such format so it can cover various ADCs.  

For instance 5922 has discrete steps 150e6/N where N is <4; 1200>. So a list of fs can be returned. 
3458A with PLL has theoretically not this option but on the other hand it has maximum rate so it 
should maybe return it so the GUI can decide if it can be used for particular measurement. Another 
ADC can be clocked by DDS so the step is very fine so maybe return just range and step. 

The function should decide when it is possible to query the parameters from opened session and 
when it is required to communicate with actual HW to maintain speed. But when it is called with 
“adc_session” it must be opened before, therefore it cannot be used in GUI to limit control ranges 
before actually opening the device. 

 

[error, N] = adc_get_max_record_length(adc_type, fs, mode) 
 

Returns maximum samples count per channel for given “mode”. For continuous mode returns 0 
(infinite), for single shot it depends on particular setup. 

The function should decide when it is possible to query the parameters from opened session and 
when it is required to communicate with actual HW to maintain speed 

 

[error, actual_fs] = adc_set_sampling_rate(&adc_session, fs, only_exact) 
 

Will setup sampling rate “fs” of the virtual ADC when applicable. In case of DMMs with PLL unit 
which controls the sampling rate this function have no effect. It will return “actual_fs” which is 
nearest higher available sampling rate for the device (typical feature for niScope drivers). 
“only_exact” option will generate error when the desired and set rate does not match (may be 
useful for coherent setup). 

[error] = adc_set_record_length(&adc_session, N, mode) 
 

Setup desired samples count per channel for given mode of sampling {single, continuous}. It should 
decide and signalize if it is possible to use such setup for given session. Requires all other sampling 
parameters already set such as aperture (affects sample width in memory). 

[error] = adc_set_dmm_sync(&adc_session, setup) 
 

This is device specific function for 3458A with PLL unit. It should set the PLL ratios, filters, PLL 
sensitivity, etc. Note it may be omitted if PLL unit will not be used. 

 

[error] = adc_set_trigger_mode(&adc_session, mode, timeout, pretrigger_N) 
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Sets trigger condition for start of capturing. For general periodic signal measurements it is possible 
to use immediate but for single event measurements it may be useful to synchronize to something. 
If the trigger will be implemented it should always have timeout! 5922 for instance will freeze 
forever if there is no trigger event! For 5922, 3458A in continuous sampling it is easy to implement 
pretrigger so this function can also set it. 

 

To decide in future development: if the pretrigger useful. For 5922 it is solved by niScope driver 
itself. For 3458A it is doable only in continuous mode which may sample indefinitely and remember 
the event position when the condition is detected. But this would require trigger detection by 
additional HW. 

[error] = adc_set_input(&adc_session, range[], coupling[], mode, impedance[]) 
 

Set voltage range(s) to particular channels of the ADC. If scalar is entered, all channels have the same 
range, if vector is passed every channel is set accordingly. If vector elements count does not match 
opened channels error is generated. “coupling” is AC/DC coupling again scalar or vector. 
“impedance” is input impedance, “mode” is {single_ended, unbalanced_differential, differential}. 

 

To decide during implementation: 3458A has no mode setup, 5922 support partial floating input 
“unbalanced differential” so it should be there but actual differential not. 

[error, config] = adc_get_configuration(&adc_session) 
 

This function should return very detailed record of basically everything that can be read out of the 
digitizer. So for all types it should return sampling parameters (rate, aperture, …), vertical 
parameters (ranges, coupling, input mode, filters, bit resolution, for integer samples from 5922 scale 
and offsets, …), and specialized information (PLL lock status (5922), temperatures, …). 

This will be used to generate as detailed as possible record for every stored waveform so it can be 
later found what were the conditions of measurement. IT should return this for every component 
of ADC, so for every DMM/5922/whatever. 

[error, u, t, time_stamp] = adc_digitize_single(&adc_session) 
 

This function should initiate digitizing in single shot mode. It will wait for selected trigger, then 
digitize and then return so it is blocking (synchronous) function.  

Returned values are “u” which is 2D array of samples if possible directly in Volts. One column per 
channel. “t” is time vector with relative times of particular samples. It can be used to determine 
sample rate and trigger position if pretrigger is enabled (5922). “time_stamp” is relative timestamp 
of the first captured sample relative to reset of the ADC. This will be implemented only for 5922 
which supports it natively and maybe for MIKES digitizer. This is very handy for time multiplexed 
measurement modes. 

 

To decide during implementation:  one of the project tasks is compensation of the 5922 drifts by 
ADC temperature measurement. So for longer runs this function should probably read temperatures 
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as well every few seconds rather than every sample. Then it would mean to return also 
temperature(s) 2D array.  

[error] = adc_abort(&adc_session) 
 

This function is complementary with “adc_digitize_single()”. It can be called simultaneously with 
running “adc_digitize_single()” and it should abort digitizing in progress. It is asynchronous function 
so it will do its business and returns immediately. 

 

To decide during implementation: decide how to abort. It may signalize to “adc_digitize_single()” 
using some queue/notification. Or will it write something to device so the device will return and 
“adc_digitize_single()” will recognize it. We have to check if it is possible to write simultaneously to 
3458A from two threads/processes. For 5922 it is possible. 

[error] = adc_set_clock_sync(&adc_handle, reference_f) 
 

This function should set the ADCs lock to external timebase (usually 10 MHz). It is applicable at least 
to 5922 which can lock to anything from (1 to 20) MHz with step of 1 MHz. 0 value indicates free 
running. 

 

Note: this will be needed anytime multiple 5922s are combined because internal sync. is not reliable 
(occasionally generates pseudorandom jitter).  

 

1.5.1.4 Digitizing modes 

The drivers must be made to handle two modes of operation. Single shot mode for “short” records that can 
fit to the memory of the digitizer (for instance 5922 can have up to 256MB) or it can be realtime transferred 
to the computer’s RAM buffer via DMA, such as small USB c-DAQ digitizers. But it is still a single shot 
measurement with predefined length of the record so the driver can tell using some functions whether it is 
possible or not. If possible the recording may be initiated and the data are returned using memory (not file!) 
to the calling function/VI (control module).  

The second mode that must be supported at least for 3458A and 5922 is continuous sampling. This brings 
several serious problems. To keep the program structure clear it is not acceptable to let the driver store the 
captured waveform to data file directly by itself. That will lead to a device specific data format and any change 
in the format will result in reworking all the drivers. For 3458A the solution is relatively simple because it will 
digitize at low sampling rate so the data produced even for extreme lengths may still fit into computer’s RAM. 
So the driver can simply collect the data into referenced buffer and then return. But for 5922 such solution 
is not possible because the amount of the data will easily exceed maximum supported RAM which is less than 
1GB for 32-bit LabVIEW. Therefore such a technique cannot be used. It will be necessary to choose one of 
the following methods of returning the data from continuous ADC: 

1) Let the sampling function store the data in whatever format to temporary file. Then it can be 
somehow returned to the control module  parts by another function from the file.  
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2) To give the driver a pointer (reference) to callback function that will be called by the sampling 
function every time a certain amount of data is collected. The function will do something with the 
data – possibly save it. Important is the save format is defined by the function so it is not device 
specific, it is defined by the control module. 

3) To use some kind of pipeline/messages/queues to send chunks of measured data from the sampling 
function to the control module. So for instance LV implements tool called queue. It is a FIFO/LIFO 
buffer of given length and data format. The sampling function will store data blocks into it and the 
control module will simultaneously take the data out and store them in proper format.  

Method 1) is simple but very ineffective so is not used. Method 2) is possible but still not necessarily a good 
solution because the function must be made so it is sufficiently  fast  to keep the data flow or the driver will 
have to internally contain secondary FIFO buffer to cover the lag. So it is also not the best idea. Method 3) 
seems to be simplest for implementation and easiest to read for third party programmer who will eventually 
want to implement another driver or functionality. It must be tested what is performance of the Queues in 
LV and to select optimal length of the data packet.  

The realtime sampling function must be also made so it can be terminated by asynchronous call of another 
function or it may be made as an asynchronous function, i.e. one function call will initiate the sampling 
process, control module will collect the data and when sampling is finished it will just signalize the control 
module can stop collecting the results. 

The whole continuous sampling will inevitably require multithread/multiprocess programming so this 
functionality should be programmed or at least supervised by someone with enough experiences in this area 
to overcome under/overflows, race conditions, memory leaks etc. It should be also thoroughly tested on 
computers with different performance to guarantee some minimum requirements. The functions should also 
recognize fail conditions such as overflow and terminate capturing and signalize clearly the error. 

Possible functions structure for the continuous sampling method may look like this 

[error, queue_ref] = adc_cont_initialize(&adc_session, queue_name, 
samples_per_block, blocks) 
 

This function must be called before digitizing starts. It will create sample data queue (or some FIFO 
round buffer in CVI). It will set block size “samples_per_block” and “blocks” count in the queue 
(FIFO). It will return “queue_ref” (reference). 

[error] = adc_cont_cleanup(&adc_session, queue_ref) 
 

This function will be called after the digitizing whether it was successful or not to cleanup memory 
(destroy queue, deallocate buffers, …). It must be immune to input error (LabVIEW) so it will always 
cleanup.  

[error, time_stamp] = adc_cont_digitize(&adc_session, queue_ref, &abort_ref) 
 

This function starts the digitizing process. It is synchronous so it will not return until the digitizing is 
finished. This is the function that will do the reading from the ADC(s) and stores the data into the 
queue (or FIFO). “abort_ref” is reference (pointer) to variable (or object) that can abort the 
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sampling. If its value is 1 it will signalize the sampling loop to stop. The function will then signalize 
“aborted” status to the queue.  

When the digitizing is done it will return timestamp of the first sample if supported.  

The function must abort the digitizing when the queue overflow occurs and must signalize this 
condition as an error! 

[error, status, data, usage] = adc_cont_fetch_data(&adc_session, queue_ref) 
 

This function will run in PARALLEL with “adc_cont_digitize()” so it must run in another thread or 
even process. It will be called indefinitely in the loop with a reasonable period. It will always take 
the data from queue (or FIFO) if there are some unread samples and it will also return “status”. The 
calling of this function will continue until status is “done” or status is “aborted”. The status flag is 
transferred with the data via the queue and is issued by the “adc_cont_digitize()”. It should also 
return usage of the queue so this readout loop has information how much data is in the queue. The 
function is nonblocking so if no new data is in queue it will return empty (it is easier to terminate 
the reading if it is nonblocking).  

The “data” must contain all information as with the single shot sampling: 

data.t[] 
data.u[] 
 

The actual data format in the queue may look like this: 

data.t[] = vector of sample timestamps 
data.u[] = 2D array of samples (1 column per channel) 
data.N = samples in the block (may not be full for the last block) 
data.status = {running, done, aborted} 

 

 

1.5.2 Extending concept of digitizer drivers for multiple channels 

Single phase power and power quality measurement system requires at least two sampling systems for 
voltage and current waveforms. Three-phase measurement system requires more than two sampling system, 
all synchronized to the same timebase. To address the problem the concept of the software developed for 
single phase system was extended to include multiple sampling DMMs 3458A or multiple digitizers for PQ 
measurements. The topic is described in Appendix #1 and Appendix #9. 

 

1.5.3 Concept of communication between processing and control module 

Concepts of communication between LabVIEW [8], LabWindows/CVI [9] and GNU Octave [6] or Matlab [6] 
were developed. 

The Matlab can be linked to GNU Octave via Matlab Script node [10]. However, to enable equal access to 
GNU Octave and Matlab which are equivalent in command set, it was decide to extend LabVIEW to Octave 
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interface GOLPI [5] by support of Matlab. Therefore all communication between LabVIEW  and 
Octave/Matlab is done via the same interface GOLPI. The GOLPI itself is described in [5] or Appendix #9. 

Several options  interfacing the TPQA [2] (LabWindows/CVI [9]) to  Matlab were investigated. The most 
suitable option found was Matlab Engine [11], which is simple ANSI C language compatible library for 
controlling the Matlab from another application. The details are given in report in Appendix #4. 

 

 
 
  



 15RPT04 TracePQM
  Page 21 of 36 

  

Report describing the open software tool developed for handling high performance ADCs identified for 
power and PQ measurements 

Chapter 2 

2. DESCRIPTION OF THE OPEN SOFTWARE TOOLS 
 

2.1 Introduction 
This chapter gives a general description on the software structure and how the main module are organized 
within the TWM and TPQA project tools. In general, both tools consist of two main parts, one for handling of 
different hardware platforms, e.g. NI 5922 digitizers or sampling DMM 3458As, and one for the calculation 
of the most suitable power and PQ parameters.  
Both TWM and TPQA open source projects were developed for transparent and traceable measurements of 
electric power and PQ parameters. They don’t intend to provide a complete solution for all power and PQ 
measurements but will allow  less experienced users to deal with precise and traceable power and PQ 
measurements following an intuitive guided process that passes through the individuation and configuration 
of the most suitable digitizers and data processing algorithms.             
Its development includes all steps related to the identification, initialization of the sampling devices already 
connected  to the host PC, as well as a set of graphical user interface (GUI) to allow the user to select and 
monitor the many diverse parameters involved in the measurement.  
Furthermore, there are reported specific acquisition sub-routines which aim to extend the sampling 
capabilities of 3458 DMMs and algorithms to capture both voltage and current long duration signal patterns, 
thus extending the sampling capabilities of 3458A DMMs for long duration measurements of parameters 
such as flicker. 
 

 
2.2 General structure of the software tool 

Detailed description of the software structure based on the information from A2.1.1-A2.1.4, A2.2.1-A2.2.5 
and A2.3.1-A2.3.6 can be found on GitHub repository of the TWM open software tool [15] or in Appendix #9. 

In general, the main requirements that the open SW tool should cover are as follows:   

• Simple expandability of the software by means of modular design. This will lead to flexible addition 
of new types of digitizers and algorithms for data processing;   

• Fast identification of the hardware and initialisation of the ADC acquiring parameters;  Storage of 
data and results in transparent and human readable (where possible) format;   

• Separated modules for hardware control, data processing and graphical user interface;   

• Estimation of power and power quality quantities;   

• Uncertainty calculation (accurate but usually slow) or, where possible, estimation based on previous 
uncertainty analysis (fast estimate for interactive measurements). 

The key methods to reach modular structure relies on virtualization of digitizers and virtualization of 
calculation algorithms. The virtualization of digitizer provides the translation of device specific hardware 
commands to a generalized form. Different digitizers are controlled by different commands or 
communication interfaces however all digitizer have the same types of properties (e.g. sampling frequency, 
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range etc.) and methods (e.g. start sampling, acquire sampled data, etc.). Virtualization will simplify any 
future addition of new digitizers to the software and ensure simple extensibility and higher usability for users 
outside the consortium. 
The virtualization is also used for algorithms used to calculate power and power quality quantities. Typical 
inputs into all algorithms for power quality are, for example, sampled data and sampling frequency, although 
every algorithm uses different names for variables. Such virtualization was already achieved in the toolbox 
QWTB [4]. This toolbox aggregates algorithms required for data processing of sampled measurements. QWTB 
already contains virtualization interface because it contains data processing algorithms from different 
sources. QWTB will be directly used in this project. QWTB was developed using high-level interpreted 
languages Matlab and GNU Octave. The separation of the data acquisition and data calculation will make the 
data processing transparent. The same set of calculation scripts will be used for calculation of parameters 
from the acquired data and for the uncertainty or sensitivity analysis or even simulations. Therefore it will be 
easy to validate calculations independently of the measurement hardware.  
All parts of the system, the hardware control, data acquisition, data processing etc., are integrated together, 
so it will appear to the user as one interactive application. 
 

 
2.3 TWM open software for LabVIEW Environment  

The SW tool version made in LabVIEW was named TWM [1]. Figure 2-1 shows the general guide user interface 
(GUI) developed for TWM open software tool. The description of its internal operation can be found in [15] 
or directly in Appendix #9. 
 

https://qwtb.github.io/qwtb/
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Figure 2-1:Main  GUI interface of the TWM open tool software developed in LabVIEW environment. 
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2.4  TPQA open software for LabWindows/CVI Environment  
 
The SW tool version made in LabWindows/CVI was named TPQA [2]. Figure 2-1 shows the general guide user 
interface (GUI) developed for TWM open software tool. The description of its internal operation can be found 
in [17] or directly in Appendix #10. 

  

 

 

 
 

Figure 2-2: Main GUI interface of the TPQA open tool software developed in LabWindows/CVI environment. 
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2.5 Algorithms to capture long duration signal patterns  
 

For estimation of specific power and PQ parameters as well as the capturing of electrical disturbances and 
continuous monitoring of the quality of the power requires suitable acquisition algorithms capable of 
interfacing with the hardware platform for long data acquisition beyond the capabilities of the internal 
memory of the sampling system in use. Suitable algorithms have been developed with the aim of capturing 
both voltage and current long-duration signal patterns.  

In particular the algorithms extend the sampling capabilities of DMMs 3458A for loung duration 
measurements such as flicker. Two methods were tested: (i) with and (ii) without the need for external HW. 
The reports on the methods are attached in Appendix #2 and Appendix #3. The method (i) without the need 
for external HW was selected for practical implementation and integration to SW tool. 
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Chapter 3 

3. DATA PROCESSING MODULE AND ALGORITHMS  
 
3.1 Introduction 
 
This chapter gives a general overview of the development of all the necessary processing algorithms for the 
calculation of power and PQ parameters from the raw data available at the output of the control and data 
acquisition module. Fast and robust computational algorithms for quasi real-time and post-processing of the 
data have been chosen. Furthermore, integration of high level processing algorithms for power and PQ 
measurements as well as algorithms for uncertainty calculation have been checked and tested. 

Much emphasis has been laid on defining a suitable format of the data from the calibration datasets of the 
digitizers as well as scaling voltage and current transducers, taking into account the need for greater 
standardization, dissemination and speed among the partners and external users. For this purpose, the 
computational environment based on existing algorithms previously developed by the partners or other 
projects for power and PQ measurements has been enriched with suitable interfaces to render the system 
more user-friendly. 

 
3.2 Standardized model for input-output data exchange  

The first step prior to thedevelopment of the processing module and algorithms was preparation of the data 
exchange concept between the control module and the processing module. An up-to-date version of the 
concept is available at [14] attached in Appendix #5.  

In coherence with the standardized data exchange model, the file format for correction files of digitizers and 
transducers was developed. The up to date version of the correction reference manual is available online at 
[13]. Local copy is attached in Appendix #6. 

The basic concept was extended by a document describing naming convention of variables passed in and out 
of the QWTB [4] algorithms. An up-to-date version of the document is available at [12] and in Appendix #7. 

 

3.3 Processing module for TWM-LabView 
The processing module is described in [15] and in local copy in Appendix #10. 

 
3.4 Processing module for TPQA-LabWindows 
TPQA processing consists of two modules and is described in [17]  and in local copy in Appendix #10. The first 
one has been upgraded for quasi real-time processing based on LabWindows/CVI algorithms; the second one 
was developed for post-processing and has a similar structure and algorithms like to the TWM open software 
tool. 
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3.5 Algorithms for calculation of power and PQ parameters 

The goal of the project was to develop at least 10 different algorithms for the most commonly required power 
and PQ parameters. The goal was met with following algorithms: 

Name Uncertainty Verification Description 

TWM-PSFE GUF Yes Single-harmonic estimation (amplitude, frequency and 
phase) 

TWM-FPNLSF GUF Yes Single-harmonic estimation (offset, amplitude, 
frequency and phase) 

TWM-MFSF GUF, MCM Yes Multi-harmonic estimation (offset, amplitudes, phases, 
frequency) 

TWM-WRMS GUF, MCM Yes RMS level calculation in time-domain 

TWM-WFFT GUF Yes Multi-harmonic estimation (offset, amplitudes, phases) 

TWM-PWRTDI GUF, MCM Yes Power parameters estimation in time-domain 

TWM-PWRFFT GUF Yes Power parameters estimation in frequency domain 

TWM-Flicker GUF Yes Flicker measurement following IEC 61000-4-15  

TWM-MODTDPS GUF Yes Amplitude modulation estimator 

TWM-HCRMS GUF Yes Half-cycle RMS detector following IEC 62586 

TWM-InDiSwell GUF Yes Events detector IEC 61000-4-30 

TWM-THDWFFT GUF Yes Harmonics and THD estimator 

TWM-InpZ None No Estimation of digitizer input impedance. 

 

Detailed description of the algorithms (A2.3.2), uncertainty calculation/estimation methods (A2.3.5) and 
numeric verification (A2.3.3) are available in up to date online document [16] or in local copy in Appendix #9. 
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Chapter 4 

4. TESTING THE OPEN SOFTWARE TOOL 
 
4.1 Introduction  
 
The complete open software tool has been built by integrating the control and data acquisition module and 
the data processing module for both LabVIEW and LabWindows/CVI development environments.  All parts 
of the system, the digitizer control and data acquisition module and the data processing module, have been 
integrated together using special software interface so it appears the  end user as one interactive application. 
In particular, the separation  of the data processing module into the independent Matlab/GNU Octave 
environment from the compiled control and data acquisitions modules makes the data processing 
transparent. So, since the QWTB algorithms are made as m-file instead of compiled  within the LabVIEW or 
LabWindows/CVI as control and data acquisition modules, they can be used for both parameter calculation 
as well as uncertainty calculation and they can be modified whenever without a need for recompiling the 
entire project.   
   
 
4.2 Testing of TWM tool 

The data acquisition module, user interface and processing modules were built in to executable. For 
convenience the control module was modified so it can be built only with drivers for the desired digitizer. 
This allows the select of a version with limited support that will not need installation of several gigabytes of 
drivers which is very time consuming. Two options are available at project GitHub: 

1) Full package (DMM 3458A, PXI 5922 and soundcard) 
2) DMM support only (DMM 3458A and soundcard) 

The versions do not differ in anything else but the lack of support of a particular digitizer. 

The tool was tested in several stages. First, a test of the processing module was performed. A special m-
function “twm_selftest()” was designed. The function is located in the “qwtb” subfolder of the project and 
also in the built application. It uses virtual algorithm “TWM-VALID”. The function is designed to verify the 
entire chain of operations to be performed to obtain a power parameter: 

1) Generates correction files for digitizer and transducers with all known corrections and their 
uncertainties. 

2) Generates measurement session with random data and assigned corrections. 
3) Generates “qwtb.info” processing control file. 
4) Executes processing of the simulated session using “qwtb_exec_algorithm()”. The algorithm “TWM-

VALID” returns all the input parameters as outputs. 
5) Retrieves the results from the measurement session using “qwtb_get_results”. 
6) Compares the retrieved results from 5) to the generated from 1) and 2). 
7) Repeats for all transducer combinations: 
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a. Single input algorithm, single-ended 
b. Single input algorithm, differential 
c. Dual input algorithm, single-ended + single-ended 
d. Dual input algorithm, single-ended + differential 
e. Dual input algorithm, differential + single-ended 
f. Dual input algorithm, differential + differential 

Thus the function verifies the entire processing chain. Since the processing module is common to both the 
for TWM and TPQA, this verification is valid for both SW tools. 

The econd step of testing was recording of the waveforms in multiple configurations. The DMM 3458A mode 
was tested in memory mode and streaming mode for sync. modes involving internal TIMER or external AWG 
as a clock source. The recorded waveforms were inspected to confirm that they contained the sample data 
in the correct order. Note that in early development stage the data were in reversed order due to the 
complicated behavior of the 3458A memory handling. This issue was fixed. The correctness of the acquired 
data was tested using several algorithms on the known signals (e.g. in A2.3.4). The measurement session 
produced by the TWM was also inspected to check for the presence of the required parameters of the 
digitizer.  

A similar test was performed for 5922 digitizer. The test in the memory mode showed no problems for one 
or more cards.  

The third step of the testing was focused on the correct selection and usage of correction files. Various 
combinations of transducer and digitizer correction combinations were tested. It was then manually 
observed if the selected configuration from GUI is stored correctly to the measurement session. No issues 
were found. TWM correctly identified faulty corrections combinations or corrections not matching to the 
selected HW as expected.  

 
4.3 Testing of TPQA tool 

The TPQA tool was tested starting by its executable file. Into the executable file there were implemented the 
control and data acquisition module as well as the data processing modules.   The tool was tested using 
several strategies.  

First the control, data acquisition and processing modules  have been tested using both LF DMMs digitizers 
and WB digitizers without the need of current and voltage transducers. These test have been conducted 
connecting both the digitizer channels in parallel through a T-voltage node. The aim was to establish a first 
traceability chain in terms of voltage ratio and phase angle measurements using the sampling strategy. The 
measurement strategy foresaw the use of a commercial calibrated inductive voltage for power line 
frequencies and of a wideband inductive voltage divider for higher frequencies [19] .  

The second test concerned the study of hardware corrections. For this purpose the hardware corrections 
have been modified within the *.info file [13] for both voltage and current transducers without changing the 
level of the signals applied to the transducers.  
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The third and final tests concerned the validation of both setup and software tool together with the 
transducer correction. These tests were conducted using a power calibrator and a direct comparison principle 
between power meters. The measurement setup and software tool were fist compared using a commercial 
primary standard of accuracy 0.005 %. Then the same comparison was performed using INRIM’s primary 
power standard [20]. The measurement results at power line frequencies using both LF and WB macrosetups 
were consistent with the measurement uncertainty.   

Figure 3 shows the unified block diagram of LF (low frequency) and WB (wide-band) macro-setups developed 
at INRIM and used for testing of both TPQA and TWM open tool software.  

 

 
Figure 3: Block diagram of unified LF and WB macro-setups developed at INRIM. 

 

Figure 4 shows the results of the comparison in terms of active power at cosϕ = 1 between the LF and WB 
setup at power line frequency using different calibrated voltage and current transducers. 
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Figure 4: Comparison in terms of active power  between  the primary wattmeter and the WB macrosetup using proper voltage and 

current transducers. 

 

For testing of TPQA with WB macrosetup, especially in the audio frequency range a validation strategy based 
on the use of a calibrated dual transformer is being  characterized [21]. 

  

 

4.4 Evaluation, verification and testing of algorithms with real data  

In the framework of the project  a set of algorithms were developed for fast and robust calculation of power 
and PQ parameters. The algorithms aim to compute the most commonly measured power and PQ 
parameters and there were selected following the results of a questionnaire distributed to the partners and 
members of the EURAMET TC-EM power and energy sub-committee prior to the start of the project.    

The algorithms are  based on the concept of discrete Fourier transform (DFT), multi-harmonic sine fitting and 
data compression and the output is able to provide information about: power in the presence of pure 
waveforms, waveform distortion, transient swell, sag, flicker, overvoltage, under-voltage, interruption, etc.   

       

4.4.1 Evaluation and verification of algorithms  

Evaluation of the performance of all the algorithms developed in the framework of TracePQM was performed 
using simulations. A set of the most appropriate power quality events (dips/swells, flicker, harmonics, etc.) 
with different values (variations of RMS value, duration of the events, period, transient, harmonics, etc.) was 
selected to provide a comprehensive test of the various algorithms. Reference samples for these for these 
selected events are generated either by sampling the real signal produced by the power quality standard or 
theoretically using Matlab. These samples serve as common reference input data for all the algorithms 
developed, in order to define which algorithms most accurately estimates a certain PQ parameters.  

The outcomes of this activity are in local copy  in Appendix #8.                    
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4.4.2 Assessing algorithms performance using 5922 digitizer data 

The testing of power and PQ  algorithms developed in A2.3.2 and evaluated in A2.3.3 on real data acquired 
from existing setups has been performed in order to assess their performance, in particular their speed and 
ability to work with existing setup and already developed algorithms in use in many well experienced NMIs.  

The method and the results obtained using single tone signals at various frequencies and wideband digitizers 
PXI5922 are attached in Appendix #11. 

  

4.4.3 Assessing harmonics and flicker algorithms using 3458A setup  

The method and the results obtained using high precision DMMs as HP3458A and complex waveforms are 
attached in Appendix #11   
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1 Objective 
 
PQ measurements usually need simultaneous sampling of several waveforms (e.g. voltage and 
current, voltage in all three phases, etc.), therefore the aim of the activity A2.1.2 was the 
development of the concept which could include multiple sampling DMMs 3458A (both 
voltage and/or current signals) for long duration PQ measurements (i.e. from minutes to 
several hours). 
 
A few solutions are possible: 

• Development of specially designed external hardware (memory) which allows 
simultaneous writing of the data received from the GPIB and simultaneous reading 
from the PC (this solution is under investigation, JV).  

• Two (or more) 3458A DMMs connected through two (or more) NI GPIB-USB 
controllers connected to one PC (the solution is less appropriate when high sampling 
frequencies are needed). 

• Two (or more) 3458A DMMs, connected through two (or more) NI GPIB-PCI cards 
inserted in one PC (this solution is under investigation, JV). 

• Two (or more) 3458A DMMs, connected through two (or more) NI GPIB-USB 
controllers connected to a master and slave(s) PC. 

 
The last solution has been examined and successfully implemented. The connection scheme, 
software and the results are given below.   

2 Sampling with multiple DMMs 

2.1 Connection 
 
The connection scheme is presented in Fig. 1. The master PC is connected to master 
3458 DMM through USB-GPIB controller. Similar connection is also used for the slave PC 
and slave DMM. Instead of the USB-GPIB controllers it is also possible to use PCI-GPIB 
cards, but this solution has not been tested yet. The “Ext Out” output of the master 3458 
DMM should be connected to “Ext Trig” input of the slave 3458 DMM.  
 
In principle it is possible to add several slaves 3458 DMMs and slave computers to sample 
additional waveforms. In this case the “Ext Out” output of the master 3458 DMM should be 
connected to “Ext Trig” inputs of all slaves 3458 DMMs.  
 

2.2 Software structure 
 
In addition to specific connection scheme (Fig. 1) the sampling software optimized for one 
3458 DMM (see report A1.2.4 and A2.2.3) needs to be modified for the master and the slave 
PC/DMM. Modified codes are given in Appendix A and B for the master and the slave(s), 
respectively. All changes compared to the software optimized for one 3458 DMM (see A1.2.4 
and A2.2.3) are highlighted yellow and also listed below:    
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Fig. 1: Connection of two 3458 DMMs in master-slave configuration. The connection allows simultaneous 
sampling of two signals. In principle it is possible to use several slave 3458 DMMs 
   

• Master:  
 The external output should be enabled as in this configuration the 

master 3458 DMM triggers the slave DMM(s). The following 
command is added: 

gpibWrite(DMM1,'EXTOUT APER, NEG'); 
 

 The external output of the master DMM adds additional triggering 
pulse after initialization and this pulse might trigger the slave DMM too 
quickly (the first loop of the slave DMM will be started before the first 
loop of the master). To solve this the following block of commands 
needs to be inserted and is used to read just one “dummy” sample: 

gpibWrite(DMM1,'NRDGS 1,TIMER'); 
gpibWrite(DMM1,Strt); 
gpibWrite(DMM1,'TRIG AUTO'); 
gpibWrite(DMM1,'TARM SGL'); 
dummy = fread(DMM1,1,'int32'); 
 

 After the master DMM is initialized (all) slave DMM(s) need to be 
started and initialized too. The following commands are added: 

disp('Run SLAVE!'); 
pause(10); %longer time might be required if more slaves 
 

• Slave(s):  
 The triggering of the slave DMM(s) needs to be set to external trigger 

and not to auto triggering: 
gpibWrite(DMM1,'TRIG EXT'); %before it was TRIG AUTO 

 
The sampling settings for the master and slave(s) should match otherwise the sampling with 
several DMMs will not work and/or will not be synchronised. These matching settings are 
listed below and are also highlighted green in Appendixes A and B, respectively: 

• number of loops (M) 
• output format (Res=’SINT’; or Res=’SINT’;) 
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• number of samples per loop NRDGS (N) 
• sampling frequency (fs) 
• aperture time (Ta) 

 
The following commands need to be individually modified for the master and slave(s) 
according to the measurement parameter and range (the commands are highlighted pink in 
Appendixes A and B): 

• gpibWrite(DMM1,'DCV 10'); 
• AddrM = 22; 

2.3 Running the instruments 
 
To sample two (several) waveforms the “RealTimeRead_Master.m” script needs to be started 
on the master computer. The address of the master 3458 DMM (AddrM = 22;) needs to be 
corrected if necessary. Additionally the required subfunctions should be also available (see 
A1.2.4 and A2.2.3). After master initialization (a few seconds) a message “Run SLAVE” 
appears on the master PC. The master computer waits 10 seconds and let the slave(s) to be run 
and initialized too. When this message appears the “RealTimeRead_Slave.m” script needs to 
be started on slave computer(s). In this case (i) all required common subfunctions needs to be 
included too and (ii) the slave address(es) corrected if necessary. After running the 
“RealTimeRead_Slave.m” script the 3458 DMM initializes first and afterwards a massage 
“i=1” will appear on the slave’s PC. Afterwards the slave 3458 DMM waits for the external 
trigger from the master. When the trigger appears both (all) 3458 DMMs simultaneously 
sample the input waveforms according to predefined measurement parameters, their ranges, 
number of samples NRDGS and number of loops M. 
 
The “RealTimeRead_Master.m” script could be also used for sampling with one DMM 
instead of the “RealTimeRead.m” script that was optimized for sampling with one 3458 DMM 
(see A1.2.4 and A2.2.3). However additional unnecessary delays will be introduced during the 
initialization due to (i) enabling of the external output, (ii) due to reading of the “dummy” 
sample and (iii) due to the 10 seconds delay when the slave is to be started.    

2.4 Results 
 
The scripts have been tested. The settings that were used were:  

• number of loops M=8 
• output format Res=’DINT’ 
• number of samples per loop N=100 kS 
• sampling frequency fs=50 kHz 
• aperture time Ta=10 µs 

 
The same voltage input signal was applied to both inputs (amplitude 5 V, frequency 1 Hz, 
10 Hz, 100 Hz, 1 kHz and 10 kHz, respectively). Both DMMs simultaneously sampled the 
input signal. At the end of the sampling we used the PSFE estimator to define the initial phase 
of the waveform for each loop for the master and the slave. Ideally the phase difference 
between the corresponding phases between the master and slave should be 0 degrees, since 
the same signal was applied to both inputs. However, the measured delay between the master 
and slave due to triggering and non-synchronized internal clock is around 1 µs. 
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3 Conclusions 
 
Herein we present the concept of the software which include two (or multiple) sampling 
DMMs 3458A for long duration measurements (from minutes to several hours). In this 
concept two PCs, two USB-GPIB controllers and two 3458 DMMs are used (i.e. the master 
and the slave PCs are connected to master and slave DMMs using USB-GPIB controllers). 
Additionally the “Ext Out” of the master 3458 DMM is connected to “Ext Trig” of the slave 
3458 DMM. For sampling we used similar software as optimized for one 3458 DMM 
(developed in A1.2.4 and A2.2.3). However, slight modifications have been made for master 
(external output has been enabled, a “dummy” sample needs to be read, a 10 second pause 
needs to be introduced to run and initialize the slave) as well as for the slave (external trigger 
instead of the auto trigger needs to be used). Some sampling setting needs to be the same for 
the master and slave(s) (i.e. number of loops, number of samples per loop, output format, 
sampling frequency and aperture time) while the others needs to be changed according to 
requirements (GPIB addresses, measuring parameter and its range). In order to run the 
synchronous sampling we need to run the software on the master PC first. After initialization 
a massage “Run SLAVE” appears and let the slave to initialized too (i.e. 10 second pause). 
Afterwards both (all) DMMs synchronously sample the input signals according to predefined 
sampling setting.  
 
We would like to stress out that both 3458 DMMs rely on their own internal time bases 
therefore the sampling is not entirely synchronized. A negligible time delay could be found 
between the master and the slave since (i) both internal time bases are not synchronised and 
even more (ii) the DMMs might have slightly different time base frequencies. Further on, a 
non-negligible ~1 µs time delay between the master and slave was always found due to the 
triggering. However, herein we present just one possible workaround while other settings are 
also possible.   
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Appendix A: Matlab code for long time sampling (master computer) 
 
RealTimeRead_Master.m 
 
clc; clear; 
format long 
Sim = false; 
AddrM = 22; 
M = 8;   %number of repetitions 
Res = 'DINT'; 
switch Res 
   case 'SINT' 
      N = 2000000; 
      Nbuffer = 2*N; 
      fs = 100000; 
      Ta = 1.4e-6; 
      Strf = 'OFORMAT SINT;MFORMAT SINT'; 
   case 'DINT' 
      N = 100000; 
      Nbuffer = 4*N; 
      fs = 50000; 
      Ta = 10e-6; 
      Strf = 'OFORMAT DINT;MFORMAT DINT'; 
end 
Ns = N; 
BurstLength_s = N/fs 
if Ns>2048 
   Ns = 2048; 
end 
Ts = 1/fs; % Hz 
Stra = ['APER ' num2str(Ta)]; 
Strn = ['NRDGS ' num2str(N) ',TIMER']; 
Strt = ['TIMER ' num2str(Ts)]; 
fsignal = 2000; % Hz 
U = 6 * sqrt(2); % V 
Mode = 'DCV'; 
Periods = fsignal*Ts*N 
Resolution = HP3458A_Res(10, Ta); 
noise = Resolution.std; 
if Sim 
   Iden.CalStr = 'Sim'; 
   tjump = floor((rand*0.9)*N); 
   for j = 1:M 
      t = (0:N-1)*Ts; 
      t(tjump:N-1) = t(tjump:N-1) + 100e-9;  % first step 
      %t(0.8*N:N-1) = t(0.8*N:N-1) + 100e-9;  % second step 
      Result(:,j) =  U*sin(2*pi*fsignal*t+0) + noise*randn(1,N); 
   end 
else 
   %% Listing code 
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   DMM1 = gpibOpen3458A(AddrM,20,Nbuffer); %% Initialize GPIB and DMM 
   gpibWrite(DMM1,'END ALWAYS'); 
   gpibWrite(DMM1,'CALSTR?'); 
   Iden.CalStr = gpibRead(DMM1); 
   Iden.CalStr = strrep(Iden.CalStr,' ','_'); % replace spaces with '_' 
   Iden.CalStr = strrep(Iden.CalStr,'"','');  % remove quotation marks 
   Iden.CalStr = strrep(Iden.CalStr,char(13),'');  % remove Carriage Return 
   Iden.CalStr = strrep(Iden.CalStr,char(10),'');  % remove Line Feed 
   gpibWrite(DMM1,'MSIZE?'); 
   Iden.Msize = gpibRead(DMM1); 
   gpibWrite(DMM1,'REV?'); 
   Iden.Rev = gpibRead(DMM1); 
   gpibWrite(DMM1,'LINE?'); 
   Iden.Line = gpibRead(DMM1); 
   gpibWrite(DMM1,'ERR?'); 
   Iden.Err = gpibReadNumber(DMM1); 
   gpibWrite(DMM1,'CAL? 1'); 
   Iden.CALres = gpibRead(DMM1); 
   gpibWrite(DMM1,'CAL? 2'); 
   Iden.CALvolt = gpibRead(DMM1); 
   gpibWrite(DMM1,'CAL? 245'); 
   Iden.CALfreq = gpibRead(DMM1); 
    
   gpibWrite(DMM1,'PRESET DIG');    
   gpibWrite(DMM1,Strf);    % MFORMAT & OFORMAT 
   gpibWrite(DMM1,'DCV 10'); 
   gpibWrite(DMM1,Stra);    % APER 
 
   gpibWrite(DMM1,'NRDGS 1,TIMER'); 
   gpibWrite(DMM1,Strt);    % TIMER 
   gpibWrite(DMM1,'TRIG AUTO'); 
   gpibWrite(DMM1,'TARM SGL'); 
   dummy = fread(DMM1,1,'int32'); 
    
   disp('Run SLAVE!'); 
   pause(10) 
    
   gpibWrite(DMM1,Strn);    % NRDGS 
   gpibWrite(DMM1,Strt);    % TIMER 
   gpibWrite(DMM1, 'ISCALE?'); 
   Iscale = gpibReadNumber(DMM1);   
   gpibWrite(DMM1,'TRIG AUTO'); 
   gpibWrite(DMM1,'EXTOUT APER, NEG'); %enabling external output 
   gpibWrite(DMM1,'TARM SYN');   
    
   for j = 1:M 
      switch Res 
         case 'SINT' 
            databin(:,j) = fread(DMM1,N,'int16'); 
         case 'DINT' 
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            databin(:,j) = fread(DMM1,N,'int32'); 
      end 
   end 
   Result = databin * Iscale; 
   gpibClose(DMM1); %% cleanup 
end 
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Appendix B: Matlab code for long time sampling (slave computer) 
 
RealTimeRead_Slave.m 
 
clc; clear; 
format long 
Sim = false; 
AddrM = 22; 
M = 8;   % number of repetitions 
Res = 'DINT'; 
switch Res 
   case 'SINT' 
      N = 200000; 
      Nbuffer = 2*N; 
      fs = 100000; 
      Ta = 1.4e-6; 
      Strf = 'OFORMAT SINT;MFORMAT SINT'; 
   case 'DINT' 
      N = 100000; 
      Nbuffer = 4*N; 
      fs = 50000; 
      Ta = 10e-6; 
      Strf = 'OFORMAT DINT;MFORMAT DINT'; 
end 
Ns = N; 
BurstLength_s = N/fs 
if Ns>2048 
   Ns = 2048; 
end 
Ts = 1/fs; % Hz 
Stra = ['APER ' num2str(Ta)]; 
Strn = ['NRDGS ' num2str(N) ',TIMER'];% prej je bil timer 
Strt = ['TIMER ' num2str(Ts)]; 
fsignal = 2000; % Hz 
U = 6 * sqrt(2); % V 
Mode = 'DCV'; 
Periods = fsignal*Ts*N 
Resolution = HP3458A_Res(10, Ta); 
noise = Resolution.std; 
if Sim 
   Iden.CalStr = 'Sim'; 
   tjump = floor((rand*0.9)*N); 
   for j = 1:M 
      t = (0:N-1)*Ts; 
      t(tjump:N-1) = t(tjump:N-1) + 100e-9;  % first step 
      %t(0.8*N:N-1) = t(0.8*N:N-1) + 100e-9;  % second step 
      Result(:,j) =  U*sin(2*pi*fsignal*t+0) + noise*randn(1,N); 
   end 
else 
   %% Listing code 
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   DMM1 = gpibOpen3458A(AddrM,10,Nbuffer); %% Initialize GPIB and DMM 
   gpibWrite(DMM1,'END ALWAYS'); 
   gpibWrite(DMM1,'CALSTR?'); 
   Iden.CalStr = gpibRead(DMM1); 
   Iden.CalStr = strrep(Iden.CalStr,' ','_'); % replace spaces with '_' 
   Iden.CalStr = strrep(Iden.CalStr,'"','');  % remove quotation marks 
   Iden.CalStr = strrep(Iden.CalStr,char(13),'');  % remove Carriage Return 
   Iden.CalStr = strrep(Iden.CalStr,char(10),'');  % remove Line Feed 
   gpibWrite(DMM1,'MSIZE?'); 
   Iden.Msize = gpibRead(DMM1); 
   gpibWrite(DMM1,'REV?'); 
   Iden.Rev = gpibRead(DMM1); 
   gpibWrite(DMM1,'LINE?'); 
   Iden.Line = gpibRead(DMM1); 
   gpibWrite(DMM1,'ERR?'); 
   Iden.Err = gpibReadNumber(DMM1); 
   gpibWrite(DMM1,'CAL? 1'); 
   Iden.CALres = gpibRead(DMM1); 
   gpibWrite(DMM1,'CAL? 2'); 
   Iden.CALvolt = gpibRead(DMM1); 
   gpibWrite(DMM1,'CAL? 245'); 
   Iden.CALfreq = gpibRead(DMM1); 
 
   gpibWrite(DMM1,'PRESET DIG'); 
   gpibWrite(DMM1,Strf);    % MFORMAT & OFORMAT 
   gpibWrite(DMM1,'DCV 10'); 
   gpibWrite(DMM1,Stra);    % APER 
   gpibWrite(DMM1,Strn);    % NRDGS 
   gpibWrite(DMM1,Strt);    % TIMER 
   gpibWrite(DMM1, 'ISCALE?'); 
   Iscale = gpibReadNumber(DMM1); 
   gpibWrite(DMM1,'TRIG EXT'); %before gpibWrite(DMM1,'TRIG AUTO'); 
   gpibWrite(DMM1,'TARM SYN');  
 
   for j = 1:M 
      switch Res 
         case 'SINT' 
            databin(:,j) = fread(DMM1,N,'int16'); 
         case 'DINT' 
            databin(:,j) = fread(DMM1,N,'int32'); 
      end 
   end 
   Result = databin * Iscale; 
   gpibClose(DMM1); %% cleanup 
end 
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1 Objective 
 
Herein we investigate the possibility, how to extend the data record length when sampling 
with one DMMs 3458A which is needed for long duration measurements (i.e. minutes to 
hours). The solution should not require excessive hardware modifications and it should be 
also compatible with various generations of sampling DMMs 3458A as design and production 
changes have resulted in several incompatible variants of this instrument. 

2 Software structure 
 
The 3458A DMMs are equipped with internal memory where the samples are stored in real 
time even at the highest sampling frequencies. When the sampling is stopped, the stored 
values can be read from the memory. However, the size of the internal memory is always 
limited and at the highest sampling frequency only a few seconds of the sampled waveform 
can be captured. This relatively short time interval is insufficient for specific power and 
power quality measurements so a different approach is required. 
 
In our approach, we directly connected the DMM 3458A to a PC via NI USB-GPIB controller 
and run a script written in Matlab environment (see Appendix A). In the script we (i) define 
the sampling parameters first and then (ii) initialize the GPIB bus and DMM 3458. The 
(iii) sampling is started immediately after the USB controller becomes ready to receive the 
data since the arming is set to SYN and the triggering is set to AUTO. After the predefined 
number of samples/readings (NRDGS) is received the loop is repeated according to 
predefined number of loops (M). This is usually required since the maximal number of 
readings NRDGS (16.555.215 samples) might not be satisfactory for long duration 
measurements especially at high sampling frequencies. Each additional loop is stared when 
the USB controller becomes ready again to receive the data. After all samples in all loops are 
gathered the measurement is closed. 
 

I. Defining the sampling parameters (parameters are highlighted yellow in 
Appendix A): 

• address of the DMM 3458: 
AddrM = 23; 

• number of loops M: 
M = 5;    

• output and memory format (SINT for higher speed and lower resolution or DINT for 
higher resolution and lower speed): 

Res = 'DINT';   
• number of readings NRDGS (maximal NRDGS is limited to 16.777.215 [1]): 

N = 1000000; 
• sampling frequency fs: 

fs = 50000; 
• aperture time Ta: 

Ta = 10e-6; 

II. Initializing the GPIB bus and DMM 3458 
• Define the strings for setting up: 
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 Strf = 'OFORMAT DINT;MFORMAT DINT'; 
Stra = ['APER ' num2str(Ta)];    
Strn = ['NRDGS ' num2str(N) ',TIMER']; 
Strt = ['TIMER ' num2str(Ts)]; 

• Initialization of  the GPIB bus (The GPIB timeout needs to be increased for long 
duration measurements according to the number of samples and sampling frequency. It 
can be also disabled by setting the timeout to 0.): 

DMM1 = gpibOpen3458A(AddrM,200,Nbuffer);%GPIB timeout is set to 200 s 
or 
DMM1 = gpibOpen3458A(AddrM,0,Nbuffer);% GPIB timeout is disabled  

• EOI (End Or Identify) line is set true when the last byte of each reading is sent: 
gpibWrite(DMM1,'END ALWAYS'); 

• The block of commands highlighted grey (Appendix A) is not required but it can be 
used to (i) read the DMM’s name or its serial number (that is pre-stored in the memory) 
which can be used for data saving, (ii) number of readings that can be stored using a 
particular format (iii) revision query i.e. the first returned number is the DMM's master 
processor firmware revision and the second number is the slave processor firmware 
revision, (iv) exact measured line frequency (v) error query, (vi) calibration query, (vii) 
etc. 

• Configuration of the DMM for DCV digitizing using PRESET DIG command (the 
following commands are executed simultaneously: DCV 10, AZERO OFF, DELAY 0, 
DISP OFF, TARM HOLD, TRIG LEVEL, LEVEL 0, AC, NRDGS 256, TIMER, 
TIMER 20E-6, APER 3E-6, MFORMAT SINT): 

gpibWrite(DMM1,'PRESET DIG'); 
• defining the memory and output format, setting the measurement mode and range, 

setting aperture time, number of readings and the timer: 
gpibWrite(DMM1,Strf);      % define mem. format & out. format 
gpibWrite(DMM1,'DCV 10');  % DC voltage measurement, 10 V range 
gpibWrite(DMM1,Stra);      % define aperture time 
gpibWrite(DMM1,Strn);      % define NRDGS 
gpibWrite(DMM1,Strt);      % define sampling frequency 

• reading the ISCALE factor: 
gpibWrite(DMM1, 'ISCALE?'); 
Iscale = gpibReadNumber(DMM1); 

• setting the trigger to auto: 
gpibWrite(DMM1,'TRIG AUTO'); 

• setting the arming to SYN (The synchronous event occurs whenever the DMM's output 
buffer is empty, reading memory is off or empty, and the controller requests data. This 
means that measurements are made whenever the controller wants them.).  

gpibWrite(DMM1,'TARM SYN'); 

III. Sampling 
• The reading of one block of samples (i.e. one loop) is performed by fread command. 

This command is repeated M-times (i.e. total number of loops), Fig. 1: 
for j = 1:M 



4 
 

      switch Res 
         case 'SINT' 
            databin(:,j) = fread(DMM1,N,'int16'); 
         case 'DINT' 
            databin(:,j) = fread(DMM1,N,'int32'); 
      end 
end 
 

 
Fig. 1: Multiple trigger arming. The figure is taken from [1]. 

  
IV. Closing the measurements 

• Scaling the results: 
Result = databin * Iscale; 

• Closing the GPIB bus: 
gpibClose(DMM1);    

3 Results 
 
The script described above starts sampling immediately after the USB port is ready to receive 
the first sample. The samples are then transferred from DMM to internal PC’s memory one by 
one until the predefined total number of samples (NRDGS) is read. However, the maximal 
NRDGS supported by DMMs 3458 is limited to maximum 16.777.215 [1]. If a higher number 
of samples is required the reading loop needs to be repeated.  

3.1 Maximal number of readings NRDGS 
 
In the first test we verified if the maximum number of samples NRDGS=16.777.215 [1] could 
be read in one loop. We applied a sinewave signal having 6 V RMS and 10 Hz (function 
generator: Agilent 33522A with external 10 MHz reference time base) to several DMMs 3458 
that belong to different generations (i.e. Hewlett-Packard, Agilent and Keysight). We 
observed that the script is fully compatible with all tested generations of DMMs 3458.  The 
continuous sampling was always obtained even at the highest supported sampling frequency 
(i.e. 50 kHz and 100 kHz) since the USB bus allows smooth data transfer in real time. 
However, the heap memory size needs to be increased (see Appendix C). 

3.2 Time delay between loops 
 
As described above we require additional reading loop(s) if more samples than 16.777.215 are 
needed. However, in this case a small delay related to arming is introduced between the loops. 
In order to define the delay we used a sinewave signal having 6 V RMS and 10 Hz (function 
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generator: Agilent 33522A with external reference 10 MHz time base) and performed two 
reading loops. Afterwards we used PSFE estimation algorithm to define the frequency of the 
signal and the initial phase of each reading loop and these parameters along with the sampling 
frequency fs were then used to calculate the time delay between both loops. Ideally, the time 
difference between the last sample of the first loop and the first sample of the second loops 
should equal 1/fs. However, we observed additional delay ranging between 37 ms and 47 ms, 
depending on the DMM 3458 generation (Table 1). The time delays have been additionally 
verified using the input signals having different frequencies. 

Table 1: Time delay between the loops for DMMs that belong to different generations (HP, Agilent and 
Keysight) 
DMMs 3458 s.n. delay between loops (ms) 

RealTimeRead / RealTimeReadDS* 
HP 2823A-20702 38.5 / 38.7 
Agilent US28032184 39.0 / 39.1 
Agilent US28028518 37.2 / 37.6 
Keysight MZ45052833 43.3 / 46.7 
* sampling in sample-and-hold regime 

4 Sampling with two (several) DMMs 3458 
 
PQ measurements usually need sampling of more waveforms (e.g. voltage and current, 
voltage in all three phases, etc.) therefore the solution described above should be expendable 
to allow synchronous sampling with at least two (or several) DMM(s) without any significant 
modification of the sampling script. In our experiment we used two DMM 3458A connected 
through two NI GPIB-USB controllers connected to a master and slave PC. Additionally we 
connected the “external output” of the master 3458A to the “trigger input” of the slave DMM 
3458A. The scripts were also slightly modified for the master and the slave: 
 

• master: external output should be enabled (EXTOUT APER, NEG),  
• slave: triggering should be set to external (TRIG EXT).  

 
The other settings (aperture time, sampling frequency and especially the NRDGS and number 
of loops) should be the same for both DMMs.  The master should be started first. After 
initialization a message “Run SLAVE” appears. The master PC is stopped for 10 seconds so 
the slave could be stared and initialized too. After initialization the slave waits for the trigger 
from the master. After the trigger appears, both DMMS simultaneously sample the input 
signals. The concept and the code have been already tested are fully operational. More details 
could be found in A2.1.2.  

5 Conclusions 
 
Herein we presented the concept and the script for long duration sampling with one 
DMM 3458. In this concept the DMM starts sampling immediately after the USB port is 
ready to receive the data. The sampling is performed until the predefined number of samples 
is gathered. The maximal number of samples is limited to 16.777.215. If more samples are 
needed for long duration measurement and/or at higher sampling frequencies, additional 
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reading loop(s) are required. However, a time delay (≈40 ms) related to additional arming is 
introduced between the loops and during this delay the samples are missing.  
 
The presented concept allows continuous sampling with one DMM even at the highest 
supported sampling frequency (in practice 50 kHz for DINT and 100 kHz for SINT output 
and memory format). The total number of samples is virtually limited only by the PC’s 
memory. The script can be also easily modified for the master and slave configuration which 
allows simultaneous sampling with two (several) DMMs.  

References 
[1] Keysight 3458A Multimeter, User’s guide, Edition 7, August 2014 
[2] https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-
space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions 
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Appendix A: Matlab code for long time sampling 
RealTimeRead.m 
 
%DEFINING THE SAMPLING PARAMETERS 
AddrM = 23;      % address of the DMM 3458 
M = 5;         % number of repetitions (loops) 
Res = 'DINT';       % resolution of the DMM: SINT or DINT 
switch Res 
 
   case 'SINT' 
      N = 2000000;      % number of samples, max. 16.777.215 
      Nbuffer = 2*N;     % buffer initialisation  
      fs = 100000;     % sampling frequency 
      Ta = 1.4e-6;     % aperture time 
      Strf = 'OFORMAT SINT;MFORMAT SINT'; 
   
 case 'DINT' 
      N = 1000000;     % number of samples, max. 16.777.215 
      Nbuffer = 4*N;     % buffer initialisation 
      fs = 50000;     % sampling frequency 
      Ta = 10e-6;     % aperture time 
      Strf = 'OFORMAT DINT;MFORMAT DINT'; 
end 
 
% INITIALIZATION 
Ts = 1/fs;       % Hz 
Stra = ['APER ' num2str(Ta)];   % defining strings for setup 
Strn = ['NRDGS ' num2str(N) ',TIMER']; 
Strt = ['TIMER ' num2str(Ts)]; 
Mode = 'DCV'; 
DMM1 = gpibOpen3458A(AddrM,200,Nbuffer);  % Initialize GPIB and DMM 

% 200 is GPIB timeout; it should be  
% increased for longer sampling 

gpibWrite(DMM1,'END ALWAYS'); % EOI (End Or Identify) line set true 
%when the last byte of each reading sent. 

 
gpibWrite(DMM1,'CALSTR?');   %the commands highlighted grey are 
Iden.CalStr = gpibRead(DMM1);    %not required 
Iden.CalStr = strrep(Iden.CalStr,' ','_');   % replace spaces with '_' 
Iden.CalStr = strrep(Iden.CalStr,'"','');    % remove quotation marks 
Iden.CalStr = strrep(Iden.CalStr,char(13),'');   % remove Carriage Return 
Iden.CalStr = strrep(Iden.CalStr,char(10),'');   % remove Line Feed 
gpibWrite(DMM1,'MSIZE?');     
Iden.Msize = gpibRead(DMM1);     
gpibWrite(DMM1,'REV?'); 
Iden.Rev = gpibRead(DMM1); 
gpibWrite(DMM1,'LINE?'); 
Iden.Line = gpibRead(DMM1); 
gpibWrite(DMM1,'ERR?'); 
Iden.Err = gpibReadNumber(DMM1); 
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gpibWrite(DMM1,'CAL? 1'); 
Iden.CALres = gpibRead(DMM1); 
gpibWrite(DMM1,'CAL? 2'); 
Iden.CALvolt = gpibRead(DMM1); 
gpibWrite(DMM1,'CAL? 245'); 
Iden.CALfreq = gpibRead(DMM1); 
 
gpibWrite(DMM1,'PRESET DIG'); 
gpibWrite(DMM1,Strf);        % MFORMAT & OFORMAT 
gpibWrite(DMM1,'DCV 10');    % RANGE SETING 
gpibWrite(DMM1,Stra);        % APER 
gpibWrite(DMM1,Strn);        % NRDGS 
gpibWrite(DMM1,Strt);        % TIMER 
gpibWrite(DMM1, 'ISCALE?'); 
Iscale = gpibReadNumber(DMM1); 
gpibWrite(DMM1,'TRIG AUTO'); 
gpibWrite(DMM1,'TARM SYN'); 
 
% SAMPLING    
for j = 1:M 
      switch Res 
         case 'SINT' 
            databin(:,j) = fread(DMM1,N,'int16'); 
         case 'DINT' 
            databin(:,j) = fread(DMM1,N,'int32'); 
      end 
end 
 
% CLOSING    
Result = databin * Iscale; 
gpibClose(DMM1);      % closing GPIB 
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Appendix B: Other subfunctions 
 

gpibOpen3458A 
function [InstrumentName] = gpibOpen3458A(GPIBaddress,TimeOut,BufferSize) 
%   Initializes GPIB at GPIBaddress and returns GPIB object InstrumentName 
if (nargin < 2) 
   TimeOut = 100; 
   BufferSize = 5000000; 
end 
if (nargin < 3) 
   BufferSize = 5000000; 
end 
InstrumentName = instrfind('Type', 'gpib', 'BoardIndex', 0, 'PrimaryAddress', GPIBaddress, 
'Tag', ''); % Find a GPIB object 
if isempty(InstrumentName) 
   InstrumentName = gpib('ni', 0, GPIBaddress);     % Create the GPIB object if it does not 
exist 
else 
   fclose(InstrumentName);  % otherwise use the object that was found. 
   InstrumentName = InstrumentName(1); 
end 
InstrumentName.Timeout = TimeOut; 
InstrumentName.InputBufferSize = BufferSize; 
InstrumentName.EOSMode = 'none'; 
InstrumentName.ByteOrder = 'bigEndian'; 
fopen(InstrumentName); 
end 
 

gpibRead 
function [ Message ] = gpibRead( InstrumentName ) 
Message = fscanf(InstrumentName); 
End 
 

gpibWrite 
function [ ] = gpibWrite( InstrumentName, Message ) 
fprintf(InstrumentName, [Message char(13) char(10)]); 
end 
 

gpibReadNumber 
function [ Value ] = gpibReadNumber( InstrumentName ) 
str = fscanf(InstrumentName); 
Value = str2double(str); 
End 
 

gpibClose 
function [ ] = gpibClose( InstrumentName ) 
fclose(InstrumentName); 
delete(InstrumentName); 
clear InstrumentName; 
end  
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Appendix C: Increasing a Heap Memory Size 
 
When the number of samples is significantly increased it might exceed the memory that is 
reserved for the Matlab. In this case an error “java.lang.OutOfMemoryError: Java heap 
space” or similar might appear. In this case a heap space should be increased accordingly 
following the procedure defined below [2] (the settings might be slightly different for 
different versions of Matlab, Windows and Java Runtime Environment): 
 

• Create a text file named java.opts in the MATLAB_root/bin/ARCH directory. 
MATLAB_root is the MATLAB root directory and ARCH is the system architecture, 
which can be defined by typing the following commands at the MATLAB Command 
Prompt: 

Matlabroot; %(the command returns something like: “C:\Program 
Files\MATLAB\R2013a”) 
computer('arch'); %(the command returns “win32” or “win 64”) 
 

• Define the version of the Java Virtual Machine (JVM) that is running by typing the 
following command at the MATLAB Command Prompt: 

version –java %the command returns something like “ Java 1.6.0_17-b04 
with Sun Microsystems Inc. Java HotSpot(TM) 64-Bit Server VM mixed 
mode” 
 

• Define the value to put in the java.opts file according to the JVM version (see default 
values in Table C1). Users can override these values by setting them manually in a 
java.opts file. For example, including the following line in a java.opts file sets the 
Max Heap Size value to 256 MB for JVM of 1.2.2 version and later: 
 

-Xmx256m 
 

Table C1: The default settings that MATLAB uses for versions of the JVM 
JVM Internal heap Size Max. heap size 
1.6.0                  -Xms64m -Xmx128m (32-bit) 
  -Xmx196m (64-bit) 
1.5.0     -Xms64m               -Xmx96m  (32-bit) 
  -Xmx128m (64-bit) 
1.4.2     -Xms16m               -Xmx96m 
1.3.1              -Xms16000000 -Xmx64000000 
1.2.2     -Xms16000000          -Xmx64000000 
1.1.8     -ms16000000           -mx64000000 

* JVM stands for Java Virtual Machine 

 
• Save the java.opts file to your Matlab root directory. 
• The information about the current Java heap space usage might be obtained by typing 

the following commands in the MATLAB Command Prompt:  
java.lang.Runtime.getRuntime.maxMemory; %define max. memory 
java.lang.Runtime.getRuntime.totalMemory; %define total memory 
java.lang.Runtime.getRuntime.freeMemory; %define free memory 
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Appendix #3  

 
 

A2.2.3 - Extending the data record length of sampling with DMM 
3458A for long duration measurements (variant with additional 

HW) 



A2.2.3 – Extending the sampling capabilities of 3458A (variant with 
additional HW) 

 

1.1 Control and data aquisition module 

The LabView driver for the 3458A is packed in a LLB-liberary, which contain all sub-VI’s and 4 top VI’s. 
Off these four, one VI is a striped-down bear bone demo, showing how the tree driver-VI’s work 
together, and how initialization and how data is acquired.  

 

The tree vi’s are:  

1. SyncronSampling Init.vi :   
• for initializing the 3458A-devices 

2. SyncronSampling Trig&Read.vi :  
• (re)triging the system for next sample serier and read the data that was streamed 

during the sampling 
3. SynchronSampling Close.vi : 

• Clean up and close the session, driver and setting the 3458A in idle state 

 

Maximum sampling length(limits): 

• Sampling time: Max. timeout-value that can be specified ( in labview) is 1000 sec. Which is 
ca. 16,7 min. at 10kHz sampling rate, time out is at ~10 M samples. It’s possible to set “no 
timeout” (timeout –1 ), However this is undesirable because in the event of an error, the 
software will not be able to detect it, and the software basically will hang indefinitely.  

Limits:  

• Hp-multimeteret : The 3458A has a 24-bits counter that gives a max, series of  16 777 216 
samples, which would be 28 min. at 10 kHz sampling rate. 

• Windows:  Without problems we can do  11 M -samples, when going to 12-13 M –samples,  
Windows get problems allocating the required memory buffer ( using to long time ? ), which 
make the sampling crash!  ---   Sometimes the sampling starts, and sometime it fails in the 
startup.  When it fails, it reports the message: ”Data over run”  in the DMM.  

 



1.1.1 Initialization module (VI)   
 

VI-name: SyncronSampling Init.vi 

 

 

This VI set up the instruments to enable continuous sampling for long sampling series by two 
multimeters. The internal memory is not used, and an external sampling clock are trigging every 
sample.  

Although the sampling is done using an external trigger source, the Sampling Interval and  Number of 
Samples is used to calculate a Timeout value for the transfer of the data samples from the 
instrument(s) to the computer. An incorrect Sampling Interval value can therefore cause a timeout 
error when reading big samples. 

Input parameters (common for both channels):  

• APER (sec.)  : Aperture time in seconds. Be aware that the 3458A needs a steeling time 
between each sample of 10us. 

• Sampling Interval: This is time between samples, or 1/sf. This is not controlling the sampling 
rate, but is needed internally in the driver to work correctly. The input value should match 
the actual sampling rate.  

• Number of Samples: This input tell the driver how many samples the acquisition module 
should read for each repetition. 

• Sample Event : fixed to “External” Should be set to External for this application. 
• Memory Buffer Type: fixed to “OFF”.  The sampling technique is based on not using the 

internal memory buffer. 
• Output Format: fixed to “Double Integer”.  The data is transferred binary, for efficient use of 

band width. 

 

Input parameters (specific for each channel): 

• Maximum Input Range:  



• Instr. Descriptor : Specifies the GPIB address for the instrument of the cannel. Since the 
instruments are located on separate GPIB-busses, the address can be the same. 

Outputs: 

• Dbg : (string) Debug output, only useful while the VI was programmed.  
• Param-log : (string) Debug output, only useful while the VI was programmed.  
• DMM-data : (Cluster output), for use by the other VI’s. internal settings data. This output 

should be wired to the input of the next VI 
• Time-serial : Timestamp of the start, Output time(sek). PC-time. 

1.1.2 Acquisition module (vi) 
 

VI-name: SyncronSampling Init.vi 

 

For each repetition this VI is called. Because it’s impossible to read out the memory of the GPIB-card 
while it is filled with data from the GPIB-bus, the data acquisition will have to have a little 
interruption because the instruments has to be re-armed to start next repetition. 

Input parameter: 

• DMM data : (Cluster input), internal settings data, passed on from the initialization VI. 

Outputs: 

• Waveform 1 : (Double array), This is the actual sampled values for channel 1. The size should 
match the number set in the initialization 

• Waveform 2 : (Double array), This is the actual sampled values for channel 2. The size should 
match the number set in the initialization 

• Trigtime : Timestamp, Output time(sek). PC-time. 
• Visa_Read_Error 
• DMM-data : (Cluster output)  internal settings data. This output should be wired to the input 

of the next VI 
 

 

1.1.3 Close session module (vi) 
 

VI-name: SynchronSampling Close.vi 



 

 

This VI close the session. Set the 3458A in idle state. 

 

Input parameter: 

• DMM data : (Cluster input), internal settings data, passed on from the initialization VI. 

Outputs: 

• Error out (1) : Error-cluster from the Visa-drive for channel 1  
• Error out (1) : Error-cluster from the Visa-drive for channel 1 
• Instrument status: Cluster, contains div. status. 
• Trigtime : Timestamp, Output time(sek). PC-time. 
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1 Objective 
 
In the scope of the work package A1.2.4 in the TracePQM project [1], SIQ has developed a 
software based method and JV has developed hardware & software based method for long 
duration measurements with 3458A DMM. Performances of these methods have been tested in 
TUBITAK UME. Completed tests and relevant results have been given in this report. 

2 Measurement setup for the method developed by SIQ 
 
Measurement setup, software and preliminary results of the method developed by SIQ were 
stated in the related report [2]. Measurement setup established in TUBITAK UME is shown in 
Figure 1. Agilent 33120A signal generator was locked to the 10 MHz output of the SRS FS725 
rubidium frequency standard to achieve more signal stability in measurements. Signal output 
of the 33120A was directly connected to the input of the 3458A DMM. Connection between 
Laptop PC and 3458A DMM was established by using National Instruments GPIB-USB-HS+ 
type GPIB to USB controller & analyzer. 
 
SIQ has developed two Matlab script files for measurements; “RealTimeRead.m” (DCV mode) 
and “RealTimeReadDS.m” (DSDC mode). Performance analysis has been completed for both 
of the Matlab scripts. 
 

 
 

Figure 1: Measurement setup for method developed by SIQ. 
 

According to the structure of the software, user can define the parameters stated below: 
 

• GPIB address of the 3458A DMM (AddrM) 
• Number of data packages (M) 
• Output and memory format (Res) 
• Number of readings in each data package (N) 
• Sampling frequency (fs) 
• Aperture time (Ta) 
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3 Measurement results of the SIQ method 
 
As a first step, maximum available number for N was tested. According to the SIQ report [2], 
16.777.215 samples could be read in one package but 15.020.000 samples were able to read in 
the tests made in TUBITAK UME. If N value was increased more than that value, error 
messages were taken. 
 
Main purpose of this work is making long duration samplings with 3458A DMM. As stated 
above, maximum number of N is a limited value. Matlab software developed by SIQ can 
perform sampling with multiple data packages. Important point is, there are time delays 
between each data packages and these time gaps will be problem when this method will be 
applied to the PQ parameter measurements like flicker. So these time delays must be measured 
and characterised. 3458A DMM used in the measurements was manufactured by Agilent. A 
sine wave signal having 6 VRMS was applied from 33120A. Signal frequency was changed from 
10 Hz to 100 Hz with 10 Hz steps. Matlab code parameters used in the measurements are; 
 

• Number of data packages M = 2. So two data packages were taken in each measurement 
step. Matlab functions for time delay calculation between data packages (developed by 
SIQ, based on the PSFE estimation algorithm) were used. 

• Output and memory format Res = ‘DINT’. 
• Number of readings in each data package. N was selected 105 and 106 to see the effect 

of this value to the time delay between data packages. 
• Sampling frequency fs = 50 kSps. 
• Aperture time Ta = 10 µs. 

 
Matlab code developed by SIQ was changed to repeat the measurements 100 times in a loop. 
So, two consecutive data packages were taken 100 times and time delays were calculated. Three 
seconds time gap was set between each measurement loop. Mean value and standard deviation 
of the time delays were calculated for each frequency (10 Hz – 100 Hz) and N value (105 and 
106). All measurements were repeated for both of “RealTimeRead.m” and 
“RealTimeReadDS.m” Matlab scripts. Results are shown in Table 1, Table 2, Table 3 and Table 
4. Histograms of the 100 time delays for each measurement point are also shown in Figure 2, 
Figure 3, Figure 4 and Figure 5. 
 

Table 1: Time delay between loops: RealTimeRead.m, N = 105, Fsignal = 10 Hz – 100 Hz. 
 

Fsignal (Hz) Time delay between 
loops (ms) Standard deviation (ms) 

10 6.373 1.809 
20 6.888 3.598 
30 6.396 2.399 
40 6.229 1.959 
50 6.450 1.871 
60 6.379 2.057 
70 6.201 1.733 
80 6.353 1.821 
90 6.050 1.700 

100 5.525 1.287 
 

Table 2: Time delay between loops: RealTimeRead.m, N = 106, Fsignal = 10 Hz – 100 Hz. 
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Fsignal (Hz) Time delay between 
loops (ms) Standard deviation (ms) 

10 38.992 6.027 
20 33.532 12.276 
30 14.183 10.341 
40 11.742 7.854 
50 8.888 6.807 
60 7.817 4.967 
70 9.048 2.942 
80 4.338 3.723 
90 5.872 2.750 

100 5.249 3.548 
 

Table 3: Time delay between loops: RealTimeReadDS.m, N = 105, Fsignal = 10 Hz – 100 Hz. 
 

Fsignal (Hz) Time delay between 
loops (ms) Standard deviation (ms) 

10 6.628 2.650 
20 6.043 1.768 
30 6.190 1.822 
40 5.657 1.304 
50 5.983 1.780 
60 6.093 1.813 
70 6.358 1.894 
80 6.396 2.032 
90 5.874 2.379 

100 4.810 1.902 
 

Table 4: Time delay between loops: RealTimeReadDS.m, N = 106, Fsignal = 10 Hz – 100 Hz. 
 

Fsignal (Hz) Time delay between 
loops (ms) Standard deviation (ms) 

10 36.584 5.353 
20 30.315 13.105 
30 13.874 11.367 
40 11.478 5.811 
50 11.880 5.590 
60 7.588 4.880 
70 7.236 3.855 
80 4.931 3.472 
90 4.949 2.888 

100 6.320 2.647 
 
It can be clearly seen from the tables above that frequency of the applied input signal is very 
affecting to the time delay between loops when N = 106. In this case, mean of the time delays 
are getting very different values according to the frequency of the applied input signal and 
deviations are also high. But in the case of N = 105, time delay between loops are approximately 
6 ms and deviations are getting smaller values. It could not seen any effect of using 
“RealTimeReadDS.m” rather than “RealTimeRead.m” to the results. 
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Figure 2: Time delay between loops: RealTimeRead.m, N = 105, Fsignal = 10 Hz – 100 Hz. 
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Figure 3: Time delay between loops: RealTimeRead.m, N = 106, Fsignal = 10 Hz – 100 Hz. 
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Figure 4: Time delay between loops: RealTimeReadDS.m, N = 105, Fsignal = 10 Hz – 100 Hz. 
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Figure 5: Time delay between loops: RealTimeReadDS.m, N = 106, Fsignal = 10 Hz – 100 Hz. 
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4 Measurement setup for the method developed by JV 
 
Measurement setup of the method developed by JV was stated in the document, titled 
“HP3458A Continuous sampling with synchronized DVM’s” [3]. Measurement setup 
established in TUBITAK UME is shown in Figure 6. Similar to the first setup in this report, 
Agilent 33120A signal generator was locked to the 10 MHz output of the SRS FS725 rubidium 
frequency standard to achieve more signal stability in measurements. Signal output of the 
33120A was directly connected to the input of the 3458A DMMs. A desktop type PC with two 
PCI to GPIB cards was used for measurements. Connection between PC and 3458A DMMs 
were established by using National Instruments PCI to GPIB cards. 
 
The method developed by JV is based on both hardware & software. JV has developed a 
software code in Labview environment. CLK Circuit Box which can be seen in Figure 6 was 
used for synchronisation of two DMMs. System (software) can be used without this hardware 
but in that case, there would not be synchronisation. 
 
 

 
 

Figure 6: Measurement setup for method developed by JV. 
 

According to the structure of the software, user can define the parameters stated below: 
 

• GPIB addresses of the 3458A DMMs 
• DMM input voltage ranges 
• Sampling interval 
• Aperture time 
• Number of samples (N) 
• Sample event (auto, external, synchronous, timer, level, line) 
• Memory buffer type (off, fifo, lifo) 

 
Selections of the last two parameters are shown in bold. User can select “auto” instead of 
“external” in sample event to use the system without hardware. Default structure of the software 
is sampling in an endless loop, so system is sampling N samples in every loop but is not 
recording or analysing any data. 
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5 Measurement results of the JV method 
 
A few modifications were made in software developed by JV in Labview environment. With 
this modification, Labview code takes two consecutive data packages then transfers data to the 
Matlab and stops. Time delay between data packages were calculated with using same Matlab 
code which is used for evaluation of SIQ method. This matlab code was developed by SIQ, 
based on the PSFE estimation algorithm. 
 
3458A DMM (Agilent) which was used in the measurements of SIQ method was also used to 
test JV method. A second 3458A DMM was also connected to the test setup but gathered data 
is not evaluated. A sine wave signal having 6 VRMS was applied from 33120A. Signal frequency 
was changed from 10 Hz to 100 Hz with 10 Hz steps.  
 
Labview code parameters used in the measurements are; 
 

• DMM input voltage ranges: 10 V 
• Number of samples: N was selected 2x104 and 2x105 to see the effect of this value to 

the time delay between data packages. 
• Sampling interval: 100 µs 
• Aperture time: 90 µs 

 
Sampling frequency was fixed at 10 kSps due to the structure of the JV’s hardware. CLK Circuit 
Box has own internal clock oscillator. Therefore, N values were selected to achieve same GPIB 
data transfer time of the SIQ tests. 
 
Labview code was run 100 times and two consecutive data packages (each contains N samples) 
were taken 100 times then time delays were calculated. Mean value and standard deviation of 
the time delays were calculated for each frequency (10 Hz – 100 Hz) and N value (2x104 and 
2x105). Results are shown in Table 5 and Table 6. Histograms of the 100 time delays for each 
measurement point are also shown in Figure 7 and Figure 8. 
 
 

Table 5: Time delay between loops: N = 2x104, Fsignal = 10 Hz – 100 Hz. 
 

Fsignal (Hz) Time delay between 
loops (ms) Standard deviation (ms) 

10 51.827 1.211 
20 2.152 1.331 
30 18.734 1.358 
40 2.090 1.395 
50 12.134 1.412 
60 1.909 1.234 
70 8.845 1.445 
80 1.739 0.961 
90 7.051 1.154 

100 1.846 1.000 
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Table 6: Time delay between loops: N = 2x105, Fsignal = 10 Hz – 100 Hz. 
 

Fsignal (Hz) Time delay between 
loops (ms) Standard deviation (ms) 

10 85.347 1.075 
20 34.666 0.991 
30 17.826 0.932 
40 9.704 1.029 
50 4.683 1.155 
60 1.684 1.021 
70 12.903 0.683 
80 9.805 0.801 
90 6.721 0.910 

100 4.478 0.959 
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Figure 7: Time delay between loops: N = 2x104, Fsignal = 10 Hz – 100 Hz. 
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Figure 8: Time delay between loops: N = 2x105, Fsignal = 10 Hz – 100 Hz. 
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6 Conclusions 
 
Long duration sampling with one DMM 3458A is needed in some applications especially in PQ 
measurements. SIQ and JV have developed their solutions for this purpose and both solutions 
have been tested and evaluated. Results showed that it is possible to transfer more data with 
using these methods than standard data transfer method could achieve. However, time delays 
between sampled data packages could be a problem source. Results showed that JV’s method 
is more stable than SIQ’s method according to the standard deviations of the time delays. 
 
An important point must be stated here; calculation method of the time delays between sampled 
data packages has a problem. If the time delay value is bigger than full period of the input 
signal, method gives the remaining time according to the period. For example, if we apply 50 
Hz sine wave (20 ms period) and actual time delay is 22 ms then calculation method gives 2 ms 
as a result. In this case, we can’t know if the actual time delay is only 2 ms or it includes a full 
period. 
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Objective 

This report is related with activity A2.1.4: “The concept for the interface between the data processing 
module and the control and data acquisition module”, of TracePQM-15RPT04, and only describes the 
concept for interfacing LabWindows/CVI to MATLAB tool. 

The Labview to MATLAB /Octave interface was already developed with GOLPI library [1] and 
lv_process, the low level library to access hardware via pipes. The required interface for 
LabWindows/CVI to MATLAB has been developed using MATLAB Engine API. [2] This API requires also 
MATLAB installed, not only Runtime Engine, to use properly, related to documentation given form 
MATLAB internet site. 

Structure 

In order to use MATLAB functions/scripts from C or LabWindows/CVI environment, MATLAB tool must 
be installed in the system. The operating system, hardware and all related software should use the 
same bit number, 32-Bit or 64-Bit. 

The last version of TWM tool should be downloaded from source site.[3] The TWM tool uses MATLAB 
and QWTB tool, the Quantum Wave ToolBox. [4]The other related libraries, niscope, niTClk, should 
be exist and accessible from user space in order to run virtual digitizers used in TWM software.  

 

Figure 1 GUI window of the module 

The CVI tool, the second version is shown can be downloaded from TracePQM web site, both source 
codes and compiled as a standalone application. [5] The CVI tool uses QWTB tool and its scripts like 
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TWM application and performs the desired calculations. When it runs, it looks like the picture shown 
in Figure 1, similar to QWTB calculation section of TWM software.  

The results obtained from digitizers are stored as result files with required format and many 
calculations can be performed with CVI tool being used MATLAB scripts background.  

LabWindows/CVI to MATLAB interfacing is done with using dedicated header files, library and MATLAB 
Engine. The CVI project/program must include these header files and use the functions of libraries. The 
libeng.lib and libmx.lib files must be included in project tree and the system-wide path of these 
files must be added the operating system paths in order to run MATLAB engine calls.  

Implementation 

The name of CVI module is “Matlab Module” and name of related c file is Matlab Module.c. The 
name of GUI (Graphic User Interface) of the module is Matlab Module.uir. The screenshot of the 
window is shown in Figure 1.  

When the application runs, it first initiates GUI and calls the main procedure, named main, located in 
Matlab Module.c.  

 

Figure 2 MATLAB engine initialization and starting in main procedure. 

This procedure also initiates the MATLAB session calling the mlink_init, declared in mlink.c source 
file and starts the MATLAB engine at the background calling mlink_start, declared in the same 
source file, Figure 2, Figure 3, respectively. 
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Figure 3 Declaring MATLAB engine start procedure in mlink.c source file. 

 

The TMLink parameter is a C struct and declared in mlink.h header files. ML_MATLAB and 
ML_OCTAVE constants are also declared in the same header file, shown in Figure 4. 

 

Figure 4 TMLink struct. 

The MATLAB engine opens with engOpen command and returns a pointer for handle of MATLAB 
engine. The init parameter passed to function must be NULL for Windows operating systems, declared 
in [1]. 

The first interaction of MATLAB environment is completed with the command sequence. Now, we have 
an engine handle to be used in LabWindows/CVI environment. 
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The main procedure runs the twm_init command, declared in twm_matlab.c, with the parameter 
which returned from the mlink_start procedure, shown in Figure 5, if there are no errors from 
previous operations. 

 

Figure 5 Declaration of twm_init procedure. 

When the twm_init runs, the MATLAB is ready to run with the desired working paths. This command 
calls the mlink_cmd command, declared in mlink.c source file, shown in Figure 6. This command 
calls the engine API procedures, engEvalString and engOutputBuffer including correct paths and 
command string to be evaluated by MATLAB. The engEvalString command evaluates the 
expression contained in command string for the MATLAB engine session, lnk, previously started by 
engOpen. The engOutputBuffer command defines a character buffer for engEvalString to 
return any output that ordinarily appears on the screen. This buffer will be filled with output values of 
MATLAB and used by main program. 
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Figure 6 mlink_cmd command structure. 

After the main program initiates, the user must select the proper info file by pressing LOAD button on 
the top-right side of main window. The open-file dialog of operation system appears and waits an info 
file to select when this button is pressed, shown in Figure 7. 
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Figure 7 Loading the info file. 

The session.info file can be selected as an example. The format of info file, including all required 
digitizer, transducer corrections, offsets, data formats, raw data etc, was described detailed in activity 
A2.3.1. 

When the selected file loaded, it should be clicked the REFRESH button at the left-bottom of window. 
With activating the REFRESH button, the dedicated CALLBACK procedure of main GUI evaluated. The 
CALLBACK function performs a list of command sequence and determines the required 
evaluation/calculation parameters such as algorithm type, the paths for info, results, corrections, 
assigns the related variables and calls the twm_get_result_info, twm_get_results_data, 

twm_get_alg_list, twm_get_alg_info commands, declared in twm_matlab.c source file with 
passing the required parameter, the pointer to handle that represents MATLAB engine, to perform 
various operations on the measurement dates. 
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Figure 8 The actual window. 

Conclusions  

The basic interaction of LabWindows/CVI to MATLAB tool is briefly explained. The only MATLAB like 
calculation tool is MATLAB, so the OCTAVE part is not implemented by code developer at the moment. 
With this successful communication scheme of these two environments, the well known algorithms 
written in MATLAB have been used efficiently without re-written completely for the other languages. 
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Appendix 

• The Matlab Module.c source file: 
//============================================================================== 
// 
// Title:  Matlab Module 
// Purpose:  A short description of the application. 
// 
// Created on: 2.3.2014 at 16:16:57 by . 
// Copyright: . All Rights Reserved. 
// 
//============================================================================== 
 
//============================================================================== 
// Include files 
 
#include <ansi_c.h> 
#include <windows.h> 
#include <Shlwapi.h> 
#include <cvirte.h>   
#include <userint.h> 
#include "Matlab Module.h" 
#include "toolbox.h" 
#include "qwtb_alg_select.h" 
 
#include "mlink.h" 
#include "twm_matlab.h" 
#include "utils.h" 
#include "matlab_globals.h" 
 
//============================================================================== 
// Constants 
 
#define INIFILE "config.ini" 
 
//============================================================================== 
// Types 
 
//============================================================================== 
// Static global variables 
 
static int panelHandle = 0; 
 
 
//============================================================================== 
// Static functions 
 
//============================================================================== 
// Global variables 
 
// Matlab link handle 
TMLink mlink; 
// config.ini full path 
char ini[MAX_PATHNAME_LEN]; 
// last result path 
char resfld[MAX_PATH]; 
 
//============================================================================== 
// Global functions 
 
 
 
 
 
 
/// HIFN The main entry-point function. 
int main (int argc, char *argv[]) 
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{ 
 int error = 0; 
 int ret; 
  
 // get app directory 
 char appdir[MAX_PATHNAME_LEN]; 
 GetProjectDir(appdir); 
  
 // build ini path 
 strcpy(ini,appdir); 
 strcat(ini,"\\config.ini"); 
  
 // load TWM function path from INI file 
 char twm_path[MAX_PATH]; 
 ret = GetPrivateProfileString("PATH","twm_octave_folder","",twm_path,MAX_PATH,ini); 
 if(!ret) 
 { 
  MessageBoxA(NULL,"Missing INI file or the [PATH],twm_octave_folder 
value!","Error",0); 
  goto Error; 
 } 
  
 // load last result folder path from INI file 
 ret = GetPrivateProfileString("PATH","last_result_path","",resfld,MAX_PATH,ini); 
  
  
 // --- MATLAB INIT --- 
 // init 
 mlink_init(&mlink,ML_MATLAB); 
  
 // try to start Matlab 
 ret = mlink_start(&mlink); 
 if(ret) 
 { 
  MessageBoxA(NULL,"Cannot start Matlab!","Error",0); 
 } 
 else 
 { 
  // initialize TWM link 
  char *errstr; 
  ret = twm_init(&mlink,&errstr,twm_path); 
  // failed? 
  if(ret) 
  { 
   MessageBoxA(NULL,errstr,"Matlab error",0); 
   free((void*)errstr); 
  } 
  else 
  { 
   /* initialize and load resources */ 
   nullChk (InitCVIRTE (0, argv, 0)); 
   errChk (panelHandle = LoadPanel (0, "Matlab Module.uir", PANEL)); 
 
   /* display the panel and run the user interface */ 
   errChk (DisplayPanel (panelHandle)); 
   errChk (RunUserInterface ()); 
  } 
 } 
  
 
Error: 
 /* clean up */ 
 if (panelHandle > 0) 
  DiscardPanel (panelHandle); 
  
  
 return 0; 
} 
 
 
 
//============================================================================== 
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// UI callback function prototypes 
 
/// HIFN Exit when the user dismisses the panel. 
int CVICALLBACK panelCB (int panel, int event, void *callbackData, 
  int eventData1, int eventData2) 
{ 
 if (event == EVENT_CLOSE) 
 { 
  QuitUserInterface (0); 
   
  // try to close Matlab 
  mlink_close(&mlink,1); 
   
  // store last path 
  WritePrivateProfileString("PATH","last_result_path",resfld,ini); 
   
 } 
  
 return 0; 
} 
 
 
 
 
 
//------------------------------------------------------------------------------ 
// Refresh result view 
// 
int CVICALLBACK btn_cmd (int panel, int control, int event, 
       void *callbackData, int eventData1, int eventData2) 
{ 
  
 switch (event) 
 { 
  case EVENT_COMMIT: 
    
   char path[MAX_PATH]; 
    
   // default alg/res selection: 
   int alg_id = -1; 
   int res_id = -1; 
   int ref_id = -1; 
   // results found? 
   int res_exist = 0; 
    
   // get result path 
   GetCtrlVal(panel,PANEL_PATH_RES,(void*)path); 
    
   // -- two pass assignement 
   // 1) fill result/alg selectors 
   // 2) load selected alg and result 
   for(int pass = 0;pass < 2;pass++) 
   { 
 
    // get last algorithm selection 
    // 0 - last used 
    // 1,2,... - alg. selection ID 
    GetCtrlIndex(panel,PANEL_RING_ALG,&alg_id); 
    if(alg_id < 0) 
     alg_id = 0; 
    
    // get last result selection 
    // 0 - last measured 
    // 1 - average of all 
    // 2,3,... - result selection ID 
    GetCtrlIndex(panel,PANEL_RING_RES,&res_id);     
    if(res_id < 0) 
     res_id = 0; 
     
    // get ref channel mode selection 
    // 0 - no ref 
    // 1,2,... - channel selection ID 
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    GetCtrlIndex(panel,PANEL_REFMODE,&ref_id); 
    if(ref_id < 0) 
     ref_id = 0; 
     
    // alg. selection string 
    char alg_id_str[256]; 
    strcpy(alg_id_str,""); 
    if(pass && alg_id) 
    
 GetLabelFromIndex(panel,PANEL_RING_ALG,alg_id,(void*)alg_id_str); 
 
    // read results 
    char *res_files; 
    char *alg_list; 
    char *chn_list; 
    char *errstr; 
    int ret = 
twm_get_result_info(&mlink,&errstr,path,alg_id_str,&res_exist,&res_files,&alg_list,&chn_list); 
    if(ret) 
    { 
     // failed 
     MessageBoxA(NULL,errstr,"Matlab error",0); 
     free((void*)errstr); 
     return(1); 
    } 
    
     
    
    // clear result selectors    
    ClearListCtrl(panel,PANEL_RING_RES); 
    ClearListCtrl(panel,PANEL_RING_ALG); 
    ClearListCtrl(panel,PANEL_REFMODE); 
    
    
    if(res_exist) 
    { 
     // --- something found - fill the dialog 
     
     int rows,cols,cc; 
     char **cells,*csv; 
     
     // fill algorithms list 
     csv = (char*)malloc((strlen(alg_list)+100)*sizeof(char)); 
     strcpy(csv,"Current: "); 
     strcat(csv,alg_list); 
     free((void*)alg_list); 
     cc = csv_parse(csv,';','\t',&rows,&cols,NULL); 
     cells = (char**)malloc(cc*sizeof(char*)); 
     csv_parse(csv,';','\t',&rows,&cols,cells); 
     InsertListItem(panel,PANEL_RING_ALG,0,cells[0],0); 
     for(int k=2;k<cc;k++) 
      InsertListItem(panel,PANEL_RING_ALG,k-1,cells[k],k-1); 
     free((void*)cells); 
     free((void*)csv); 
     if(alg_id >= cc-1) 
     { 
      SetCtrlIndex(panel,PANEL_RING_ALG,0); 
      SetCtrlIndex(panel,PANEL_RING_RES,0); 
     } 
     else 
     { 
      SetCtrlIndex(panel,PANEL_RING_ALG,alg_id); 
     } 
 
     // fill results list 
     csv = (char*)malloc((strlen(res_files)+100)*sizeof(char)); 
     strcpy(csv,"Current result\tAverage\t"); 
     strcat(csv,res_files); 
     free((void*)res_files); 
     cc = csv_parse(csv,';','\t',&rows,&cols,NULL); 
     cells = (char**)malloc(cc*sizeof(char*)); 
     csv_parse(csv,';','\t',&rows,&cols,cells); 
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     for(int k=0;k<cc;k++) 
      InsertListItem(panel,PANEL_RING_RES,k,cells[k],k); 
     free((void*)cells); 
     free((void*)csv); 
     if(res_id >= cc) 
     {  
      SetCtrlIndex(panel,PANEL_RING_RES,0); 
      res_id = 0; 
     } 
     else 
      SetCtrlIndex(panel,PANEL_RING_RES,res_id); 
      
     // fill results list 
     csv = (char*)malloc((strlen(chn_list)+100)*sizeof(char)); 
     strcpy(csv,"None;"); 
     strcat(csv,chn_list); 
     free((void*)chn_list); 
     cc = csv_parse(csv,'\t',';',&rows,&cols,NULL); 
     cells = (char**)malloc(cc*sizeof(char*)); 
     csv_parse(csv,'\t',';',&rows,&cols,cells); 
     for(int k=0;k<cc;k++) 
      InsertListItem(panel,PANEL_REFMODE,k,cells[k],k); 
     free((void*)cells); 
     free((void*)csv); 
     if(ref_id >= cc) 
     { 
      SetCtrlIndex(panel,PANEL_REFMODE,0); 
      ref_id = 0; 
     } 
     else 
      SetCtrlIndex(panel,PANEL_REFMODE,ref_id); 
     
    } 
    else 
    { 
     // failed 
     MessageBoxA(NULL,"Selected result is invalid or contains no 
calculated results.","Matlab error",0); 
     break; 
    } 
   } 
    
    
   if(res_exist) 
   { 
    // -- load result data 
    // display config 
    TResCfg cfg; 
    GetCtrlVal(panel,PANEL_MAXDIM,(void*)&cfg.max_dim); 
    GetCtrlVal(panel,PANEL_MAXDIMSZ,(void*)&cfg.max_array); 
    GetCtrlVal(panel,PANEL_GRPMODE,(void*)&cfg.group_mode); 
    GetCtrlVal(panel,PANEL_UNCMODE,(void*)&cfg.unc_mode); 
    GetCtrlVal(panel,PANEL_PHIMODE,(void*)&cfg.phi_mode); 
    GetCtrlVal(panel,PANEL_REFMODE,(void*)&cfg.phi_ref_chn); 
     
    // alg. selection string 
    char alg_id_str[256]; 
    strcpy(alg_id_str,""); 
    if(alg_id) 
    
 GetLabelFromIndex(panel,PANEL_RING_ALG,alg_id,(void*)alg_id_str); 
 
    // obtain result data from matlab 
    char *csv = NULL; 
    char *errstr; 
    int ret = twm_get_result_data(&mlink,&errstr,path,res_id-
1,alg_id_str,&cfg,&csv); 
    if(ret) 
    { 
     // failed 
     MessageBoxA(NULL,errstr,"Matlab error",0); 
     free((void*)errstr); 
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     return(1); 
    } 
  
    int rows,cols;  
    int cc = csv_parse(csv,'\t','\n',&rows,&cols,NULL); 
    char **cells = (char**)malloc(cc*sizeof(char*)); 
    csv_parse(csv,'\t','\n',&rows,&cols,cells); 
  
     
    // disable table refresh 
    SetCtrlAttribute(panel, PANEL_TABLE, ATTR_VISIBLE, 0); 
     
    // refresh table data size 
    DeleteTableColumns(panel,PANEL_TABLE,1,-1); 
    DeleteTableRows(panel,PANEL_TABLE,1,-1); 
    InsertTableRows(panel,PANEL_TABLE,1,rows-1,VAL_CELL_STRING); 
    InsertTableColumns(panel,PANEL_TABLE,1,cols-1,VAL_CELL_STRING); 
    
    // refresh headers 
    SetTableRowAttribute (panel, PANEL_TABLE, -1, ATTR_USE_LABEL_TEXT, 1); 
    for(int r = 1;r<rows;r++) 
    
 SetTableRowAttribute(panel,PANEL_TABLE,r,ATTR_LABEL_TEXT,cells[r*cols]); 
    SetTableColumnAttribute (panel, PANEL_TABLE, -1, ATTR_USE_LABEL_TEXT, 
1); 
    for(int c = 1;c<cols;c++) 
    
 SetTableColumnAttribute(panel,PANEL_TABLE,c,ATTR_LABEL_TEXT,cells[c]); 
     
    // refresh data     
    for(int r = 1;r<rows;r++) 
     SetTableCellRangeVals(panel,PANEL_TABLE,MakeRect(r,1,1,cols-
1),&cells[r*cols+1],VAL_ROW_MAJOR); 
     
    // autoscale 
    for(int c = 1;c<cols;c++) 
     SetColumnWidthToWidestCellContents(panel,PANEL_TABLE,c); 
     
    // enable table refresh 
    SetCtrlAttribute(panel, PANEL_TABLE, ATTR_VISIBLE, 1); 
     
     
     
     
   
    
    free((void*)cells); 
    free((void*)csv); 
   } 
    
    
    
   
    
    
 
   break; 
 } 
 return 0; 
} 
 
 
 
 
//------------------------------------------------------------------------------ 
// Select result file 
// 
int CVICALLBACK btn_load (int panel, int control, int event, 
        void *callbackData, int eventData1, int eventData2) 
{ 
 switch (event) 
 { 
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  case EVENT_COMMIT: 
    
   // open result file 
   char path[MAX_PATH]; 
   if(FileSelectPopup(resfld,"*.info","*.info","Select result 
file",VAL_LOAD_BUTTON,0,0,1,1,path)  
     == VAL_EXISTING_FILE_SELECTED); 
   { 
     
    // extract folder path 
    char *p = strrchr(path, '\\'); 
       if(p) *p = '\0'; 
     
    // remember last result folder 
    strcpy(resfld,path); 
     
    // write file path to the box 
    SetCtrlVal(panel,PANEL_PATH_RES,path); 
   } 
 
   break; 
 } 
 return 0; 
} 
 
 
//------------------------------------------------------------------------------ 
// processing configuration panel 
// 
int CVICALLBACK btn_proc_cfg (int panel, int control, int event, 
         void *callbackData, int eventData1, int 
eventData2) 
{ 
 switch (event) 
 { 
  case EVENT_COMMIT: 
    
   int cfg_panel = LoadPanel(0,"qwtb_alg_select.uir",PROCPANEL);  
  
   DisplayPanel(cfg_panel); 
    
   break; 
 } 
 return 0; 
} 
 
 
 
//------------------------------------------------------------------------------ 
// fake generation of some measurement data 
int CVICALLBACK btn_fake_proc (int panel, int control, int event, 
          void *callbackData, int eventData1, int 
eventData2) 
{ 
 switch (event) 
 { 
  case EVENT_COMMIT: 
    
   // open folder 
   char path[MAX_PATH]; 
   if(DirSelectPopup(resfld,"Select destination for fake measurement",1,1,path)  
     == VAL_DIRECTORY_SELECTED); 
   { 
     
     
    // crate some fake sample data 
    float smpl_c1[1000]; 
    float smpl_c2[1000]; 
    float smpl_c3[1000]; 
    for(int i = 0;i < 1000;i++) 
    { 
     smpl_c1[i] = (float)(i%100); 
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     smpl_c2[i] = (float)(i%150); 
     smpl_c3[i] = (float)(i%75); 
    } 
    
 
    // create record info structure 
    TTWMssnInf info; 
    memset((void*)&info, 0, sizeof(info)); // always clear it before 
filling new stuff!!! 
    
    // now fill in the basic sampling informations 
    info.N = 1000; // samples count 
    info.fs = 100000; // sampling rate 
    info.chn_count = 3; // digitizer channels count (not transducers!) 
    info.chn_data_type = TWMMATFMT_SGL; // sample data in real32 format 
    
    // -- now build list of digitizre channel setups for up to TWMMAXTR = 
6 channels 
    strncpy(info.chn_idns[0],"channel 1",TWMMAXSTR); // create name of 
dig. channel 1 
    info.chn_gains[0] = 1.0001; // gain factor of channel 1 
    info.chn_offs[0] = 0.0003; // offset of channel 1 
    info.chn_rng[0] = 10.0; // nominal range of channel 1 
    info.time_stamps[0] = 1.2345; // relative timestamp of channel 1 (may 
be zero) 
    info.chn_data[0] = smpl_c1; // sample data pointer for channel 1 
    
    strncpy(info.chn_idns[1],"channel 2",TWMMAXSTR); // create name of 
dig. channel 2 
    info.chn_gains[1] = 1.0002; // gain factor of channel 2 
    info.chn_offs[1] = 0.0004; // offset of channel 2 
    info.chn_rng[1] = 10.0; // nominal range of channel 2 
    info.time_stamps[1] = 1.2346; // relative timestamp of channel 2 (may 
be zero) 
    info.chn_data[1] = smpl_c2; // sample data pointer for channel 2 
    
    strncpy(info.chn_idns[2],"channel 3",TWMMAXSTR); // create name of 
dig. channel 3 
    info.chn_gains[2] = 1.0003; // gain factor of channel 3 
    info.chn_offs[2] = 0.0005; // offset of channel 3 
    info.chn_rng[2] = 10.0; // nominal range of channel 3 
    info.time_stamps[2] = 1.2347; // relative timestamp of channel 3 (may 
be zero) 
    info.chn_data[2] = smpl_c3; // sample data pointer for channel 3 
    
    // next channels ... 
    
    // path to selected digitizer correction file 
   
 strcpy(info.dig_corr,"c:\\TPQA\\corrections\\digitizer\\HP3458A\\HP3458_v1.info"); 
    
    
    // -- now define transducer and how their are connected to the 
digitizer channels: 
    // transducers count 
    info.tr_count = 2; 
    
    // first transducer definition 
   
 strcpy(info.tr_corr[0],"c:\\TPQA\\corrections\\transducers\\shunt_1A1\\shunt_1A1.info"); 
// path to correction file 
    info.tr_phase[0] = 1; // phase index of transducer (use the same index 
for U-I pair for power, but different indices if measuring multi phse U or multiphase I) 
    info.tr_map[0][0] = 2; // mapping to digitizer for differential 
connection [][2]-[][3], i.e. dig channels 2-3 
    info.tr_map[0][1] = 3; 
    // second transducer definition 
   
 strcpy(info.tr_corr[1],"c:\\TPQA\\corrections\\transducers\\rvd_230V1\\shunt_230V1.info"); 
    info.tr_phase[1] = 1; 
    info.tr_map[0][0] = 1; // mapping to digitizer: example of single-
ended connection to dig. channel 1 
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    // next transducer definitions... 
     
    // copy QWTB setup from config panel (not nice solution! may be 
uninitalized!) 
    info.qwtb = cfg_qwtb; 
     
    // generate measurement session 
    twm_write_session(path, &info); 
     
     
   } 
 
   break; 
 } 
 return 0; 
} 
 

• m_link.c source file: 
//============================================================================== 
// 
// Title:  matlab_module.c 
// Purpose:  A short description of the implementation. 
// 
// Created on: 2.3.2014 at 17:46:31 by . 
// Copyright: . All Rights Reserved. 
// 
//============================================================================== 
 
//============================================================================== 
// Include files 
 
#include <ansi_c.h> 
#include "mlink.h" 
#include "engine.h" 
#include "matrix.h" 
 
 
//============================================================================== 
// Constants 
 
//============================================================================== 
// Types 
 
//============================================================================== 
// Static global variables 
 
//============================================================================== 
// Static functions 
 
//============================================================================== 
// Global variables 
 
//============================================================================== 
// Global functions 
 
 
// --- initialize Matlab link lib --- 
int mlink_init(TMLink *lnk,int mode) 
{ 
  
 lnk->eng = NULL; 
 lnk->mode = mode; 
  
 // Octave not done yet 
 return(mode != ML_MATLAB/* && mode != ML_OCTAVE*/); 
} 
 
 
// --- start Matlab --- 
int mlink_start(TMLink *lnk) 
{ 
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 if(lnk->mode == ML_MATLAB) 
 { 
  // MATLAB mode: 
   
  // close link before 
  if(lnk->eng) 
   engClose(lnk->eng); 
    
   
  // try to open 
  lnk->eng = engOpen(NULL); 
   
  return(lnk->eng == NULL); 
 } 
 else 
 { 
  // OCTAVE mode: 
   
  return(1); 
 } 
} 
 
// --- close Matlab --- 
int mlink_close(TMLink *lnk,int close) 
{ 
 if(lnk->mode == ML_MATLAB) 
 { 
  // MATLAB mode: 
   
  if(lnk->eng) 
  { 
   // evaluate "exit" command? 
   if(close) 
   { 
    engEvalString(lnk->eng,"exit"); 
   } 
    
   // close engine 
   engClose(lnk->eng); 
   lnk->eng = NULL; 
  } 
   
  return(0); 
 } 
 else 
 { 
  // OCTAVE mode: 
   
  return(1); 
 }   
} 
 
 
// --- exec command Matlab --- 
int mlink_cmd(TMLink *lnk,char *cmd,char *ret,int retmax) 
{ 
 if(lnk->mode == ML_MATLAB) 
 { 
  // MATLAB mode: 
   
  // register answer buffer? 
  if(ret) 
   engOutputBuffer(lnk->eng,ret,retmax-1); 
  else 
   engOutputBuffer(lnk->eng,NULL,0); 
   
  // eval command 
  engEvalString(lnk->eng,cmd); 
   
  // unregister buffer 
  engOutputBuffer(lnk->eng,NULL,0); 
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  // detect error 
  if(ret) 
  { 
   char *err = strstr(ret,"??? "); 
   if(err) 
   { 
    strcpy(ret,err); 
    return(1); 
   } 
  } 
   
  return(0); 
 } 
 else 
 { 
  // OCTAVE mode: 
   
  return(1); 
 }   
} 
 
 
// --- Get string variable from engine --- 
int mlink_get_var_str(TMLink *lnk,char *var_name,char **data) 
{ 
  
 // no data yet 
 *data = NULL; 
  
 if(lnk->mode == ML_MATLAB) 
 { 
  // MATLAB mode: 
   
   
  // try to obtain variable 
  mxArray *arr = engGetVariable(lnk->eng,var_name); 
  if(!arr) 
  { 
   // not exist! 
   return(1); 
  } 
   
  if(!mxIsChar(arr)) 
  { 
   // not char array! 
   mxDestroyArray(arr); 
   return(1); 
  } 
   
  // get var dimensions 
  size_t cols = mxGetN(arr); 
  size_t rows = mxGetM(arr); 
   
  // allocate string buffer 
  *data = (char*)malloc((rows*cols + 1)*sizeof(char)); 
  **data = '\0'; 
   
  // try to read string data 
  mxGetString(arr,*data,cols*rows + 1); 
   
  // get rid of the array   
  mxDestroyArray(arr); 
   
   
  return(0); 
 } 
 else 
 { 
  // OCTAVE mode: 
   
  return(1); 
 }   
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} 
 
 
 
// --- Get real vector variable from engine --- 
int mlink_get_var_dbl_vec(TMLink *lnk,char *var_name,double **data,int *size) 
{ 
  
 // no data yet 
 *data = NULL; 
  
 if(lnk->mode == ML_MATLAB) 
 { 
  // MATLAB mode: 
   
   
  // try to obtain variable 
  mxArray *arr = engGetVariable(lnk->eng,var_name); 
  if(!arr) 
  { 
   // not exist! 
   return(1); 
  } 
   
  if(!mxIsNumeric(arr) || mxIsComplex(arr)) 
  { 
   // not numeric array! 
   mxDestroyArray(arr); 
   return(1); 
  } 
   
  // get dimensions 
  size_t dimn = mxGetNumberOfDimensions(arr); 
  mwSize *sz = mxGetDimensions(arr); 
   
  // total elements 
  size_t num = mxGetNumberOfElements(arr); 
   
  if(dimn>2 || (dimn == 2 && sz[0]>1 && sz[1]>1)) 
  { 
   // not 1D 
   mxDestroyArray(arr); 
   return(1); 
  } 
   
  // array data pointer 
  void *dptr = mxGetData(arr); 
   
  // allocate string buffer 
  *data = (double*)malloc(num*sizeof(double)); 
   
  if(mxIsDouble(arr)) 
  { 
   // --- double array 
    
   // copy array 
   memcpy((void*)*data,dptr,num*sizeof(double)); 
    
   // total elements 
   *size = (int)num; 
    
  } 
  else if(mxIsInt32(arr)) 
  { 
   // --- int32 array - cast to double and no bitching... 
    
   int *iptr = (int*)dptr; 
   for(int k = 0;k < num;k++) 
    (*data)[k] = (double)*iptr++; 
       
   // total elements 
   *size = (int)num;       
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  } 
  else 
  { 
   // --- not supported 
    
   free((void*)*data); 
   *data = NULL; 
   *size = 0; 
    
   mxDestroyArray(arr); 
   return(1); 
    
  } 
   
  // get rid of the array   
  mxDestroyArray(arr); 
   
   
  return(0); 
 } 
 else 
 { 
  // OCTAVE mode: 
   
  return(1); 
 }   
} 
 
 
// --- Get int32 vector variable from engine --- 
int mlink_get_var_int_vec(TMLink *lnk,char *var_name,int **data,int *size) 
{ 
  
 // no data yet 
 *data = NULL; 
  
 if(lnk->mode == ML_MATLAB) 
 { 
  // MATLAB mode: 
   
   
  // try to obtain variable 
  mxArray *arr = engGetVariable(lnk->eng,var_name); 
  if(!arr) 
  { 
   // not exist! 
   return(1); 
  } 
   
  if(!mxIsNumeric(arr) || mxIsComplex(arr)) 
  { 
   // not numeric array! 
   mxDestroyArray(arr); 
   return(1); 
  } 
   
  // get dimensions 
  size_t dimn = mxGetNumberOfDimensions(arr); 
  mwSize *sz = mxGetDimensions(arr); 
   
  // total elements 
  size_t num = mxGetNumberOfElements(arr); 
   
  if(dimn>2 || (dimn == 2 && sz[0]>1 && sz[1]>1)) 
  { 
   // not 1D 
   mxDestroyArray(arr); 
   return(1); 
  } 
   
  // array data pointer 
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  void *dptr = mxGetData(arr); 
   
  // allocate string buffer 
  *data = (int*)malloc(num*sizeof(int)); 
   
  if(mxIsDouble(arr)) 
  { 
   // --- double array - cast to int32 
    
   double *ptr = (double*)dptr; 
   for(int k = 0;k < num;k++) 
    (*data)[k] = (int)*ptr++; 
    
   // total elements 
   *size = (int)num; 
    
  } 
  else if(mxIsInt32(arr)) 
  { 
   // --- int32 array 
    
   // copy array 
   memcpy((void*)*data,dptr,num*sizeof(int)); 
    
   // total elements 
   *size = (int)num;       
    
  } 
  else 
  { 
   // --- not supported 
    
   free((void*)*data); 
   *data = NULL; 
   *size = 0; 
    
   mxDestroyArray(arr); 
   return(1); 
    
  } 
   
  // get rid of the array   
  mxDestroyArray(arr); 
   
   
  return(0); 
 } 
 else 
 { 
  // OCTAVE mode: 
   
  return(1); 
 }   
} 
 

• m_link.h header file: 
 
//============================================================================== 
// 
// Title:  matlab_module.h 
// Purpose:  A short description of the interface. 
// 
// Created on: 2.3.2014 at 17:46:31 by . 
// Copyright: . All Rights Reserved. 
// 
//============================================================================== 
 
#ifndef __mlink_H__ 
#define __mlink_H__ 
 
#ifdef __cplusplus 
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    extern "C" { 
#endif 
 
//============================================================================== 
// Include files 
 
#include "cvidef.h" 
#include "engine.h" 
 
//============================================================================== 
// Constants 
   
#define ML_MATLAB 0 
#define ML_OCTAVE 1 
 
//============================================================================== 
// Types 
   
typedef struct{ 
 int mode; 
 Engine *eng; 
}TMLink; 
 
//============================================================================== 
// External variables 
 
 
//============================================================================== 
// Global functions 
 
int mlink_init(TMLink *lnk,int mode); 
int mlink_start(TMLink *lnk); 
int mlink_close(TMLink *lnk,int close); 
int mlink_cmd(TMLink *lnk,char *cmd,char *ret,int retmax); 
 
int mlink_get_var_str(TMLink *lnk,char *var_name,char **data); 
int mlink_get_var_dbl_vec(TMLink *lnk,char *var_name,double **data,int *size); 
int mlink_get_var_int_vec(TMLink *lnk,char *var_name,int **data,int *size); 
 
 
#ifdef __cplusplus 
    } 
#endif 
 
#endif  /* ndef __matlab_module_H__ */ 
 
Twm_matlab.c source file: 
//============================================================================== 
// 
// Title:  twm_matlab.c 
// Purpose:  A short description of the implementation. 
// 
// Created on: 2.3.2014 at 20:14:31 by . 
// Copyright: . All Rights Reserved. 
// 
//============================================================================== 
 
//============================================================================== 
// Include files 
 
#include <ansi_c.h> 
#include <windows.h> 
#include <utility.h> 
#include "twm_matlab.h" 
#include "mlink.h" 
 
 
//============================================================================== 
// Constants 
 
#define MAXERR 4096 
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//============================================================================== 
// Types 
 
//============================================================================== 
// Static global variables 
 
//============================================================================== 
// Static functions 
 
//============================================================================== 
// Global variables 
 
//============================================================================== 
// Global functions 
 
 
//------------------------------------------------------------------------------ 
// Initialize TWM link - set TWM functions path 
// 
//  lnk - Matlab link session 
//  path - TWM functions root folder 
//  errstr - allocates and returns error string, if no error, returns NULL 
// 
// NOTE: Do not forget to free the allocated buffers! 
// 
int twm_init(TMLink *lnk,char **errstr,char *path) 
{ 
 char cmd[MAX_PATH+100]; 
 int err; 
  
 // allocate error string 
 char *errbuf = (char*)malloc(MAXERR*sizeof(char)); 
 if(errstr) 
  *errstr = errbuf; 
  
 // add TWM root path 
 sprintf(cmd,"addpath('%s');",path); 
 err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
 // add TWM info path 
 sprintf(cmd,"addpath('%s\\info');",path); 
 err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
 // add TWM info path 
 sprintf(cmd,"addpath('%s\\qwtb');",path); 
 err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
 // no errors, loose error buffer 
 free((void*)errbuf); 
 if(errstr) 
  *errstr = NULL; 
  
 return(0); 
} 
 
       
//------------------------------------------------------------------------------ 
// TWM: load result(s) info(s) 
// 
//  lnk - Matlab link session 
//  errstr - allocates and returns error string, if no error, returns NULL 
//  path - measurement root folder 
//  alg_id - string id of QWTB algorithms ("": last calculated) 
//  res_exist - returns non-zero if selection is valid 
//  res_files - allocates and returns pointer to list of result files, 
//              csv string separated by tabs 
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//  alg_list - allocates and returns pointer to list of calc. algorithms 
//             csv string separated by tabs 
//  chn_list - allocates and returns pointer to list of possible ref. channels 
//             csv string separated by tabs 
// 
// NOTE: Do not forget to free the allocated buffers! 
// 
int twm_get_result_info(TMLink *lnk,char **errstr,char *path,char *alg_id, 
      int *res_exist,char **res_files, char **alg_list, char 
**chn_list) 
{ 
 char cmd[MAX_PATH+200]; 
   
 // build command 
 sprintf(cmd,"[res_files, res_exist, alg_list, chn_list] = 
qwtb_get_results_info('%s','%s');",path,alg_id); 
  
  
 // allocate error string 
 char *errbuf = (char*)malloc(MAXERR*sizeof(char)); 
 if(errstr) 
  *errstr = errbuf; 
  
 // exec command 
 int err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
  
 // read result exist flag 
 if(res_exist) 
 { 
  *res_exist = 0; 
   
  int *buf = NULL; 
  int size; 
  mlink_get_var_int_vec(lnk,"res_exist",&buf,&size); 
  if(buf && size) 
  { 
   *res_exist = buf[0]; 
   free((void*)buf); 
  } 
 } 
  
 // read result files list 
 if(res_files) 
 { 
  *res_files = NULL; 
  mlink_get_var_str(lnk,"res_files",res_files); 
 } 
  
 // read calculated algorithms files list 
 if(alg_list) 
 { 
  *alg_list = NULL; 
  mlink_get_var_str(lnk,"alg_list",alg_list); 
 } 
  
 // read channels list 
 if(chn_list) 
 { 
  *chn_list = NULL; 
  mlink_get_var_str(lnk,"chn_list",chn_list); 
 } 
  
 // no errors, loose error buffer 
 free((void*)errbuf); 
 if(errstr) 
  *errstr = NULL; 
  
 return(0); 
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} 
 
 
 
//------------------------------------------------------------------------------ 
// TWM: load result data 
// 
//  lnk - Matlab link session 
//  path - measurement root folder 
//  res_id - ID of the result file to select (-1: last, 0: average, >0: IDs of files) 
//  alg_id - string id of QWTB algorithms ("": last calculated) 
//  cfg - display setup structure 
//    cfg.max_dim - max shown dim (0: scalar, 1: vectors, 2: matrices) 
//    cfg.max_array - max vector size to be shown 
//    cfg.group_mode - grouping mode (0: quantities, 1: channels) 
//    cfg.unc_mode - uncertainty display mode (0: none, 1: val±unc, 2: val;unc) 
//    cfg.phi_mode - phase display mode (0: ±pi [rad], 1: 0-2pi [rad], 2: ±180 [deg], 3: 0-360 
[deg]) 
//    cfg.phi_ref_chn - reference channel is (0: none, >0: channel ids) 
//  csv - allocates and returns pointer to list 2D CSV table of results, 
//        tabs separator 
// 
// NOTE: Do not forget to free the allocated buffers! 
// 
int twm_get_result_data(TMLink *lnk,char **errstr,char *path,int res_id,char *alg_id,TResCfg 
*cfg, 
        char **csv) 
{ 
 char cmd[MAX_PATH+1024]; 
  
 // build command 
 sprintf(cmd,"cfg = struct();\n" 
    "cfg.max_dim = %d;\n" 
    "cfg.max_array = %d;\n" 
    "cfg.group_mode = %d;\n" 
    "cfg.unc_mode = %d;\n" 
    "cfg.phi_mode = %d;\n" 
    "cfg.phi_ref_chn = %d;\n" 
    "[csv, desc, var_names, chn_index] = qwtb_get_results('%s', %d, '%s', 
cfg);", 
    cfg->max_dim,cfg->max_array,cfg->group_mode,cfg->unc_mode,cfg-
>phi_mode,cfg->phi_ref_chn, 
    path,res_id,alg_id); 
  
  
 // allocate error string 
 char *errbuf = (char*)malloc(MAXERR*sizeof(char)); 
 if(errstr) 
  *errstr = errbuf; 
  
 // exec command 
 int err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
 // read result files list 
 if(csv) 
 { 
  *csv = NULL; 
  mlink_get_var_str(lnk,"csv",csv); 
 } 
  
 // no errors, loose error buffer 
 free((void*)errbuf); 
 if(errstr) 
  *errstr = NULL; 
  
 return(0); 
} 
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//------------------------------------------------------------------------------ 
// TWM: call algorithms passing through qwtb.exec.algorithm.m of matlab 
// 
// TWM: Executes QWTB algorithm based on the setup from meas. session 
// inputs: 
//  **errstr - error string, autoallocates data if error 
//  *path - path to measurement file session.info 
//  *calc_unc - override uncertainty calculation mode (default "") 
//  is_last_avg - is last record from repeated group? 
//  avg_id - record id  
//  group_id - group id 
// 
// NOTE: Do not forget to free the allocated buffers!         
// 
int twm_exec_algorithm(TMLink *lnk,char **errstr,char *path, char *calc_unc, int is_last_avg, 
int avg_id, int group_id) 
{ 
 char cmd[MAX_PATH+1024]; 
  
   
 // build command 
 sprintf(cmd, "qwtb_exec_algorithm('%s', '%s', %d, %d, %d);", path, calc_unc, is_last_avg, 
avg_id, group_id); 
  
 // allocate error string 
 char *errbuf = (char*)malloc(MAXERR*sizeof(char)); 
 if(errstr) 
  *errstr = errbuf; 
  
 // exec command 
 int err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
 // no errors, loose error buffer 
 free((void*)errbuf); 
 if(errstr) 
  *errstr = NULL; 
  
  
 return(0); 
} 
 
 
 
//------------------------------------------------------------------------------ 
// TWM: get list of algorithms 
// 
// inputs: 
//  **errstr - error string, autoallocates data if error 
//  **alg_ids - list of algorithms IDs (NULL if not needed) 
//  **alg_names - list of algorithm names (NULL if not needed) 
// 
// NOTE: Do not forget to free the allocated buffers!         
// 
int twm_get_alg_list(TMLink *lnk,char **errstr,char **alg_ids,char **alg_names) 
{ 
 char cmd[1024]; 
   
 // build command 
 sprintf(cmd,"[ids, names] = qwtb_load_algorithms('qwtb_list.info');"); 
 
 // allocate error string 
 char *errbuf = (char*)malloc(MAXERR*sizeof(char)); 
 if(errstr) 
  *errstr = errbuf; 
  
 // exec command 
 int err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
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 // load algorithm ids: 
 if(alg_ids) 
 { 
  *alg_ids = NULL; 
  mlink_get_var_str(lnk,"ids",alg_ids); 
 } 
  
 // load algorithm names: 
 if(alg_names) 
 { 
  *alg_ids = NULL; 
  mlink_get_var_str(lnk,"names",alg_names); 
 } 
  
 // no errors, loose error buffer 
 free((void*)errbuf); 
 if(errstr) 
  *errstr = NULL; 
  
 return(0);   
} 
 
//------------------------------------------------------------------------------ 
// TWM: get algorithm info 
// 
// inputs: 
//  *alg_id - algorithm ID string 
//  **errstr - error string, autoallocates data if error 
//  **par_tab - 2D table of parameters to be displayed in Table (auto alloc, NULL if not needed) 
//  **par_list - list of names of parameters (auto alloc, NULL if not needed) 
//  *has_ui - algorithm has U and I inputs  (auto alloc, NULL if not needed) 
//  *is_diff - algorithm suports differential mode (auto alloc, NULL if not needed) 
//  *is_multi - algorithm can process more records at once (auto alloc, NULL if not needed) 
//  *unc_guf - algorithm can estimate uncertainty (auto alloc, NULL if not needed) 
//  *unc_mcm - algorithm can calculate uncertainty by Monte Carlo (auto alloc, NULL if not 
needed) 
//   
// 
// NOTE: Do not forget to free the allocated buffers!         
// 
int twm_get_alg_info(TMLink *lnk,char *alg_id,char **errstr,char **par_tab,char **par_list, 
      int *has_ui,int *is_diff,int *is_multi,int *unc_guf,int 
*unc_mcm) 
{ 
 char cmd[1024]; 
   
 // build command 
 //[alginfo,ptab,input_params,is_multi_inp,is_diff,has_ui,unc_guf,unc_mcm] = 
qwtb_load_algorithm(alg_id) 
    
 sprintf(cmd,"[alginfo,ptab,par,is_multi_inp,is_diff,has_ui,unc_guf,unc_mcm] = 
qwtb_load_algorithm('%s');\n" 
       "flag = int32([has_ui,is_diff,is_multi_inp,unc_guf,unc_mcm]);",alg_id); 
 
 // allocate error string 
 char *errbuf = (char*)malloc(MAXERR*sizeof(char)); 
 if(errstr) 
  *errstr = errbuf; 
  
 // exec command 
 int err = mlink_cmd(lnk,cmd,errbuf,MAXERR); 
 if(err) 
  return(1); 
  
 // get flags 
 int *flag; 
 int size; 
 mlink_get_var_int_vec(lnk,"flag",&flag,&size); 
 if(has_ui) 
  *has_ui = flag[0]; 
 if(is_diff) 
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  *is_diff = flag[1]; 
 if(is_multi) 
  *is_multi = flag[2]; 
 if(unc_guf) 
  *unc_guf = flag[3]; 
 if(unc_mcm) 
  *unc_mcm = flag[4]; 
 free((void*)flag); 
  
  
 // load parameters table: 
 if(par_tab) 
 { 
  *par_tab = NULL; 
  mlink_get_var_str(lnk,"ptab",par_tab); 
 } 
  
 // load parameter names 
 if(par_list) 
 { 
  *par_list = NULL; 
  mlink_get_var_str(lnk,"par",par_list); 
 } 
  
 // no errors, loose error buffer 
 free((void*)errbuf); 
 if(errstr) 
  *errstr = NULL; 
  
 return(0);   
} 
 
 
 
 
//------------------------------------------------------------------------------ 
// TWM: write record session in TWM format   
// 
// inputs: 
//  *meas_path - root folder of measurement session 
//  *inf - session structure 
// 
int twm_write_session(char *meas_path, TTWMssnInf *inf) 
{ 
  
  
 // build sessio.info path 
 char tsi[TWMMAXSTR]; 
 merge_path(tsi, meas_path, TWMSSNINFO); 
  
 // create folder chain 
 create_fld_chain(tsi,0); 
  
 // create measurement file 
 FILE *fw = fopen(tsi, "wt"); 
  
  
 fprintf(fw,"====== COMMON SETUP ======\n\n"); 
  
 info_write_text_column(fw, "channel descriptors", inf->chn_idns, inf->chn_count); 
 info_write_text_column(fw, "auxiliary HW descriptors", NULL, 0); 
 info_write_int(fw, "channels count", inf->chn_count); 
 info_write_string(fw, "sample data format", "mat-v4"); 
 info_write_string(fw, "sample data variable name", "y"); 
 info_write_int(fw, "groups count", 1); 
 info_write_int(fw, "temperature available", 0); 
 info_write_int(fw, "temperature log available", 0); 
  
 fprintf(fw,"\n====== SETUP(S) FOR AVERAGE GROUPS ======\n\n"); 
 fprintf(fw,"#startsection:: measurement group 1\n\n"); 
  
 info_write_int(fw, "repetitions count", 1); 
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 info_write_int(fw, "samples count", inf->N); 
 info_write_int(fw, "bit resolution", 24); // to take from setup 
 info_write_dbl(fw, "sampling rate [Sa/s]", inf->fs); 
 info_write_dbl_row(fw, "voltage ranges [V]", inf->chn_rng, inf->chn_count); 
  
 if(inf->aperture) 
  info_write_dbl_row(fw, "aperture [s]", &inf->aperture, 1); 
  
 // build record path 
 char rec_name[TWMMAXTR][TWMMAXSTR]; 
 strcpy((char*)rec_name, "RAW\\G0001-A0001.mat");  
 info_write_text_column(fw, "record sample data files", rec_name, 1); 
  
 // MAT file full path 
 char rec_pth[TWMMAXSTR];  
 merge_path(rec_pth, meas_path, (char*)rec_name); 
  
  
 info_write_int_column(fw, "record samples counts", &inf->N, 1); 
  
 double Ts = 1/inf->fs; 
 info_write_dbl_column(fw, "record time increments [s]", &Ts, 1); 
  
 info_write_dbl_row(fw, "record sample data gains [V]", inf->chn_gains, inf->chn_count); 
 info_write_dbl_row(fw, "record sample data offsets [V]", inf->chn_offs, inf->chn_count); 
 info_write_dbl_row(fw, "record relative timestamps [s]", inf->time_stamps, inf-
>chn_count); 
  
 fprintf(fw,"\n#endsection:: measurement group 1\n\n"); 
  
  
  
 fprintf(fw, "====== MEASUREMENT SETUP CONFIGURATION ======\n\n"); 
 fprintf(fw, "#startsection:: measurement setup configuration\n\n"); 
  
 info_write_string(fw, "digitizer corrections path", inf->dig_corr); 
  
 info_write_text_column(fw, "transducer paths", inf->tr_corr, inf->tr_count); 
  
 info_write_int_column(fw, "channel phase indexes", inf->tr_phase, inf->tr_count); 
  
 char str[TWMMAXTR][TWMMAXSTR]; 
 for(int i = 0;i < inf->tr_count;i++) 
 { 
  if(inf->tr_map[i][1]) 
   sprintf(str[i],"%d;%d",inf->tr_map[i][0],inf->tr_map[i][1]); /* differential 
channel */ 
  else 
   sprintf(str[i],"%d",inf->tr_map[i][0]); /* single-ended channel */ 
 } 
 info_write_text_column(fw, "transducer to digitizer channels mapping", str, inf-
>tr_count); 
  
 fprintf(fw, "\n#endsection:: measurement setup configuration\n\n"); 
  
 fclose(fw); 
  
  
 // write MAT file with sample data 
 twm_write_mat(rec_pth,"y",inf->chn_data_type,inf->chn_count,inf->N,(void**)inf->chn_data); 
  
 // write processing info 
 twm_write_proc_info(meas_path, &inf->qwtb); 
  
 return(0); 
} 
 
 
 
//------------------------------------------------------------------------------ 
// TWM: write processing info 
// Note: NOT CALLED DIRECTLY - CALLED FROM twm_write_session() 
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// 
// inputs: 
//  *meas_path - root folder of measurement session 
//  *qwtb - QWTB processing setup structure 
// 
int twm_write_proc_info(char *meas_path, TTWMqwtbCfg *qwtb) 
{ 
  
 // build sessio.info path 
 char qwin[MAX_PATH]; 
 merge_path(qwin, meas_path, TWMQWTBINFO); 
  
 // create folder chain 
 create_fld_chain(qwin,0); 
  
 // create qwtb.info file 
 FILE *fw = fopen(qwin, "wt"); 
  
 fprintf(fw,"====== QWTB processing setup ======\n\n"); 
 
 fprintf(fw,"#startsection:: QWTB processing setup\n\n"); 
  
 info_write_string(fw, "algorithm id", qwtb->alg_id); 
 info_write_int(fw, "calculate whole average at once", qwtb->all_rec); 
 info_write_string(fw, "uncertainty mode", qwtb->unc_mode); 
 info_write_dbl(fw, "coverage interval [%]", qwtb->loc); 
 info_write_int(fw, "monte carlo cycles", qwtb->mcm_cyc); 
  
 info_write_text_column(fw, "list of parameter names", qwtb->par_names, qwtb->par_count); 
 for(int k = 0;k < qwtb->par_count;k++) 
  info_write_text_column(fw, qwtb->par_names[k], &qwtb->par_data[k], 1); 
  
  
 fprintf(fw,"\n#endsection:: QWTB processing setup\n"); 
  
 fclose(fw); 
  
 return(0); 
} 
 
 
 
 
//------------------------------------------------------------------------------ 
// TWM: write sample data to MAT file 
// 
// inputs: 
//  *path - MAT file path 
//  *name - variable name to be stored 
//  fmt - data element format code (TWMMATFMT_???: SGL, DBL, I32, I16) 
//  chn_count - number of channels to be stored 
//  smpl_count - number of samples to be stored 
//  **data - 2D array of samples data (array of pointers to arrays belonging each channel) 
// 
int twm_write_mat(char *path,char *name,int fmt,int chn_count,int smpl_count,void **data) 
{ 
  
 // create folder chain 
 create_fld_chain(path,0); 
 
 // create binary file for writting 
 FILE *fw = fopen(path,"wb"); 
  
 // store data type flag 
 fwrite((void*)&fmt,4,1,fw); 
  
 // write channels count (rows) 
 fwrite((void*)&chn_count,4,1,fw); 
  
 // write samples count (columns) 
 fwrite((void*)&smpl_count,4,1,fw); 
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 // imaginary flag (always 0) 
 int imag = 0; 
 fwrite((void*)&imag,4,1,fw); 
  
 // write variable name length (including '\0' terminator) 
 int len = (int)strlen(name) + 1; 
 fwrite((void*)&len,4,1,fw); 
  
 // write the variable name + '\0' terminator 
 fwrite((void*)name,len,1,fw); 
  
 // now we can write data, per rows, so the sample data are written horizontally! 
 switch(fmt) 
 { 
  case TWMMATFMT_DBL: 
    
   double **dbl = (double**)data; 
    
   for(int s = 0;s < smpl_count;s++) 
    for(int c = 0;c < chn_count;c++) 
     fwrite((void*)&dbl[c][s],sizeof(double),1,fw); 
    
   break; 
   
  case TWMMATFMT_SGL: 
    
   float **sgl = (float**)data; 
    
   for(int s = 0;s < smpl_count;s++) 
    for(int c = 0;c < chn_count;c++) 
     fwrite((void*)&sgl[c][s],sizeof(float),1,fw); 
    
   break; 
   
  case TWMMATFMT_I32: 
    
   int **i32 = (int**)data; 
    
   for(int s = 0;s < smpl_count;s++) 
    for(int c = 0;c < chn_count;c++) 
     fwrite((void*)&i32[c][s],4,1,fw); 
    
   break; 
   
  case TWMMATFMT_I16: 
    
   short **i16 = (short**)data; 
    
   for(int s = 0;s < smpl_count;s++) 
    for(int c = 0;c < chn_count;c++) 
     fwrite((void*)&i16[c][s],2,1,fw); 
    
   break; 
   
  default: 
   return(1); 
 
 } 
  
 // close file 
 fclose(fw); 
  
 return(0); 
} 
 
 

• Sample sessions.info file: 
 
====== COMMON SETUP ====== 
 
#startmatrix:: channel descriptors 
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        HP3458A, channel 1 
        HP3458A, channel 2 
#endmatrix:: channel descriptors 
#startmatrix:: auxiliary HW descriptors 
         
#endmatrix:: auxiliary HW descriptors 
channels count:: 2 
sample data format:: mat-v4 
sample data variable name:: y 
groups count:: 1 
temperature available:: 0 
temperature log available:: 0 
 
 
====== SETUP(S) FOR AVERAGE GROUPS ====== 
 
#startsection:: measurement group 1 
        repetitions count:: 5 
        samples count:: 100000 
        bit resolution:: 28 
        sampling rate [Sa/s]:: 100000.000000000 
        #startmatrix:: voltage ranges [V] 
                1.00; 1.00 
        #endmatrix:: voltage ranges [V] 
         
        trigger mode:: Immediate 
        #startmatrix:: aperture [s] 
                1.4000E-6 
                1.4000E-6 
                1.4000E-6 
                1.4000E-6 
                1.4000E-6 
        #endmatrix:: aperture [s] 
         
        #startmatrix:: sampling mode 
                DCV 
        #endmatrix:: sampling mode 
         
        #startmatrix:: synchronization mode 
                MASTER-SLAVE, MASTER clocked by TIMER 
        #endmatrix:: synchronization mode 
         
        #startmatrix:: record sample data files 
                RAW\G0001-A0001.mat 
                RAW\G0001-A0002.mat 
                RAW\G0001-A0003.mat 
                RAW\G0001-A0004.mat 
                RAW\G0001-A0005.mat 
        #endmatrix:: record sample data files 
         
        #startmatrix:: record samples counts 
                100000 
                100000 
                100000 
                100000 
                100000 
        #endmatrix:: record samples counts 
         
        #startmatrix:: record time increments [s] 
                1.00000000000000E-5 
                1.00000000000000E-5 
                1.00000000000000E-5 
                1.00000000000000E-5 
                1.00000000000000E-5 
        #endmatrix:: record time increments [s] 
         
        #startmatrix:: record sample data gains [V] 
                4.2404940E-5; 4.2844103E-5 
                4.2404940E-5; 4.2844103E-5 
                4.2404940E-5; 4.2844103E-5 
                4.2404940E-5; 4.2844103E-5 
                4.2404940E-5; 4.2844103E-5 
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        #endmatrix:: record sample data gains [V] 
         
        #startmatrix:: record sample data offsets [V] 
                0.0000000; 0.0000000 
                0.0000000; 0.0000000 
                0.0000000; 0.0000000 
                0.0000000; 0.0000000 
                0.0000000; 0.0000000 
        #endmatrix:: record sample data offsets [V] 
         
        #startmatrix:: record relative timestamps [s] 
                0.00000000000000000; 0.00000000000000000 
                0.00000000000000000; 0.00000000000000000 
                0.00000000000000000; 0.00000000000000000 
                0.00000000000000000; 0.00000000000000000 
                0.00000000000000000; 0.00000000000000000 
        #endmatrix:: record relative timestamps [s] 
         
        #startmatrix:: record absolute timestamps 
                2018-05-02T17:34:12.13001632690429687497 
                2018-05-02T16:34:13.66410398483276367185 
                2018-05-02T15:34:15.16519021987915039060 
                2018-05-02T14:34:16.67727661132812499997 
                2018-05-02T13:34:18.18936300277709960935 
        #endmatrix:: record absolute timestamps 
         
#endsection:: measurement group 1 
 
 
====== MEASUREMENT SETUP CONFIGURATION ====== 
 
#startsection:: measurement setup configuration 
         
        // Path to the digitizer correction file 
        digitizer corrections path:: DIGITIZER\HP3458A_2x.info 
         
        // Paths to the transducer correction files, one row per channel 
        #startmatrix:: transducer paths 
                TRANSDUCERS\T01\dummy.info 
                TRANSDUCERS\T02\dummy.info 
        #endmatrix:: transducer paths 
         
        // Phase index to which each channel/transducer belongs (1, 2, 3, ...), one row per 
channel 
        #startmatrix:: channel phase indexes 
                1 
                1 
        #endmatrix:: channel phase indexes 
         
        // Mapping of the digitizer channels to the transducers: 
        // one row per transducer, each row contain index(es) of the attached channels (1 or 
1;2, etc.) 
        // for single-ended connection: one index per row 
        // for differential connection: two indexes, first high-side, then low-side 
        #startmatrix:: transducer to digitizer channels mapping 
                1 
                2 
        #endmatrix:: transducer to digitizer channels mapping 
         
#endsection:: measurement setup configuration 
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Appendix #5  

 
 

A2.3.1 – Standardized model for the exchange of the input and 
output data between the control and data acquisition module 

and the data processing module 



A2.3.1 – Standardized model of data exchange 
V1.0, 7.8.2018, Stanislav Mašláň, CMI 

Following text describe formats and structure of the files used for (i) data exchange between 
LabVIEW and Octave/Matlab and (ii) data formats of corrections (iii) data formats of the transfer of 
data between GUI and processing module (Matlab/Octave).  

Table of contents 
TODO 

 

Abbreviations: 

LV – LabVEIW 
CVI – LabWindows CVI 
EOS – End of string 
DWORD – unsigned 32bit variable 
INT16 – signed 16bit integer 
INT32 – signed 32bit integer 
Float32 – 32-bit real number 
BYTE – unsigned 8bit variable 
HDD – Hard drive 
TWM – The LV program developed in scope of TracePQM project 
GUI – Graphical User Interface 
HW – HardWare 
QWTB – Q-Wave toolbox 
INFO – Brain-dead structured, human readable text file 
Matlab – Matlab SW (Mathworks)? 
GNU Octave – Open source equivalent of Matlab that happens to be almost 100% comatible 
m-script – Matlab/Octave’s function file 
 

1.1 References 
[1] TWM tool, url: https://github.com/smaslan/TWM 
[2] INFO-STRINGS, url: https://github.com/KaeroDot/info-strings 
[3] QWTB toolbox, url: https://qwtb.github.io/qwtb/ 
[4] A232 Algorithms exchange format, url: 

https://github.com/smaslan/TWM/tree/master/doc/A232 Algorithm Exchange Format.docx 
[5] A231 Correction Files Reference Manual, url: 

https://github.com/smaslan/TWM/tree/master/doc/A231 Correction Files Reference 
Manual.docx 
 

1.2 Date Flow and Data Interchange Structure 
The TWM is organized according to the diagram below. The whole TWM application is split into 
several separate processes that run in parallel. Main process is ‘GUI Process’. It contains 
configuration panels of the HW, configuration panels of the measurement, configurations of the 
result display and selector of the correction files (not loading, just selection). 

https://github.com/smaslan/TWM
https://github.com/KaeroDot/info-strings
https://qwtb.github.io/qwtb/
https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithm%20Exchange%20Format.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx


When the user wants to initiate a new measurement the ‘GUI process’ will create ‘Measurement 
Process’ which will do following: 

(i) Loads correction files 
(ii) Loads selected QWTB algorithm’s configuration from QWTB alg. database file 
(iii) Builds measurement sequence 
(iv) Initiates acquisition 
(v) Stores acquired data and full copy of the Corrections and QWTB alg. setup 
(vi) When requested by user, initiates calculation of the stored waveforms 
(vii) Signalizes ‘new result available’ to the GUI process and 
(viii) Repeats from (iv) until all acquisitions are done. 

When ‘GUI Process’ receives notification of the new result or user requires refresh of the results 
view, it will look into the current measurement folder and will read, format and display the results. 

Key feature of the proposed system is the LV workload is minimized to acquisition of the data, 
storage of the measurement data and displaying of the results. However the actual work related to 
the processing the data, loading corrections, reading and formatting the results for displaying are 
done in Octave/Matlab! This way both LV and CVI implementation can share ALL processing and file 
handling m-scripts. Sharing of the data between the LV/CVI and Matlab/Octave is made via files that 
remains archived in the measurement folder (unique folder for each new measurement). Details on 
the selected file formats and files/folder hierarchy are shown in the following chapters. 

 

1.3 Storage of the measured data 
Main requirements for storage of the captured records are following: 

1) Must be easy to handle in LV, CVI, Octave and Matlab or plain C/C++. 
2) Must have human readable and editable header (text file). 
3) Must be memory-saving because of streaming modes from fast digitizers. 



After analyzing possibilities it was decided to use combination of two files. First, the raw binary data 
are stored in the Matlab MAT version 4 format. Second, the header will be stored as text file in INFO 
format. 

 

Organization of the files in the measurement folder is following: 

 

1.3.1.1 Raw Binary Data Format 
MAT-v4 file format is very primitive and easy to handle format having following file structure: 

Offset Item type Description 
0 DWORD ID if the variable data type. 
4 DWORD Rows count M. 
8 DWORD Columns count N. 
12 DWORD Is complex flag. 
16 DWORD Length Q of the name. 
20 [BYTE*Q] Name of the variable including ‘\0’ EOS. 
20+Q [M*N*item_size] Array of the items organized per columns 

[column_1, column_2, …, column_M]. 
… … next variable …  
  

The limitation of the format is the data cannot have more than 4 GSamples as the matrix dimensions 
are store in 32-bit variables (Matlab actually states only 100 MItems are allowed). However, the 
format may be in future replaced by plain binary if the limitation became important. Only difference 
will be save routine in LV/CVI and a few lines of a loader function in Matlab/GNU Octave. The 
concept of the measurement data is prepared on possibility of multiple formats. 

The sample data from all channels are merged and stored into the 2D matrix variable called ‘y’, one 
row per channel. Traditional order one column per channel is not possible due to internal structure 
of MAT format – during streaming of data to the file it is easy to add columns, however whole file 
have to be reordered to add rows. In order to minimize HDD usage and maximize the data 
throughput, the sample data are stored directly in the integer format generated by the digitizers. So 
far, only two formats are considered (i) INT32 and when possible in terms of resolution (ii) INT16. If 
the selected HW supports logging of the temperature, the MAT file will also contain two variables 
with temperatures. Two variables are related to the temperature: 

temp_sample – 1D array of the sample indices when the temperature was measured (float32) 

temp_data – 2D array of measured temperatures in float32 (rows: channels, columns: readings) 

Measurement folder: 
  session.info - measurement header 
  qwtb.info - processing setup header 
  RAW/*.mat - raw waveform records 
  results.info - calculated results header 
  RESULTS/*.info - results data headers 
  RESULTS/*.mat - results data (large objects)  
DIGITIZER/*.* - digitizer correction files 
  TRANSDUCERS/*.* - transducer’s correction files 
 

 



Note the ‘temp_sample’ values are indices of the sample where the temperature was measured, i.e. 
value 100 means hundredth sample, 1000 means thousandth sample, etc… The sampling rate for the 
temperature is set to 10 seconds so there is not unnecessarily lot of values. 

 

 

The file naming rules for the record data are show in the following table: 

 

1.3.1.2 Data header format 
Second file related to the raw records is human readable header. Many formats can be used here. 
However, as the file structure must support subsections in order to make it versatile enough. It was 
decided to use INFO format developed at CMI [2]. This is very simple ‘braindead’ text format which 
can be generated by any program or can be written manually and it is also very easy to read. Libraries 
are available for LV, Octave and Matlab and can be implemented even for C/C++. Each header of the 
measurement (= one measurement session) is structured into following levels: (i) Session, (ii) 
Repetition group, (iii) Record. The groups are intended for statistical processing. E.g.: the N records 
made within the group will be averaged and type A uncertainty will be calculated. Each group has 
different sampling setup which is intended for the future sequenced measurements, such as 
frequency dependence, level dependence, etc. 

Each session (i) contains one or more repetition groups (ii) defined by item ‘groups count’. The 
session (i) always contains setup of the HW, which is common for all groups (ii), such as HW 
identifiers, capabilities of HW, etc. Next, it contains ‘measurement group G’ sections (ii), where G is 
index of the group. Each group (ii) contains setup that is unique for each group, such as number of 
samples, sampling rate, etc. Finally, each group also contains information about particular records 
(iii) within the group.  

The example of the header of the record that contains one measurement group is shown in the 
following text: 

// ====== COMMON SETUP ====== 
// Unique identifiers of each channel: 
#startmatrix:: channel descriptors 
        HP3458A, sn. MY45053095 
        HP3458A, sn. MY45053104 
#endmatrix:: channel descriptors 
// unique identifiers of auxiliary HW (AWG, Counter, …): 
#startmatrix:: auxiliary HW descriptors 
         
#endmatrix:: auxiliary HW descriptors 
// number of virtual channel of the digitizer: 
channels count:: 2 
// file format of the sample data: 
sample data format:: mat-v4 
// name of the variable with the sample data: 
sample data variable name:: y 
// number of measurement groups: 
groups count:: 1 
// digitizer has temperature measurement capability?: 
temperature available:: 0 
// digitizer has temperature logging during sampling?: 

RAW records data (./RAW/): 
  G0001-A0001.mat - record for 1. average of 1. group 
  G0001-A0002.mat - record for 2. average of 1. group 
  G0002-A0001.mat - record for 1. average of 2. group 
  G0002-A0002.mat - record for 2. average of 2. group 
  … 
 



temperature log available:: 0 
// DMM sampling mode (HW specific attribute): 
sampling mode:: DCV 
// DMM synchronization mode (HW specific attribute): 
synchronization mode:: MASTER-SLAVE, MASTER clocked by TIMER 
 
 
#startsection:: measurement group 1 
        // ====== GROUP #1 ====== 
         
        // number of repetition cycles (repeated records): 
        repetitions count:: 3 
        // number of desired samples per record: 
        samples count:: 10000 
        // set sampling rate: 
        sampling rate [Sa/s]:: 48000.0000000000 
        // voltage ranges for each channel: 
        #startmatrix:: voltage ranges [V] 
                1.00; 1.00 
        #endmatrix:: voltage ranges [V] 
        // DMM aperture time (HW specific attribute): 
        aperture [s]:: 1e-6 
        // trigger setup: 
        trigger mode:: Immediate 
                 
         
        // ====== RECORDS ====== 
        // relative file paths to the files with sample data: 
        #startmatrix:: record sample data files 
                RAW\G0001-A0001.mat 
                RAW\G0001-A0002.mat 
                RAW\G0001-A0003.mat 
        #endmatrix:: record sample data files 
        // actual samples counts for each record file: 
        #startmatrix:: record samples counts 
                10000 
                10000 
                10000 
        #endmatrix:: record samples counts 
        // time increment (sampling period) for each record: 
        #startmatrix:: record time increments [s] 
                2.08333333333333E-5 
                2.08333333333333E-5 
                2.08333333333333E-5 
        #endmatrix:: record time increments [s] 
        // gain factors for scaling of the sample data for each channel and record: 
        #startmatrix:: record sample data gains [V] 
                9.9999997E-10; 9.9999997E-10 
                9.9999997E-10; 9.9999997E-10 
                9.9999997E-10; 9.9999997E-10 
        #endmatrix:: record sample data gains [V] 
        // offset for scaling of the sample data for each channel and record: 
        #startmatrix:: record sample data offsets [V] 
                0.0000000; 0.0000000 
                0.0000000; 0.0000000 
                0.0000000; 0.0000000 
        #endmatrix:: record sample data offsets [V] 
        // relative timestamp for each channel and record (initial time of first sample): 
        #startmatrix:: record relative timestamps [s] 
                0.0312291666666667; 0.0312291666666667 
                0.406229166666667; 0.406229166666667 
                0.687479166666667; 0.687479166666667 
        #endmatrix:: record relative timestamps [s] 
        // absolute timestamps of each record start (using low. res system time): 
        #startmatrix:: record absolute timestamps 
                2014-03-03T22:18:53.77343750000000000001 
                2014-03-03T22:18:54.16308593749999999997 
                2014-03-03T22:18:54.47265625000000000002 
        #endmatrix:: record absolute timestamps 
         
#endsection:: averaging group 1 
 
 
// ====== MEASUREMENT SETUP CONFIGURATION ====== 
#startsection:: measurement setup configuration 
         
        // relative paths for correction file of each channel: 



        #startmatrix:: transducer paths 
                T01\dummy.info 
                T02\dummy.info 
        #endmatrix:: transducer paths 
                 
        // Phase index to which each channel/transducer belongs (1, 2, 3, ...), 
        // one row per channel 
        #startmatrix:: channel phase indexes 
                1 
                1 
        #endmatrix:: channel phase indexes 

 
        // Mapping of the digitizer channels to the transducers: 
        // one row per transducer, each row contain index(es) 
        //   of the attached channels (1 or 1;2, etc.) 
        // for single-ended connection: one index per row 
        // for differential connection: two indexes, first high-side, then low-side 
        #startmatrix:: transducer to digitizer channels mapping 
                1 
                2;3 
        #endmatrix:: transducer to digitizer channels mapping 
 
        // relative path for correction file of the digitizer: 
        digitizer corrections path:: DIGITIZER\HP3458A_awg.info   
         
#endsection:: measurement setup configuration 

 

Meaning of the particular items of the header file should be obvious from the attached comments. 
Note the comments introduced by ‘//’ are not required. It is just for documentation. Note the INFO 
format can handle any text aside of the keys and keywords. However the keys and key words starting 
with ‘#’ must be the first non-white symbol in the line. 

1.4 Correction files 
One of the key concerns are the correction files. The corrections loaded in the TWM at the time of 
the measurement must be somehow stored together with the measurement sample data and header 
(in the same folder). The requirement is the measured data can be easily copied, therefore some link 
from measured data to data with corrections somewhere else at the disk drive is not possible, 
because these corrections would be missing in the copy. When the raw data are later (re)processed, 
all necessary information must be available together with the measured data. After considering 
possibilities it was found the only reasonable way is to not modify the correction data before the 
storage. I.e. the correction data loaded into the TWM are identical to the correction data attached to 
the each measurement. Therefore, if the corrections in the measurement folder are somehow 
modified during the manual processing of the data, e.g. if some mistake is found in the correction 
files, the corrections from the measurement folder can be easily copied back to the location of TWM 
and loaded into the TWM and used for next measurements. This, of course, leads to the problem of 
format choice because the corrections are relatively complex in content.  

The correction data format must be versatile enough in order to enable storage of any calibrated 
dependency (frequency, voltage, aperture, temperature, …) and must enable filtering the correction 
file based on the setup of the HW which is also very complex. Furthermore the dependencies of the 
correction parameters on the attributes of the digitizers themselves are not known in advance as the 
TWM may be extended by another digitizer with another attributes. Several choices were 
considered: 

(i) XLS file with one sheet per correction parameter. This solution was discarded because 
XLS files are not directly readable in all required systems. Only reliable way to access 
them is via ActiveX. First of all, that requires installed MS Office and secondly, it would 
not be possible to handle such files when batch-processing the data or performing 



uncertainty analysis on the supercomputers which are typically using Linux OS. 
Furthermore the sheet organization of the data is not sufficient for the purpose. 

(ii) Storing all the data in the something like INFO file or XML file. Such solution is possible 
because these formats allow to store anything in structured form however editing of 
large number of dependencies in such formats is not easy for non-programmers.  

(iii) Combination of minimalistic human readable header such as INFO file and CSV tables 
with correction data (frequency/voltage/…  dependence). This solution has advantage it 
requires minimum (or none) editing of the headers and all correction data can be stored 
as simple CSV tables which are editable in many tools and also readable in Excel, LV, CVI, 
Octave and Matlab.  

The third (iii) option was chosen for the TWM. Three types of corrections are supported by the TWM: 
Transducer correction, Digitizer correction and Channel correction. Detailed description of the 
corrections can be found in [5]. 

1.4.1.1 Transducer corrections 
The transducer corrections are relatively simple as they do not contain any links between two 
transducers or between transducer and another HW. Each transducer is defined by INFO file header 
and several correction tables in *.csv format (see [5] for details). Example of the correction file: 

// type of the correction: 
type:: shunt 
 
// name of the transducer: 
name:: Current shunt 1A 
 
// serial number of the transducer: 
serial number:: CMI/1A/1/13 
 
// identifier of the channel of the digitizer if the transducer was calibrated together with the digitizer: 
//  note: leave empty or remove if not needed 
linked to digitizer channel:: HP3458A, sn. MY45053095 
 
// nominal/DC ratio: V/A for shunt, Vin/Vout for divider: 
nominal ratio:: 0.600005 
nominal ratio uncertainty:: 0.000009 
 
// frequency transfer of the transducer - amplitude (input/output): 
//   2D CSV table: 
//     y-axis: frequency 
//     x-axis: input rms value 
//     quantity 1: in/out transfer values 
//     quantity 2: absolute uncertainties 
amplitude transfer path:: csv\tfer_amp.csv 
 
// frequency transfer of the transducer - phase (input - output): 
//   2D CSV table identical format to amp. transfer. 
phase transfer path:: csv\tfer_phi.csv 
 
// frequency dependence of impedance of the low-side resistor of RVD: 
//   2D CSV table,  
//     y-axis: fundamental frequency 
//     x-axis: fundamental amplitude 
//     quantities order: sfdr [dB], u(sfdr) 
sfdr path:: csv\sfdr.csv 
 
// --- loading correction components --- 
// frequency dependence of series impedance of transducer’s high-side terminal: 
//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
output terminals series impedance path:: csv\Zca.csv 
 
// frequency dependence of series impedance of transducer’s low-side terminal: 
//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
output terminals series impedance path (low-side):: csv\Zcal.csv   
 
// frequency dependence of mutual inductance between transducer’s terminals: 
//   1D CSV table, y-axis: frequency, quantities order: M, u(M) 
output terminals mutual inductance path:: csv\Zcam.csv 
 
// frequency dependence of loss admittance between the transducer’s terminals: 
//   1D CSV table, y-axis: frequency, quantities order: Cp, D, u(Cp), u(D) 
output terminals shunting admittance path:: csv\Yca.csv 
 
// frequency dependence of series impedance of the cable to digitizer input: 



//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
output cable series impedance path:: csv\Zcb.csv 
 
// frequency dependence of shunting admittance of the cable to digitizer input: 
//   1D CSV table, y-axis: frequency, quantities order: Cp, D, u(Cp), u(D) 
output cable shunting admittance path:: csv\Ycb.csv 
   
// frequency dependence of impedance of the low-side resistor of RVD: 
//   1D CSV table, y-axis: frequency, quantities order: Rp, Cp, u(Rp), u(Cp) 
rvd low side impedance path:: csv\Z_low.csv 

 

The files structure of the transducer corrections in the measurement folder is following: 

 

The transducer correction folders will be always renamed to the ‘Txx’ format, when copied from the 
calibration data folder because multiple channels can share the same correction file so there may be 
a folder name collision. 

1.4.1.2 Digitizer corrections 
The correction of the digitizer and its channels is more complicated. Special care has been taken in 
order to make it both versatile and also simple enough to enable editing for less skilled users. It 
consists of the two parts: (i) Definition of the whole digitizer (interchannel corrections), (ii) definition 
of the particular channels (corrections that are independent to another channel or HW). See [5] for 
details. Example of the digitizer correction header file is show in the following text: 

// correction type: 
type:: digitizer 
 
// description of the digitizer corrections:  
name:: Demonstration corrections for setup with two 3458A digitizers 
 
// names of the channels as they appear in the digitizer identification: 
// these are exact unique names of the channels in the order that will be loaded to the SW 
#startmatrix:: channel identifiers 
        HP3458A, sn. MY45053095 
        HP3458A, sn. MY45053104 
#endmatrix:: channel identifiers 
 
// relative links to the files with channel corrections for each channel: 
#startmatrix:: channel correction paths 
        ..\channel_MY45053095\HP3458_MY45053095.info 
        ..\channel_MY45053104\HP3458_MY45053104.info 
#endmatrix:: channel correction paths 
 
// definition of ANY correction, in this case interchannel timeshift: 
#startsection:: interchannel timeshift 
       
        // 2D array with the list of values of the correction: 
        //  rows: vectors of correction values, eg. relative timeshifts to the first channel 
        //  columns: primary parameter (synchronization mode) 
        #startmatrix:: value 
                0.0; 0.1; 0.2 
                0.0; 0.1; 0.2 
                0.0; 0.01; 0.02 
        #endmatrix:: value 
        // uncertainty (same rules as 'value'): 
        #startmatrix:: uncertainty 
                0.0; 0.001; 0.001 
                0.0; 0.001; 0.001 
                0.0; 0.001; 0.001 
        #endmatrix:: uncertainty 
 
         
         
        // --- Filtering of the correction by HW attributes: --- 
        // this is the list of channel specific attributes for which the correction is valid 
        // anything put here will be checked with the digitizer setup stored in the header file 

Transducer corrections (./TRANSDUCER/): 
  T01/transducer_1.info - transducer 1 header 
  T01/tables/*.csv - transducer 1 CSV files with dependencies 
  T02/transducer_2.info - transducer 2 header 
  T02/tables/*.csv - transducer 2 CSV files with dependencies 
  … … 
 

 



        // of the measurement and if it does not match, the loader will return an error 
        #startmatrix:: valid for attributes 
                sampling mode; 
        #endmatrix:: valid for attributes 
         
        // list of allowed values of attribute 1 (eg.: sampling mode): 
        #startmatrix:: sampling mode 
                DCV; 
        #endmatrix:: sampling mode 
         
 
        // --- List of parameters on which the correction values depends: --- 
        // primary parameter (remove if not used): 
        #startsection:: primary parameter 
                 
                // name of the HW parameter: 
                //  note: it must be exact name of the parameter that appears in measurement header 
                name:: synchronization mode                       
                                 
                // is this parameter interpolable? 
                //  note: set to 0 or remove if not interpolable 
                interpolable:: 0 
                 
                // list of supported values of a primary parameter on which the correction depends: 
                //  eg.: synchronization modes of the 3458A multimeters 
                #startmatrix:: value 
                        MASTER-SLAVE, MASTER clocked by TIMER 
                        MASTER-SLAVE, MASTER clocked by AWG 
                        ALL clocked by AWG; 
                #endmatrix:: value 
                 
        #endsection:: primary parameter 
    
#endsection:: interchannel timeshift 
 

Note it may look complex, but most of the entries are not necessary and are made only once. 
Calibration data are only the values highlighted in red color. The rest will stay unchanged and will 
come from a prepared template so the user doesn’t need to write the whole structure. 

Files structure of the digitizer correction is following: 

 

The green elements only are related to the digitizer correction itself. The rest of elements are the 
channel corrections. 

1.4.1.3 Channel corrections 
Channel corrections define corrections that apply only to a single channel (see [5] for details). 
Example of the channel correction file: 

// type of the correction 
type:: channel 
 
// correction name string 
name:: Channel correction HP3458A, sn. MY45053095 
 
// device/channel identification as it appears in the digitizer identification 
//  note: leave empty or remove if this correction should be independent of the instrument/channel 
channel identifier:: HP3458A, sn. MY45053095 
 
 
#startsection:: nominal gain 
 
        // 2D array with the list of values of the correction: 
        //  rows: primary parameter (range) 
        //  columns: secondary parameter (unused) 
        #startmatrix:: value 
                1.000005 

Digitizer corrections (./DIGITIZER/): 
  correction_name/correction_name.info - digitizer correction header 
  correction_name/tables/*.csv - CSV tables with correction dependencies 
  channel_1/channel_1.info - channel 1 correction 
  channel_1/tables/*.csv - channel 1 CSV tables with correction dependencies 
  channel_2/channel_2.info - channel 1 correction 
  channel_2/tables/*.csv - channel 1 CSV tables with correction dependencies 
  … 



                1.000003 
                1.000006 
        #endmatrix:: value 
        // uncertainty (same rules as 'value'): 
        #startmatrix:: uncertainty 
                0.000003 
                0.000003 
                0.000003 
        #endmatrix:: uncertainty 
 
         
        // --- List of parameters on which the correction values depends: --- 
        // primary parameter (remove if not used): 
        #startsection:: primary parameter 
                 
                // name of the HW parameter: 
                //  note: it must be exact name of the parameter that appears in measurement header 
                name:: voltage ranges [V]                       
                                 
                // list of supported values of a primary parameter on which the correction depends 
                //  eg.: voltage range of the DMM 
                #startmatrix:: value 
                        1 
                        10 
                        100 
                #endmatrix:: value 
                 
        #endsection:: primary parameter 
 
#endsection:: nominal gain 
 
 
#startsection:: frequency dependence 
 
        // 2D array with the list of values of the correction 
        //  rows: primary parameter (aperture) 
        //  columns: secondary parameter (range) 
        //  note: in this case the values of the correction are stored in the CSV files 
        #startmatrix:: value 
                tables/fdep_rng1V_aper1u.csv;   tables/fdep_rng10V_aper1u.csv 
                tables/fdep_rng1V_aper10u.csv;  tables/fdep_rng10V_aper10u.csv 
                tables/fdep_rng1V_aper100u.csv; tables/fdep_rng10V_aper100u.csv 
        #endmatrix:: value 
   
        // --- List of parameters on which the correction values depends: --- 
        // primary parameter (remove if not used): 
        #startsection:: primary parameter 
                 
                // name of the HW parameter: 
                //  note: it must be exact name of the parameter that appears in measurement header 
                name:: aperture [s] 
                 
                // is this parameter interpolable? 
                //  note: set to 0 or remove if not interpolable 
                interpolable:: 1                       
                                 
                // list of supported values of a primary parameter on which the correction depends 
                //  eg.: voltage range of the DMM 
                #startmatrix:: value 
                        1e-6 
                        1e-5 
                        1e-4 
                #endmatrix:: value 
                 
        #endsection:: primary parameter 
         
        // secondary parameter (remove if not used): 
        #startsection:: secondary parameter 
                 
                // name of the HW parameter: 
                //  note: it must be exact name of the parameter that appears in measurement header 
                name:: voltage ranges [V]                       
                                 
                // list of supported values of a primary parameter on which the correction depends 
                //  eg.: voltage range of the DMM 
                #startmatrix:: value 
                        1 
                        10 
                #endmatrix:: value 
                 
        #endsection:: secondary parameter 
 
#endsection:: frequency dependence 
 
 
#startsection:: input admittance 
 
        // 2D array with the list of values of the correction: 



        //  rows: primary parameter (unused) 
        //  columns: secondary parameter (unused) 
        //  note: in this case the correction is independent of any parameters but the on in the CSV 
        #startmatrix:: value 
                tables_input_Y.csv 
        #endmatrix:: value 
 
#endsection:: input admittance 

     
 
The file structure of the channel corrections: 

 
 

Note only the green items are related to the channel correction, rest is the digitizer correction. 

1.5 Data interchange format between GUI and Processing module 
Data exchange between the GUI of TWM and Processing Module is realized via the INFO files. All 
calculations will be performed via the QWTB toolbox [3]. The QWTB toolbox contains a lot of 
algorithms. Most of them are not suitable for the TWM so the TWM will contain a database of 
supported algorithms and their configurations. The database is stored in the INFO format. Format of 
the database file is following: 

// filter of the algorithms 
type:: qwtb list 
 
// === list of the supported algorithms === 
// note: enter algorithm ID's, e.g.: PSFE, SFDR, ... 
#startmatrix:: list of supported algorithms 
        PSFE 
        SFDR 
        SP-FFT 
#endmatrix:: list of supported algorithms 
 
 
// === setup for the particular algorithms === 
// These are optional sections, one for each algorithm. Name of the section must 
// be equal to the value in the 'list of supported algorithms'. These are used 
// to configurate the algorithm behaviour. 
// 
// parameters: 
//  exclude outputs: matrix of output quantities that will be excluded 
//  from display (usually time vector or frequency) 
//  graphs: 2D matrix of graph-like outputs (frequency dependence, ...), one row per graph, 
//          column: x; y 
//          example: f; A; 
//  spectrum: output quantity that will be displayed as default frequency spectrum 
//  number formats: 2D matrix of configurations for particular variables,  
//                  one row per variable, columns: 
//                  variable name; format specifier; minimum abs. uncertainty; minimum rel. uncertainty; 
// 
//                    variable name - name of the output variable 
//                    format specifier - number format: 
//                                       'f': float (no exponent) 
//                                       'si': SI prefix 
//                    minimum abs. uncertainty - minimum absolute uncertainty of the quantity 
//                                             - this will have effect in case no uncertainty is available 
//                    minimum rel. uncertainty - minimum relative uncertainty of the quantity (unit-less) 
//                                             - this will have effect in case no uncertainty is available 
// 
//                  example: f; si; 1e-6; 0.0001; 
// 
#startsection:: SP-FFT 
        #startmatrix:: exclude outputs 
                f 
        #endmatrix:: exclude outputs 

Digitizer corrections (./DIGITIZER/): 
  correction_name/correction_name.info - digitizer correction header 
  correction_name/tables/*.csv - CSV tables with correction dependencies 
  channel_1/channel_1.info - channel 1 correction 
  channel_1/tables/*.csv - channel 1 CSV tables with correction dependencies 
  channel_2/channel_2.info - channel 1 correction 
  channel_2/tables/*.csv - channel 1 CSV tables with correction dependencies 
  … 



        #startmatrix:: graphs 
                f; A 
                f; ph 
        #endmatrix:: graphs 
        spectrum:: A 
        #startmatrix:: number formats 
                f; si; 1e-6; 1e-6 
                A; si; 1e-6; 1e-6 
                ph; f; 1e-6; 1e-6 
        #endmatrix:: number formats 
#endsection:: SP-FFT 

 

The ‘list of supported algorithms’ contains IDs of the algorithms from the QWTB toolbox. Only these 
will be visible in the TWM GUI. Optionally, each algorithm can contain configuration placed in the 
section named according the algorithm’s ID. The configuration is used only for the displaying of the 
results in GUI, not for the calculation itself. Its format is preliminary and will be most likely modified 
along with development of the TWM GUI. 

The TWM will define the algorithm to be used for the calculation and its parameters by an additional 
INFO file in the measurement folder root named ‘qwtb.info’.  Content is following: 

 
// --- copy of the QWTB algorithm setup: 
#startsection:: QWTB processing setup 
        // ID of the QWTB algorithm: 
        algorithm id:: SP-FFT 
        // calculate result for each averaging cycle (0) or calculate all averaging cycles at once (1): 
        calculate whole average at once:: 0 
        // uncertainty calculation mode: 
        uncertainty mode:: none 
        // level of confidence for uncertainty: 
        level of confidence [-]:: 0.9500  
        // list of algorithm parameters: 
        #startmatrix:: list of parameter names 
                window 
        #endmatrix:: list of parameter names 
        // parameter(s) data: 
        #startmatrix:: window 
                hann 
        #endmatrix:: window 
        // algorithm configuration (copy from algorithms formats and filter): 
        #startsection:: algorithm configuration 
                #startmatrix:: exclude outputs 
                        f 
                #endmatrix:: exclude outputs 
                #startmatrix:: graphs 
                        f; A 
                        f; ph 
                #endmatrix:: graphs 
                spectrum:: A 
                #startmatrix:: number formats 
                        f; si; 1e-6; 1e-6 
                        A; si; 1e-6; 1e-6 
                        ph; f; 1e-6; 1e-6 
                #endmatrix:: number formats 
        #endsection:: algorithm configuration 
 
#endsection:: QWTB processing setup 

 

QWTP processing file location: 

 

Measurement folder: 
  session.info - measurement header 
  qwtb.info - processing setup header 
  RAW/*.mat - raw waveform records 
  results.info - calculated results header 
  RESULTS/*.info - results data headers 
  RESULTS/*.mat - results data (large objects) 
  DIGITIZER/*.* - digitizer correction files 
  TRANSDUCERS/*.* - transducer’s correction files 
 

 



The calculation execution function of the TWM will load the measurement header and data, the 
corrections (see above) and the ‘QWTB processing setup’ section and will execute the calculation 
accordingly. After the execution of the QWTB algorithm, it will store the results of the calculation 
into the folder ‘RESULTS’ in the measurement folder: 

 

The caller of the QWTB toolbox will store the calculated variables into the INFO file and 
complementary MAT file of the same name. Naming rules are derived from the names of the 
records: 

 

Note the MAT file is optional and will be created automatically if the results are too large for INFO 
text format. That may happen if the algorithm returns e.g. spectrum which may contain several 
millions of values. In such case the INFO file will contain just a link to the MAT file and a name of the 
variable inside MAT file which holds the data. Example of the result data (*.info): 

// --- copy of the QWTB algorithm setup: 
#startsection:: QWTB processing setup 
        // ID of the QWTB algorithm: 
        algorithm id:: SP-FFT 
        // calculate result for each averaging cycle (0) or calculate all averaging cycles at once (1): 
        calculate whole average at once:: 0 
        // list of algorithm parameters: 
        #startmatrix:: list of parameter names 
                window 
        #endmatrix:: list of parameter names 
        // parameter(s) data: 
        #startmatrix:: window 
                hann 
        #endmatrix:: window 
#endsection:: QWTB processing setup 
 
// --- list of phases/channels for which the QWTB algorithm was executed: 
#startmatrix:: list 
        u1 
        u2 
#endmatrix:: list 
 
// --- calculated data of the phase/channel 'u1': 
#startsection:: u1 
        // index of the digitizer's phase/channel: 
        phase index:: 1 
        // tag(s) of the channels related to the phase/channel (e.g.: u1; i1 for phase L1): 
        #startmatrix:: channel tag 
                u1 
        #endmatrix:: channel tag 
        // names of the output varibles of the QWTB algorithm: 
        #startmatrix:: variable names 
                f 
                A 
                rms 
        #endmatrix:: variable names 
        // data for the variable 'f': 
        #startsection:: f 
                // name: 
                name:: f 
                // description: 
                description:: Frequency series 
                // dimensions of the variable (Matlab's size() command): 
                #startmatrix:: dimensions 
                         1; 5000 
                #endmatrix:: dimensions 
                // name of the MAT file's variable with the data: 
                MAT file variable - value:: f_v 
        #endsection:: f 
         
        // data for variable 'A': 
        #startsection:: A 

QWTB toolbox result: 
  ALGID-G0001-A0001.info - algorithm calculated results 
  ALGID-G0001-A0001.mat - algorithm calculated results 

Results (./RESULTS/): 
  *.info - algorithm calculated results 
  *.mat - algorithm calculated results 



                // name: 
                name:: A 
                // description: 
                description:: Amplitude spectrum 
                // dimensions of the variable (Matlab's size() command):  
                #startmatrix:: dimensions 
                         1; 5000 
                #endmatrix:: dimensions 
                // name of the MAT file's variable with the data: 
                MAT file variable - value:: A_v 
                // name of the MAT file's variable with the uncertainty: 
                MAT file variable - uncertainty:: A_u                 
        #endsection:: A 
         
        // data for variable 'rms': 
        #startsection:: rms 
                // name: 
                name:: rms 
                // description: 
                description:: RMS value 
                // dimensions of the variable (Matlab's size() command): 
                #startmatrix:: dimensions 
                         1; 1 
                #endmatrix:: dimensions 
                // matrix with values of the variable: 
                #startmatrix:: value 
                         1.00053 
                #endmatrix:: value 
                // matrix with uncertainties of the variable (optional): 
                #startmatrix:: uncertainty 
                         0.00028 
                #endmatrix:: uncertainty 
        #endsection:: rms 
#endsection:: u1 
 
// --- calculated data of the phase/channel 'u2': 
#startsection:: u2 
        // identical format to 'u1' ... 
#endsection:: u2 

 

This file starts with a copy of the setup of the QWTB algorithm. It contains ID of the QWTB algorithm 
and a list and values of the algorithm’s parameters. Next the file contains a list of channels/phases. 
When the QWTB algorithm has just one input, it will be called for each channel of the digitizer and 
the ‘list’ will contain values such as: u1; i1; u2; i2; … If it has multiple inputs, such as for power 
calculation, the algorithm will be called for each group of the digitizer channels (one phase), such as 
u1+i1 for phase one, u2+i2 for phase two, etc. So the ‘list’ will contain values: L1; L2; … Assigning of 
the virtual digitizer’s channels to the phases is defined in the measurement header, section 
‘corrections’, subsection ‘channel phase indexes’. Next the file contains section with calculated data 
for each phase/channel. For details, see the comments in the example. 

Note the executer of the QWTB processing will also always create (or update) file ‘results.info’ in the 
measurement folder. Location of the file in measurement folder: 

 

Example of the results header file: 

// ID of the last calculated QWTB algorithm: 
last algorithm:: SP-FFT 
// ID of the last result for selected QWTB algorithm: 
last result id:: 3 

Measurement folder: 
  session.info - measurement header 
  qwtb.info - processing setup header 
  RAW/*.mat - raw waveform records 
  results.info - calculated results header 
  RESULTS/*.info - results data headers 
  RESULTS/*.mat - results data (large objects) 
  DIGITIZER/*.* - digitizer correction files 
  TRANSDUCERS/*.* - transducer’s correction files 
 

 



// List of calculated algorithms: 
#startmatrix:: algorithms 
        SP-FFT 
#endmatrix:: algorithms 
// List(s) of relative paths to the result files for each QWTB algorithm:  
#startmatrix:: SP-FFT 
        RESULTS\SP-FFT-G0001-A0001 
        RESULTS\SP-FFT-G0001-A0002 
        RESULTS\SP-FFT-G0001-A0003 
#endmatrix:: SP-FFT 

 

The file contain list of ‘algorithms’ with all the calculated QWTB algorithms for the measurement. 
Next it contains a list(s) of calculated results for each algorithm. The file also contains information 
about last calculated algorithm and the last calculated result. This file will be used by the GUI of the 
TWM to identify available results and their locations in the measurement folder. When GUI needs to 
display the result, it will just call the loader of the result(s). The loader function will look into this list, 
select the results(s) for displaying and load the data. Next, it will format the result data and will 
return table of the formatted strings which will be displayed in the GUI. This way the workload of the 
GUI will be significantly reduced, as the GUI will just display table. Furthermore it can be shared for 
both LV and CVI implementation.  
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A2.3.1 – Calibration datasets reference manual of the digitizers 
and voltage and current transducers 



TWM correction datasets reference manual 
V0.4, 2018-12-04 

Following text describes how to create the correction datasets for digitizer and transducers for TWM 
tool [1]. 
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1.1 Resources 
[1] TWM tool, url: https://github.com/smaslan/TWM 
[2] INFO-STRINGS, url: https://github.com/KaeroDot/info-strings 
[3] QWTB toolbox, url: https://qwtb.github.io/qwtb/ 

https://github.com/smaslan/TWM
https://github.com/KaeroDot/info-strings
https://qwtb.github.io/qwtb/


[4] A232 Algorithms exchange format, url: 
https://github.com/smaslan/TWM/tree/master/doc/A232 Algorithm Exchange Format.docx 

 

1.2 Abbreviations 
TWM – Traceable power quality WattMeter 

SFDR – Spurious Free Dynamic Range 

1.3 Introduction 
All correction files are based on the combination of INFO-STRINGS library [2] and ordinary CSV files. 
The corrections are loaded automatically by the TWM tool and passed to the PQ algorithm wrapped 
in the QWTB toolbox [3]. The following text shows the formats of the correction datasets, behavior 
of the TWM correction loader and naming of the correction values and tables that will be passed to 
the QWTB algorithm.  

1.3.1 CSV tables 
Many of the correction tables in the TWM tool are stored as a CSV tables separated by semicolon “;”. 
This is e.g. the case of dependencies, such frequency transfers. This solution was chosen to ensure 
flexibility and easy editing for the users. All the tables must have unified format. 

1.3.1.1 1D CSV table format 
1D dependence CSV table with three quantities A, B and C dependent on axis Y: 

Comment    
Y A B C 

y1 a1 b1 c1 
y2 a2 b2 c2 
y3 a3 b3 c3 

 

The “Comment” is any text string that describes content of the table. The row is mandatory even if 
the comment is not required! 

Any table can contain empty values: 

Comment    
Y A B C 

y1 a1  c1 
y2  b2 c2 
y3 a3 b3  

The missing value a2 will be interpolated from a1 and a3 by the loader. However, missing value b1 
and c3 will be loaded as NaN because they are at the boundary of the table and extrapolation is 
disabled since the uncertainty of extrapolation cannot be properly evaluated. 

The 1D table can be also independent on the axis Y if the table has just one data row and empty Y 
axis, i.e. missing value y1: 

Comment    
Y A B C 
 a1 b1 c1 

All TWM functions will ignore the axis Y and will assume the values a1, b1, c3 for any value of Y. 

https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithm%20Exchange%20Format.docx


1.3.1.2 2D CSV table format 
TWM also supports 2D tables dependent on two axes X and Y: 

Comment       
 A A B B C C 

Y \ X x1 x2 x1 x2 x1 x2 
y1 a11 a12 b11 b12 c11 c12 
y2 a21 a22 b21 b22 c21 c22 
y3 a31 a32 b31 b32 c31 c32 

The table can contain any number of quantities (A, B, C, …). Y axis is identical as in 1D tables. X axis is 
horizontal and its values x1, x2, … are repeated for each quantity. All quantities must have identical 
number of X values. The 2D table can be independent on Y axis: 

Comment       
 A A B B C C 

Y \ X x1 x2 x1 x2 x1 x2 
 a11 a12 b11 b12 c11 c12 

The 2D table can be also independent on X axis if all X values are empty: 

Comment    
 A B C 

Y \ X    
y1 a11 b11 c11 
y2 a21 b21 c21 
y3 a31 b31 c31 

Eventually, the 2D table can be independent on both axes X, Y: 

Comment    
 A B C 

Y \ X    
 a11 b11 c11 

1.3.2 Correction model 
The TWM tool and the implemented algorithms perform corrections to the errors introduced by the 
digitizer and transducer. However, when the transducer is connected to the digitizer via cable, the 
transducer’s transfer will be affected by the loading effects due to finite input impedance of the 
digitizer and capacitance of the cable. This effect can be corrected if the lumped impedance model of 
the transducer terminals, cables and digitizer is known. Thus a special function dealing with this 
problem for single-ended and differential connection of the transducer to digitizer channels was 
developed and each algorithm should employ it. The function is able to calculate corrections in four 
different configurations shown in Figure 0-1, Figure 0-2, Figure 0-3 and Figure 0-4. 

TWM will choose single-ended or differential based on the configuration of the transducer 
corrections. The buffered mode is enabled by including the buffer output impedance “Zbuf” to the 
transducer corrections (see details below). 



 

Figure 0-1: Single-ended direct connection (no buffer). 

 

Figure 0-2: Single-ended buffered connection. 

 

Figure 0-3: Direct differential connection (no buffer). 

 

Figure 0-4: Buffered differential connection. 



 

The impedance components “Yin” (and “lo_Yin”) comes from the digitizer channel corrections, 
whereas the rest of the model components are loaded from the transducer correction file.  

1.4 Transducer corrections 
TWM recognizes two types of transducer corrections: “divider” and “shunt”. Format of the 
correction file is identical for both. File starts with the identifier “type” which defines the transducer 
type. “name” and “serial number” is description of the transducer. Optional item “linked to digitizer 
channel” can restrict the use of the transducer correction file to particular digitizer channel which 
may be needed when the transducer and digitizer channel were calibrated together. Next, the main 
correction data follows (description below). Example of the file for a shunt: 

// type of the correction: 
type:: shunt 
 
// name of the transducer: 
name:: Current shunt 1A 
 
// serial number of the transducer: 
serial number:: CMI/1A/1/13 
 
// identifier of the channel of the digitizer if the transducer was calibrated together with the digitizer: 
//  note: leave empty or remove if not needed 
linked to digitizer channel:: HP3458A, sn. MY45053095 
 
// nominal/DC ratio: V/A for shunt, Vin/Vout for divider: 
nominal ratio:: 0.600005 
nominal ratio uncertainty:: 0.000009 
 
// frequency transfer of the transducer - amplitude (input/output): 
//   2D CSV table: 
//     y-axis: frequency 
//     x-axis: input rms value 
//     quantity 1: in/out transfer values 
//     quantity 2: absolute uncertainties 
amplitude transfer path:: csv\tfer_amp.csv 
 
// frequency transfer of the transducer - phase (input - output): 
//   2D CSV table identical format to amp. transfer. 
phase transfer path:: csv\tfer_phi.csv 
 
// frequency dependence of impedance of the low-side resistor of RVD: 
//   2D CSV table,  
//     y-axis: fundamental frequency 
//     x-axis: fundamental amplitude 
//     quantities order: sfdr [dB], u(sfdr) 
sfdr path:: csv\sfdr.csv 
 
// --- loading correction components --- 
// frequency dependence of series impedance of transducer’s high-side terminal: 
//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
output terminals series impedance path:: csv\Zca.csv 
 
// frequency dependence of series impedance of transducer’s low-side terminal: 
//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
output terminals series impedance path (low-side):: csv\Zcal.csv   
 
// frequency dependence of mutual inductance between transducer’s terminals: 
//   1D CSV table, y-axis: frequency, quantities order: M, u(M) 
output terminals mutual inductance path:: csv\Zcam.csv 
 
// frequency dependence of loss admittance between the transducer’s terminals: 
//   1D CSV table, y-axis: frequency, quantities order: Cp, D, u(Cp), u(D) 
output terminals shunting admittance path:: csv\Yca.csv 
 
// frequency dependence of series impedance of the cable to digitizer input: 
//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
output cable series impedance path:: csv\Zcb.csv 
 
// frequency dependence of shunting admittance of the cable to digitizer input: 
//   1D CSV table, y-axis: frequency, quantities order: Cp, D, u(Cp), u(D) 
output cable shunting admittance path:: csv\Ycb.csv 
   
// frequency dependence of impedance of the low-side resistor of RVD: 
//   1D CSV table, y-axis: frequency, quantities order: Rp, Cp, u(Rp), u(Cp) 
rvd low side impedance path:: csv\Z_low.csv 
   
// frequency dependence of impedance of the buffer output series impedance (leave out to disable buffer!): 



//   1D CSV table, y-axis: frequency, quantities order: Rs, Ls, u(Rs), u(Ls) 
buffer output series impedance path:: csv\Z_buf.csv 
 
 

1.4.1 Transducer correction items 
Following paragraphs describe particular correction components. It will always show formats of the 
correction data and naming of the correction data quantities that will be passed to the QWTB. 

1.4.1.1 Nominal ratio 
Nominal ratio item “nominal ratio” is scalar real value that defines nominal (typically DC) ratio of the 
transducer. For shunt it is value in Ohms. For divider it is input/output ratio. The value has also 
absolute uncertainty “nominal ratio uncertainty”. Both values are mandatory. 

Note it is possible to use these items to store nominal gain for any frequency, e.g. 50 Hz. It is not 
restricted to DC. The relative Amplitude transfer will be always relative to this value. So the choice is 
up to the user.  

1.4.1.2 Amplitude and phase transfer (optional) 
“amplitude transfer path” and “phase transfer path” are paths to the CSV files with 2D frequency-
amplitude transfers relative to the nominal ratio. Both amplitude and phase transfers can have 
different frequency and amplitude dependency axes. If these corrections(s) are not defined, TWM 
will use value of 1 for “amplitude transfer path” and value 0 for “phase transfer path”. User should 
always define the correction down to zero frequency in order to make algorithms requiring DC value 
work! It may be also needed to define frequency dependence up to Nyquist frequency for the FFT 
based algorithms. 

Format of the CSV table for amplitude transfer: 

x-axis: input rms value [V] or [A] 
y-axis: frequency [Hz] 
Quantities: gain – relative gain 

u(gain) – absolute std. uncertainty of gain 
Format of the CSV table for phase transfer: 

x-axis: input rms value [V] or [A] 
y-axis: frequency [Hz] 
Quantities: phi – absolute phase shift 

u(phi) – absolute std. uncertainty of phi 
 

Note the x-axis is dependent on input voltage (or current), not the output one! The correction loader 
will always combine “nominal ratio” and “amplitude transfer path” into a single absolute correction 
table: 

abs gain = nominal ratio * gain 

abs gain uncertainty = sqrt((nominal ratio uncertainty)^2 + u(gain)^2) 

Note the “abs gain” and its uncertainty will be automatically inverted by TWM for a shunt so the 
“abs gain” is always a ratio of measured input quantity (voltage or current) and transducer output 
voltage. Which means the “gain” for divider is relative dependence of input-to-output division ratio, 
whereas “gain” for shunt is relative dependence of impedance of the shunt!  

 



The “abs gain” is always passed to the QWTB as quantities: 

QWTB name Default value Meaning 
*tr_gain_f.v [] Frequency axis [Hz] 
*tr_gain_a.v [] Input RMS value axis [V] or [A] 
*tr_gain.v 
*tr_gain.u 

1 
0 

Gain 
Abs. std. uncertainty of gain 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

The transducer’s phase shift is always passed to the QWTB as quantities: 

QWTB name Default value Meaning 
*tr_phi_f.v [] Frequency axis [Hz] 
*tr_phi_a.v [] Input RMS value axis [V] or [A] 
*tr_phi.v 
*tr_phi.u 

0 
0 

Phase correction [rad] 
Abs. std. uncertainty of phase correction [rad] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

 

Follows example of shunt correction data. Lets assume a shunt has following impedance 
characteristic: 

f Z [Ω] u(Z) [Ω] 
DC 0.600 000 0.000 001 
1 kHz 0.600 006 0.000 003 
10 kHz 0.600 060 0.000 030 
100 kHz 0.600 600 0.000 060 
 

Then the shunt can be described by nominal ratio (DC value of resistance): 
nominal ratio = 0.600000 
nominal ratio uncertainty = 0.000001 
and by the relative amplitude transfer “amplitude transfer path” CSV table: 

My shunt description 
 gain u(gain) 
f \ rms   
DC 1.000000 0.000000 
1 kHz 1.000010 0.000005 
10 kHz 1.000100 0.000050 
100 kHz 1.001000 0.000100 

1.4.1.3 Transducer SFDR value (optional) 
Defines effects of distortion of the transducer. The “sfdr path” is path to the 2D CSV file with 
measured SFDR values dependent on amplitude and frequency if fundamental frequency of the 
signal. The values are in [dB]. Note the values are positive, i.e.: 120 dB means max spur amplitude is 
A0*10^-(120/20). 

Format of the CSV table: 

x-axis: input amplitude of fundamental frequency value [V] or [A] 
y-axis: fundamental frequency [Hz] 



Quantities: sfdr – SFDR value [dB] 
The QWTB quantity naming: 

QWTB name Default value Meaning 
*tr_sfdr_f.v [] Frequency axis [Hz] 
*tr_sfdr_a.v [] Input amplitude axis [V] or [A] 
*tr_sfdr.v 180 SFDR value [dB] 
* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.4 Transducer low-side RVD impedance (optional) 
1D CSV table “rvd low side impedance path” defines rough impedance of the low-side resistor for 
RVDs. This value is needed only for RVD and it is used to calculate loading effect of the cable and 
digitizer input to the transfer. It is a “Zlo” component in the connection diagram. Typically it is not 
necessary to calibrate the value to uncertainty below 0.1 % if the resistance of the RVD is up to few 
hundred ohms and total impedance is above 1 MΩ. For a shunt the value is ignored as the impedance 
of shunt can be calculated from the absolute complex transfer. 

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Rp – parallel resistance [Ω] 

Cp – parallel capacitance [F] 
u(Rp) – absolute std. uncertainty Rp 
u(Cp) – absolute std. uncertainty Cp 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*tr_Zlo_f.v [] Frequency axis [Hz] 
*tr_Zlo_Rp.v 
*tr_Zlo_Rp.u 
*tr_Zlo_Cp.v 
*tr_Zlo_Cp.u 

1e3 
0 
0 
0 

Rp value [Ω] 
Abs. std. uncertainty of Rp [Ω] 
Cp value [F] 
Abs. std. uncertainty of Cp [F] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.5 Transducer high-side output terminal series impedance (optional) 
1D CSV table “output terminals series impedance path” is estimate of the series impedance of the 
transducer’s high-side output terminal (component “Zca” in the correction diagram). It is part of the 
transducer loading corrections. The value is usually not measurable, but at least its uncertainty 
should be estimated in order take the loading effect into the uncertainty budget. 

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Rs – series resistance [Ω] 

Ls – series inductance [H] 
u(Rs) – absolute std. uncertainty Rs 
u(Ls) – absolute std. uncertainty Ls 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*tr_Zca_f.v [] Frequency axis [Hz] 
*tr_Zca_Rs.v 1e-9 Rs value [Ω] 



*tr_Zca_Rs.u 
*tr_Zca_Ls.v 
*tr_Zca_Ls.u 

0 
1e-12 

0 

Abs. std. uncertainty of Rs [Ω] 
Ls value [H] 
Abs. std. uncertainty of Ls [H] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.6 Transducer low-side output terminal series impedance (optional) 
1D CSV table “output terminals series impedance path (low-side)” is estimate of the series 
impedance of the transducer’s low-side output terminal (component “Zcal” in the correction 
diagram). It is part of the transducer loading corrections. The value is usually not measurable, but at 
least its uncertainty should be estimated in order take the loading effect into the uncertainty budget. 
Note for the single-ended connection this component can be part of the high-side impedance “Zca” 
and this correction can be left unassigned.  

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Rs – series resistance [Ω] 

Ls – series inductance [H] 
u(Rs) – absolute std. uncertainty Rs 
u(Ls) – absolute std. uncertainty Ls 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*tr_Zcal_f.v [] Frequency axis [Hz] 
*tr_Zcal_Rs.v 
*tr_Zcal_Rs.u 
*tr_Zcal_Ls.v 
*tr_Zcal_Ls.u 

1e-9 
0 

1e-12 
0 

Rs value [Ω] 
Abs. std. uncertainty of Rs [Ω] 
Ls value [H] 
Abs. std. uncertainty of Ls [H] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.7 Transducer output terminals mutual inductance (optional) 
1D CSV table “output terminals mutual inductance” is estimate of the mutual inductance between 
the transducer’s output terminals (component “M” in the correction diagram). It is part of the 
transducer loading corrections. The value is usually not measurable, but at least its uncertainty 
should be estimated in order take the loading effect into the uncertainty budget. Note for the single-
ended connection the value of impedance “M”, “Zcal” and “Zca” can be combined to correction 
“Zca”: 

Zca = Zca + Zcal – j*4*pi*M 

In that case this correction and low-terminal series impedance correction “Zca” can be left empty. 
However for differential mode the values of “Zca”, “Zcal” and “M” should be at least estimated 
especially for high frequency measurements. 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: M – mutual inductance [H] 

u(M) – absolute std. uncertainty M 
The QWTB quantity naming: 

QWTB name Default value Meaning 



*tr_Zcam_f.v [] Frequency axis [Hz] 
*tr_Zcam.v 
*tr_Zcam.u 

1e-12 
0 

M value [H] 
Abs. std. uncertainty of M [H] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.8 Transducer output terminals shunting admittance (optional) 
1D CSV table “output terminals shunting admittance path” is estimate of the shunting admittance 
between the transducer’s output terminals (component “Yca” in the correction diagram). It is part of 
the transducer loading corrections. The value is usually not measurable, but at least its uncertainty 
should be estimated in order take the loading effect into the uncertainty budget. 

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Cp – parallel capacitance [F] 

D – loss tangent [-] 
u(Cp) – absolute std. uncertainty Cp 
u(D) – absolute std. uncertainty D 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*tr_Yca_f.v [] Frequency axis [Hz] 
*tr_Yca_Cp.v 
*tr_Yca_Cp.u 
*tr_Yca_D.v 
*tr_Yca_D.u 

1e-15 
0 
0 
0 

Cp value [F] 
Abs. std. uncertainty of Cp [F] 
D value [-] 
Abs. std. uncertainty of D [-] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.9 Optional buffer output series impedance (optional) 
1D CSV table “buffer output series impedance path” is effective series output impedance of the 
buffer placed between transducer and output terminals “Zca”/”Zcal”. The buffer presence is 
identified by this correction, so do not assign it to tell TWM that no buffer is used.  

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Rs – series resistance [Ω] 

Ls – series inductance [H] 
u(Rs) – absolute std. uncertainty Rs 
u(Ls) – absolute std. uncertainty Ls 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*tr_Zbuf_f.v [] Frequency axis [Hz] 
*tr_Zbuf_Rs.v 
*tr_Zbuf_Rs.u 
*tr_Zbuf_Ls.v 
*tr_Zbuf_Ls.u 

0 
0 
0 
0 

Rs value [Ω] 
Abs. std. uncertainty of Rs [Ω] 
Ls value [H] 
Abs. std. uncertainty of Ls [H] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 



1.4.1.10 Cable(s) series impedance (optional) 
1D CSV table “output cable series impedance path” is effective series impedance of the cable 
between transducer and digitizer (component “Zcb” in the correction diagram). It is part of the 
transducer loading corrections. In differential mode both high- and low-side cables are expected to 
be identical! Note the cable correction can be omitted if the transducer was calibrated together with 
the cable.  

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Rs – series resistance [Ω] 

Ls – series inductance [H] 
u(Rs) – absolute std. uncertainty Rs 
u(Ls) – absolute std. uncertainty Ls 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*Zcb_f.v [] Frequency axis [Hz] 
*Zcb_Rs.v 
*Zcb_Rs.u 
*Zcb_Ls.v 
*Zcb_Ls.u 

1e-9 
0 

1e-12 
0 

Rs value [Ω] 
Abs. std. uncertainty of Rs [Ω] 
Ls value [H] 
Abs. std. uncertainty of Ls [H] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.4.1.11 Cable(s) shunting admittance (optional) 
1D CSV table “output cable shunting admittance path” is estimate of the shunting admittance 
between the transducer’s output terminals (component “Ycb” in the correction diagram). It is part of 
the transducer loading corrections. In differential mode both high- and low-side cables are expected 
to be identical! Note the cable correction can be omitted if the transducer was calibrated together 
with the cable.  

 

Format of the CSV table: 

y-axis: frequency [Hz] 
Quantities: Cp – parallel capacitance [F] 

D – loss tangent [-] 
u(Cp) – absolute std. uncertainty Cp 
u(D) – absolute std. uncertainty D 

The QWTB quantity naming: 

QWTB name Default value Meaning 
*Ycb_f.v [] Frequency axis [Hz] 
*Ycb_Cp.v 
*Ycb_Cp.u 
*Ycb_D.v 
*Ycb_D.u 

1e-15 
0 
0 
0 

Cp value [F] 
Abs. std. uncertainty of Cp [F] 
D value [-] 
Abs. std. uncertainty of D [-] 

* - transducer prefix [4] (i.e. “u_” or “i_” or nothing) 

1.5 Digitizer corrections 
Digitizer correction dataset consists of the two parts: 

(i) Definition of the whole digitizer (interchannel corrections), 



(ii) Definition of the particular channels (corrections that are independent to another 
channel or HW). 

1.5.1 Digitizer correction table format 
The format of every correction table for the digitizer and its channels is identical. The format was 
designed so the so it allows following: 

(i) Filtering the correction file by attributes of the digitizer 
(ii) Automatic selection or interpolation of the correction data by the configuration 

(parameters) of the digitizer. 
(iii) Loading either embedded numeric tables or CSV tables. 

The correction data are always enclosed in the INFO file section, where the “my correction name” is 
the name of the correction: 

#startsection:: my correction name 
 // correction content    
#endsection:: my correction name 

 

The correction must contain at least one item – the matrix with the correction data named “value”: 

#startsection:: my correction name 
       
        // up to 2D matrix with the list of values of the correction: 
        #startmatrix:: value 
                0.0; 0.10000; 0.20000 
                0.0; 0.10000; 0.20000 
                0.0; 0.01000; 0.02000 
        #endmatrix:: value 
    
#endsection:: my correction name 

 

The value may be scalar, vector or 2D matrix of real numbers. If nothing else is present in the 
correction section, the correction loader will load the table of values as it is and will pass it to the 
QWTB algorithm under quantity name defined by the particular correction (see particular correction 
descriptions). The value may also contain relative path(s) to the CSV tables (single, vector of CSV files 
or 2D matrix of CSV files) that contains CSV table with 1D or 2D dependence (see introduction). If the 
“value” contains real numbers, the TWM can also load associated absolute std. uncertainty from 
complementary matrix “uncertainty” (for CSV file mode the uncertainty is part of the CSV table): 

#startsection:: my correction name 
       

// ........ 
 
#startmatrix:: uncertainty 

                0.00; 0.00010; 0.00020 
                0.00; 0.00010; 0.00020 
                0.00; 0.00011; 0.00022 
        #endmatrix:: uncertainty 
    
#endsection:: my correction name 

 

Any correction can be disabled without removing the correction section by inserting line: 

#startsection:: my correction name 
       

// ........ 
disabled:: 1 

    
#endsection:: my correction name 

 



The correction loader can automatically select or interpolate between the values in the matrices 
“value” (and “uncertainty”) based on the value of any attribute (parameter) of the digitizer that is 
present in the measurement header. This is useful whenever the correction value depends on some 
setting of the digitizer. For example the measurement header always contains parameter “voltage 
ranges [V]” with range of the digitizer so it is possible to insert following section to the correction:  

#startsection:: my correction name       
 
// ........ 

                
        // --- List of parameters on which the correction values depends: --- 
        // primary parameter (remove if not used): 
        #startsection:: primary parameter 
                 

// name of the HW parameter: 
//  note: it must be exact name of the parameter that appears in measurement header 
name:: voltage ranges [V] 

                                 
// is this parameter interpolable? 
//  note: set to 0 or remove if not interpolable 
interpolable:: 0 

                 
// list of supported values of a primary parameter on which the correction depends: 
//  eg.: range of the digitizer 
#startmatrix:: value 

1 
10 
100 

#endmatrix:: value 
                 
         #endsection:: primary parameter 
    
#endsection:: my correction name 

 

The section “primary parameter” defines vertical axis of interpolation (selection) of the “value” 
matrix. I.e. for range value “10”, it will select second row of table “value”. The “value” of the 
interpolation parameter may be string as well as numeric. If it is numeric and the “interpolable” is 
non-zero, the loader will interpolate the “value” vertically per columns. If section “secondary 
parameter” is added to the correction section, it will do the same as “primary parameter” except in 
horizontal direction. Note each parameter reduces size of the “value” matrix by one dimension by 
the interpolation/selection, so when it is 2D matrix and one parameter is used, it will be interpolated 
to 1D vector (horizontal or vertical). If two parameters are defined, it will be interpolated to scalar 
value. 

Note if the “value” matrix of the correction data is table of paths to CSV files, the loader will 
select/interpolate between the CSV tables as well. It will first interpolate content of all involved CSV 
tables to identical x- and y-axes, then it will interpolate between the tables by the “primary 
parameter” and “secondary parameter”, so the result is one CSV table. This is useful for example for 
the frequency dependence of the digitizer channel gain which may be dependent on the aperture 
and range of the digitizer. 

Last supported feature of the correction section is filtering the corrections by attribute of the 
digitizer. Let’s assume the measurement header contains parameter “sampling mode”. The filter 
may look like this: 

#startsection:: my correction name       
 
// ........ 

                
// --- Filtering of the correction by HW attributes: --- 
// this is the list of channel specific attributes for which the correction is valid 
// anything put here will be checked with the digitizer setup stored in the header file 
// of the measurement and if it does not match, the loader will return an error 
#startmatrix:: valid for attributes 

sampling mode 
#endmatrix:: valid for attributes 

         



// list of allowed values of attribute 1 (eg.: sampling mode): 
#startmatrix:: sampling mode 

DSDC 
DSAC 

#endmatrix:: sampling mode 
 
#endsection:: my correction name 

 

The “valid for attributes” list defines list of measurement header attributes which are used for 
filtering. Each attribute has its own list of allowed string values. In this case matrix “sampling mode” 
contains values “DSDC” and “DSAC”. If any other value is found in the measurement header or the 
“sampling mode” attribute is not found at all, the loader will return an error, which signalizes the 
correction is not compatible with selected HW and its configuration. 

1.5.2 Digitizer corrections 
The digitizer correction defines the digitizer as a whole system. It contains list of all channels (e.g. 
sampling multimeters used in the setup). It also contains correction data which are somehow defines 
relation between multiple channels, such as interchannel timeshift. Example of the digitizer 
correction header INFO file is show in the following text: 

// correction type: 
type:: digitizer 
 
// description of the digitizer corrections:  
name:: Demonstration corrections for setup with two 3458A digitizers 
 
// names of the channels as they appear in the digitizer identification: 
// these are exact unique names of the channels in the order that will be loaded to the SW 
#startmatrix:: channel identifiers 
        HP3458A, sn. MY45053095 
        HP3458A, sn. MY45053104 
#endmatrix:: channel identifiers 
 
// relative links to the files with channel corrections for each channel: 
#startmatrix:: channel correction paths 
        ..\channel_MY45053095\HP3458_MY45053095.info 
        ..\channel_MY45053104\HP3458_MY45053104.info 
#endmatrix:: channel correction paths 
 
// here follows definitions of ANY correction tables 
// .......... 

 

The identifier of the correction type “type” must be set to value “digitizer”. The “name” is any string 
describing the correction data file. Next, there is a list of a digitizer channel identifiers “channel 
identifiers”. This is the list of digitizer channel identification strings exactly as they are returned 
during the instrument identification in the TWM tool. These are used to filter the correction file only 
for particular instruments. Otherwise the TWM tool will return an error if the processing of data is 
initiated. Next item is “channel correction paths” which are relative paths to the files with the 
channel corrections, one for each channel of the digitizer. Next, the correction data tables follows.  

1.5.2.1 Inter-channel time-shift correction (optional) 
The table “interchannel timeshift” defines correction values for time shifts between the channels of 
the digitizer. It must be a row vector of values, one for each channel, that defines correction of time 
shift of each channel relative to the first channel in the “channel indentifiers” list, e.g. for three 
channels:  

#startsection:: interchannel timeshift 
       
        #startmatrix:: value 
                0.0; 0.010000; 0.020000 
        #endmatrix:: value 
        #startmatrix:: uncertainty 
                0.0; 0.000012; 0.000011 
        #endmatrix:: uncertainty 
    



#endsection:: interchannel timeshift 

 

Note the first value is always zero. Shown example means second channel correction is 
(0.010000 ± 0.000012) s, and third correction is (0.020000 ± 0.000011) s. Note it is a correction 
factor, not a time shift, so the sign of the values is opposite to the measured time shifts. The 
correction is optional. By default the time shifts and uncertainty is zero. 

The values of the time shift are combined with the timestamps coming from the digitizer and are 
passed to the QWTB algorithm according to the rules defined in [4]. 

1.5.2.2 Timebase correction (optional) 
The correction “timebase correction” defines relative correction to the error of timebase of the 
digitizer. It is optional parameter. E.g.: value +1e-7 means the actual timebase of the digitizer f_ref is: 
f_ref = f_nom*(1 + 1e-7). Note the value is common for all channels thus it was placed in the digitizer 
correction instead of channel correction. 

The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
adc_freq.v 
adc_freq.u 

0 
0 

Value of correction 
Abs. std. uncertainty 

1.5.2.3 Inter-channel crosstalk 
To be defined.  

1.5.3 Channel corrections 
Channel corrections define corrections that apply only to a single channel of the digitizer. Example of 
the channel correction file header: 

// type of the correction 
type:: channel 
 
// correction name string 
name:: Channel correction HP3458A, sn. MY45053095 
 
// device/channel identification as it appears in the digitizer identification 
//  note: leave empty or remove if this correction should be independent of the instrument/channel 
channel identifier:: HP3458A, sn. MY45053095 
 
// here follows definitions of ANY correction tables 
// .......... 
 

The “type” must be “channel” for the channel correction file. “name” is any string describing the 
correction file. “channel identifier” is optional item that will cause the TWM correction loader will 
throw and error if this channel correction is applied digitizer channel with different identification. It 
must be the exact string as returned by the TWM tool during digitizer identification. It may be 
removed if it is not required. 

1.5.3.1 Nominal gain (optional) 
Optional correction “nominal gain” defines DC gain of the digitizer and its std. uncertainty. The value 
is combined with relative channel frequency transfer to absolute transfer (see below). Example: 

#startsection:: nominal gain 
       

#startmatrix:: value 
1.000005 

#endmatrix:: value 
#startmatrix:: uncertainty 

0.000003 
#endmatrix:: uncertainty 

    
#endsection:: nominal gain 



1.5.3.2 Gain frequency transfer (optional) 
Optional correction “gain transfer” defines relative frequency dependence of the gain of the digitizer 
channel. It is combined with the nominal gain to absolute gain transfer: 

abs gain = nominal gain * gain 

abs gain uncertainty = sqrt((nominal gain uncertainty)^2 + u(gain)^2) 

The calculated absolute correction value is multiplied by the measured amplitude to get actual 
amplitude of the input signal.  

The correction data is 2D CSV table dependent on the frequency and amplitude. Example of the 
correction section: 

#startsection:: gain transfer 
       

#startmatrix:: value 
csv\tfer_gain.csv 

#endmatrix:: value 
    
#endsection:: gain transfer 

 

2D CSV table format: 

x-axis: harmonic component amplitude [V] 
y-axis: harmonic component frequency [Hz] 
Quantities: gain – relative gain 

u(gain) – absolute std. uncertainty of gain 
The value of absolute gain will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_gain_f.v [] Frequency axis 
*adc_gain_a.v [] Amplitude axis 
*adc_gain.v 
*adc_gain.u 

1 
0 

Value of correction 
Abs. std. uncertainty 

* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 

1.5.3.3 Phase frequency transfer (optional) 
Optional correction “phase transfer” defines frequency dependence of the correction to the phase 
error of the digitizer channel. It is the value which must be added to the measured phase of the 
harmonic component to get actual phase angle of the input signal. 

The correction data is 2D CSV table dependent on the frequency and amplitude. Example of the 
correction section: 

#startsection:: phase transfer 
       

#startmatrix:: value 
csv\tfer_phi.csv 

#endmatrix:: value 
    
#endsection:: phase transfer 

 

2D CSV table format: 

x-axis: harmonic component amplitude [V] 
y-axis: harmonic component frequency [Hz] 
Quantities: phi – phase correction [rad] 



u(phi) – absolute std. uncertainty of gain [rad] 
The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_phi_f.v [] Frequency axis 
*adc_phi_a.v [] Amplitude axis 
*adc_phi.v 
*adc_phi.u 

0 
0 

Value of correction 
Abs. std. uncertainty 

* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 

1.5.3.4 DC offset (optional) 
Correction “dc offset” defines DC offset of the digitizer and its uncertainty. Note it is DC offset, not 
the correction! Example of the correction section: 

#startsection:: dc offset 
       

#startmatrix:: value 
1.234e-6 

#endmatrix:: value 
#startmatrix:: uncertainty 

2.5e-6 
#endmatrix:: uncertainty 

    
#endsection:: dc offset 

 

Non-zero value enables the correction. This correction has no uncertainty value. 

The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_offset.v 0 DC offset 
*adc_offset.u 0 Absolute uncertainty of DC offset 
* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 

1.5.3.5 Aperture correction (optional) 
Correction “aperture correction” defines whether the TWM algorithms should perform gain and 
phase correction to the effect of the aperture time of the ADC. The correction has effect only for 
digitizers that have aperture parameter such as 3458A. It will perform corrections: 

k_gain = Ta*pi*f/sin(Ta*pi*f) [-], 

k_phi = Ta*pi*f [rad], 

where the Ta is aperture time from measurement header. Example of the correction section: 

#startsection:: aperture correction 
       

#startmatrix:: value 
1 

#endmatrix:: value 
    
#endsection:: aperture correction 

 

Non-zero value enables the correction. This correction has no uncertainty value. 

The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_aper_corr.v 1 0/1 to disable/enable correction 
* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 



1.5.3.6 SFDR value (optional) 
Correction “sfdr” defines effects of the distortion of the digitizer. It is defined as 2D CSV table of 
SFDR values dependent on fundamental component amplitude and frequency. It is a value in [dB]. 
Note the values are positive, i.e.: 120 dB means max spur amplitude is A0*10^-(120/20). The SFDR 
value is not correction as such as SFDR cannot be used to correct anything. It is just used by the TWM 
algorithms to estimate uncertainty caused by the SFDR. 

Example of the correction section: 

#startsection:: sfdr 
       

#startmatrix:: value 
csv\sfdr.csv 

#endmatrix:: value 
    
#endsection:: sfdr 

 

2D CSV table format: 

x-axis: Fundamental harmonic component amplitude [V] 
y-axis: Fundamental harmonic component frequency [Hz] 
Quantities: sfdr – positive SFDR value [dB] 
The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_sfdr_f.v [] Frequency axis 
*adc_sfdr_a.v [] Amplitude axis 
*adc_sfdr.v 180 SFDR values 
* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 

1.5.3.7 RMS jitter (optional) 
Correction “rms jitter” defines rms value of the channel time jitter in [s]. Example of the jitter 
correction section: 

#startsection:: rms jitter 
       

#startmatrix:: value 
1e-8 

#endmatrix:: value 
    
#endsection:: rms jitter 

 

The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_jitter.v 0 RMS jitter value [s] 
* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 

1.5.3.8 Input admittance (optional) 
Correction “input admittance” defines input admittance of the digitizer channel. It is used as a part 
of the transducer loading corrections where it is component “Yin” (and “lo_Yin” for differential 
connection). The correction data are in form of 1D CSV table. Example of the correction section: 

#startsection:: input admittance 
       

#startmatrix:: value 
csv\Y_inp.csv 

#endmatrix:: value 
    
#endsection:: input admittance 



 

1D CSV table format: 

y-axis: Frequency [Hz] 
Quantities: Cp – parallel capacitance [F] 

Gp – parallel loss conductance [S] 
u(Cp) – absolute std. uncertainty of Cp [F] 
u(Gp) – absolute std. uncertainty of Gp [S] 

The value will be passed to the QWTB under quantity names: 

QWTB name Default value Meaning 
*adc_Yin_f.v [] Frequency axis 
*adc_Yin_Cp.v 
*adc_Yin_Cp.u 
*adc_Yin_Gp.v 
*adc_Yin_Gp.u 

0 
0 

1e-12 
0 

Cp value [F] 
u(Cp) [F] 
Gp value [S] 
u(Gp) [S] 

* - channel prefix [4] (e.g. “u_”, “i_”, “u_lo_”, …) 
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Appendix #7  

 
 

A2.3.2 – Algorithms for fast and robust calculation of power and 
PQ parameters and exchange formats 



A2.3.2 Development of algorithms 
Following document summarizes interface between the algorithm and the QWTB toolbox [3] to 
which it will be integrated. Updated versions of the document will be present at the in the TWM 
GitHub repository [1]. Author strongly suggests to check the updates as the parameters may change 
once the design of the wideband setup is determined. 

Version V0.6.9, 7.8.2018, Stanislav Mašláň. 

1.1 Input quantities 
The format of the input quantities is given by the QWTB design. QWTB toolbox passes parameters to 
the algorithm’s wrapper function as a structure containing substructures, one for each quantity. Each 
quantity structure may contain several items. First, the values ‘v’, associated uncertainty ‘u’ if exists, 
etc. For more details see documentation of the QWTB [3]. Example of the input to the algorithms 
wrapper: 

DI.Ts.v – value of sampling period 
DI.Ts.u – uncertainty of sampling period 
DI.y.v – input waveform data 
DI.y.u – uncertainty of the input waveform data 
… 
 
Note the uncertainty ‘u’ may not be present if the quantity does not need it (e.g. window type for 
FFT)!  
Rules for naming the input quantities: 

1) Each algorithm will receive the predefined mandatory parameters listed in the table below. 
2) Each algorithm may receive custom correction quantities from the TWM corrections loader 

under names defined by the user. 
3) Each algorithm may have any number of custom parameter-quantities that are entered by 

the user on runtime, such as window type, etc.  

Note the names of the custom quantities and parameters must not collide with the predefined 
names of the mandatory parameters! 

Each algorithm will automatically receive following quantities from the TWM system: 

Name Note type Description 
support_diff 3 Integer 

scalar 
This is special parameter that has no importance for 
the algorithm, but its presence in ‘alg_info.m’ tells 
TWM tool that this algorithm can accept differential 
input data from the transducers. 

support_multi_inputs 4 Integer 
scalar 

This is special parameter that has no importance for 
the algorithm, but its presence in ‘alg_info.m’ tells 
TWM tool that the algorithm is capable of 
processing more than one waveform per input 
channel, which is intended for processing of several 



repeated measurements at once. 
Ts 3 Real scalar Sampling period in [Seconds]. 
y or 
u and i 

2, 3, 4 Real column 
vector(s) 

Sample data. For single input channel algorithm, 
such as THD, only one vector ‘y’ will be passed. 
For multichannel algorithms, such as power, two 
vectors are passed, the voltage and current. Both ‘u’ 
and ‘i’ vectors have the same size. 
The samples are in [Volts] as returned by the 
digitizer (no transducer scaling). 
Note the ‘y’, ‘u’, ‘i’ may have multiple columns, one 
per record if the algorithm supports 
‘support_multi_inputs’! 

time_stamp 6 Real scalar Relative time-stamp of the first sample of ‘y’ or ‘u’. 
The time-stamp is relative time to some reference 
event of the TWM system. In case of 5922 digitizer it 
is a reset of the cards. This has relevance for 
instance for time multiplexed measurements. To get 
time-shift of other channels of the system, use 
‘time_shift*’ values. Note this has also relevance for 
single input algorithms. E.g. phase measurement 
algorithm may use this to cancel each channel 
timeshift so the estimated phase of each channel 
can be compared. 

time_shift  Real scalar Timeshift between ‘u’ and ‘i’ channel in [Seconds] 
(t_i – t_u). Applies only for multichannel algorithms. 

time_shift_lo 2 Real scalar Timeshift between high-side and low-side channel of 
the differential channels in [Seconds] (t_hi – t_lo). 

adc_jitter 1, 2 Real scalar Sampling jitter value [Seconds]. 
adc_offset 1, 2 Real scalar Offset voltage of ADC. 
adc_aper 3 Real scalar Aperture value [s] of the ADC at current settings. 

Note this value may not be available for some ADCs.  
adc_aper_corr 1, 2, 

3, 5 
Real scalar Non-zero value in this parameter indicates the 

algorithm should automatically apply gain/phase 
correction to compensate aperture effect. Note it 
will work only if ‘adc_aper’ aperture time is present.  

adc_gain 1, 2 2D real 
matrix 

2D matrix of the absolute gain coefficients of the 
digitizer in [Vout/Vin].  I.e. value 1.001 means the 
sample data will be multiplied by 1.001 to get 
corrected value. Dependent on the frequency 
‘adc_gain_f’ and amplitude ‘adc_gain_a’. 

adc_gain_f 1, 2, 3 Real column 
vector 

Independent variable of the ‘adc_gain’ containing 
nominal frequency in [Hertz], one item per row of 
‘adc_gain’. 

adc_gain_a 1, 2, 3 Real row 
vector 

Independent variable of the ‘adc_gain’ containing 
nominal amplitude in [Volts], one item per column 
of ‘adc_gain’. 

adc_phi 1, 2 2D real 
matrix 

2D matrix of the absolute phase correction 
coefficients of the digitizer channel in [rad]. Value 
+12e-6 rad means the phase of harmonic 
component must be increased by 12e-6 rad. Note 
this is not interchannel phase correction! Dependent 



on the frequency ‘adc_phi_f’ and amplitude 
‘adc_phi_a’. 

adc_phi_f 1, 2, 3 Real column 
vector 

Independent variable of the ‘adc_phi’ containing 
nominal frequency in [Hertz], one item per row of 
‘adc_phi’. 

adc_phi_a 1, 2, 3 Real row 
vector 

Independent variable of the ‘adc_phi’ containing 
nominal amplitude in [Volts], one item per column 
of ‘adc_phi’. 

adc_freq  Real scalar Frequency correction of the digitizer timebase. Note 
it is expected to have identical correction for all 
channels. 

tr_gain 1 2D real 
matrix 

2D matrix of the absolute gain coefficients of the 
transducer in [Vin/Vout] for dividers or [Ain/Vout] 
for shunt. Dependent on the frequency ‘tr_gain_f’ 
and amplitude ‘tr_gain_a’. 

tr_gain_f 1, 3 Real column 
vector 

Independent variable of the ‘tr_gain’ containing 
nominal frequency in [Hertz], one item per row of 
‘tr_gain’. 

tr_gain_a 1, 3 Real row 
vector 

Independent variable of the ‘tr_gain’ containing 
nominal rms value in [Volts] or [Ampers], one item 
per column of ‘tr_gain’. 

tr_phi 1 2D real 
matrix 

2D matrix of the absolute phase correction 
coefficients of the transducer in [rad]. Dependent on 
the frequency ‘tr_phi_f’ and amplitude ‘tr_phi_a’. 

tr_phi_f 1, 3 Real column 
vector 

Independent variable of the ‘tr_phi’ containing 
nominal frequency in [Hertz], one item per row of 
‘tr_phi’. 

tr_phi_a 1, 3 Real row 
vector 

Independent variable of the ‘tr_phi’ containing 
nominal rms value in [Volts] or [Ampers], one item 
per column of ‘tr_phi’. 

crosstalk_re 

crosstalk_im 

??? Real column 
vectors 

Complex crosstalk coefficients expressing complex 
transfer from ‘u’ channel to ‘i’ channel defined as: 
crosstalk = i/u. Crosstalk in the opposite direction is 
assumed to be identical. The value is dependent on 
the frequency ‘crosstalk_f’. 

TODO: how to pass corrections for the differential 
mode??? Up to 4x3xN matrix? Or up to four 3xN 
matrices? 

crosstalk_f ???, 3 Real column 
vector 

Independent variable of the ‘crosstalk*’ containing 
nominal frequency in [Hertz], one item per row of 
‘crosstalk*’. 

adc_sfdr 1, 2 2D real 
matrix 

Spurious Free Dynamic Range coefficients of the 
digitizer channel [dBc]. The values are ratios of the 
fundamental amplitude to the highest spurious 
component, i.e. 100 dBc means highest spur is 
fundamental_amplitude*1e-5. The value is 
dependent on the fundamental frequency 



‘adc_sfdr_f’ and amplitude ‘adc_sfdr_a’. 
adc_sfdr_f 1, 2, 3 Real column 

vector 
Independent variable of the ‘adc_sfdr’ containing 
frequency of the fundamental harmonic in [Hertz], 
one item per row of ‘adc_sfdr’. 

adc_sfdr_a 1, 2, 3 Real row 
vector 

Independent variable of the ‘adc_sfdr’ containing 
amplitude of the fundamental harmonic in [Volts], 
one item per column of ‘adc_sfdr’. 

tr_sfdr 
tr_sfdr_f 
tr_sfdr_a 

1, 3  Spurious Free Dynamic Range coefficients of the 
transducer. Meaning is the same as for digitizer. 

adc_Yin_Cp 
adc_Yin_Gp 
adc_Yin_f 

1, 2 Real column 
vectors 

Measured input capacitance ‘adc_Yin_Cp’ and 
conductance ‘adc_Yin_Gp’ of the digitizer channel. 
One row per frequency in ‘adc_Yin_f’. Note the 
‘adc_Yin_f’ may be empty matrix. In such case the 
capacitance and resistance are not dependent on 
frequency. 

tr_type 3 Char string String identifier of the connected transducer: 
empty – no tran. correction will be applied 
‘shunt’ – resistive current shunt 
‘rvd’ – resistive voltage divider 

tr_Zlo_Rp 
tr_Zlo_Cp 
tr_Zlo_f 

1 Real column 
vectors 

RVD low-side impedance value in Cp-Rp format, one 
column per frequency in ‘tr_Zlo_f’. Note the 
‘tr_Zlo_f’ may be empty matrix. In such case the 
impedance is not dependent on frequency. Note this 
parameter have importance only for RVD and is part 
of the loading correction. 

tr_Zca_Rs 
tr_Zca_Ls 
tr_Zca_f 

1 Real column 
vectors 

Effective series impedance of the transducer’s 
output terminals in Ls-Rs format, one row per 
frequency in ‘tr_Zca_f’. Note the ‘tr_Zca_f’ may be 
empty matrix. In such case the impedance is not 
dependent on frequency. 

tr_Yca_Cp 
tr_Yca_D 
tr_Yca_f 

1 Real column 
vectors 

Effective shunting admittance of the transducer’s 
output terminals in Cp-D format, one row per 
frequency in ‘tr_Yca_f’. Note the ‘tr_Yca_f’ may be 
empty matrix. In such case the impedance is not 
dependent on frequency. 

tr_Zcal_Rs 
tr_Zcal_Ls 
tr_Zcal_f 

1 Real column 
vectors 

Effective series impedance of the transducer’s low-
side terminal in Ls-Rs format, one row per frequency 
in ‘tr_Zcal_f’. Note the ‘tr_Zcal_f’ may be empty 
matrix. In such case the impedance is not dependent 
on frequency. 

tr_Zcam 
tr_Zcam_f 

1 Real column 
vectors 

Effective mutual inductance of the transducer’s 
output terminals, one row per frequency in 
‘tr_Zcam_f’. Note the ‘tr_Zcam_f’ may be empty 
matrix. In such case the impedance is not dependent 
on frequency. 

Zcb_Rs 
Zcb_Ls 
Zcb_f 

1 Real column 
vectors 

Effective series impedance of the cable(s) between 
transducer and digitizer in Ls-Rs format, one row per 
frequency in ‘Zcb_f’. Note the ‘Zcb_f’ may be empty 
matrix. In such case the impedance is not dependent 
on frequency. 



Ycb_Cp 
Ycb_D 
Ycb_f 

1 Real column 
vectors 

Effective shunting admittance of the transducer’s 
output terminals in Cp-D format, one row per 
frequency in ‘Ycb_f’. Note the ‘Ycb_f’ may be empty 
matrix. In such case the impedance is not dependent 
on frequency. 

adc_bits 1, 2, 3 Integer 
scalar 

Bit resolution of the ADC of the digitizer. 

adc_nrng 1, 2, 3 Real scalar Range of the digitizer channel in [Volts]. 
lsb 1, 2, 3 Real scalar Value of the least significant bit of the ADC [Volts]. 
 

Note 1): The parameters are defined for each channel of the measurement system. For algorithms 
with single input ‘y’ the names of the parameters are as defined in the table above. For multichannel 
algorithms which have two inputs ‘u’ and ‘i’ the parameters will be combined with prefixes defining 
the channel ‘u_’ and ‘i_’. See following example for parameter naming rules: 

Parameter name U channel parameter name I channel parameter name 
adc_gain u_adc_gain i_adc_gain 
adc_gain_f u_adc_gain_f i_adc_gain_f 
adc_nrng u_adc_nrng i_adc_nrng 
… … … 
 

Note 2): The TWM supports differential connection of the transducers, i.e. each transducer have two 
digitizer channels assigned: (i) high-side, (ii) low-side as shown in [5]. If the algorithm has input 
quantity ‘support_diff’ and user sets the TWM to the differential mode, the TWM will pass additional 
quantities for the low-side of the transducer (ADC channel data and its corrections). If user of TWM 
sets it to single-ended mode, the TWM will pass only the single ended quantities. The naming 
convention: 

Single ended parameter name High-side name Low-side name 
y y y_lo 
adc_gain adc_gain lo_adc_gain 
U u u_lo 
I i i_lo 
u_adc_gain u_adc_gain u_lo_adc_gain 
u_adc_gain_f u_adc_gain_f u_lo_adc_gain_f 
u_adc_nrng u_adc_nrng u_lo_adc_nrng 
… … … 
Note the transducers have no additional low-side quantities! The impedance model of the transducer 
is made in the single ended mode and the connection cable ‘Zcb’ and ‘Ycb’ is expected to be identical 
for both low and high side (for simplification). 

Note 3): These parameters have no assigned uncertainty, just value ‘v’. 

Note 4): The main waveform data quantities ‘y’, ‘u’ and ‘i’ can be either single waveforms (single 
record) or can be multi-record if the ‘support_multi_inputs’ is present. In case the TWM will pass the 
multiple records at once, it will set ‘support_multi_inputs = N’ and the ‘y’, ‘u’ and ‘i’ will contain N 
columns, one for each record.  



Note 5): Integrating ADCs have large gain/phase errors as the aperture time approaches period of 
the sampled signal. One way to compensate it is to create ADC gain/phase calibration tables that 
includes this effect. However, it is more convenient to correct it by formula as it can be easily 
calculated and correct the residual errors using ADC gain/phase tables. The formulas algorithm 
should apply are: gain_correction = (pi*f*ta)/sin(pi*f*ta), where f is analyzed frequency component 
and ta is aperture time. Phase correction is calculated as: phase_correction = +pi*f*ta. 

Note 6): The ‘time_stamp’ parameter is relevant for both single and dual input algorithms. The TWM 
algorithms executed function ‘qwtb_exec_algorithm()’ does following. It takes interchannel timeshift 
correction for each of the digitizer channels: tc = [0, t2-t1, t3-t1 , …] and timestamps returned by the 
digitizer (these are in 99.999% identic for all channels but not necessarily): ts = [ts1, ts2, ts3, …] and it 
will sum the two vectors: tt = ts + tc. Now assume we calculate mutual phase angles of three line 
phases e.g. by PSFE algorithm. The phases are connected to the channels in order: [L1, L2, L3]. So the 
TWM will repeat the PSFE algorithm for each of the channels (phases) but for L1 it will pass in 
‘time_stamp = tt(1)’, for L2 ‘time_stamp = tt(2)’ and for L3 ‘time_stamp = tt(3)’. Therefore the three 
results should be synchronized (time shifts corrected). The same applies for dual input algorithms or 
differential algorithms, except apart from ‘time_stamp’ the TWM also calculates the ‘time_shift‘ and 
‘*time_shift_lo’ values from the vector ‘tt’. Therefore each algorithm that calculates phase or some 
time event should perform correction to the ‘time_stamp’ (optionally). For phase the correction is 
defined by: phi_corr = -2*pi*f_of_component*time_shift. 

 

Note if any of the default corrections is not available (not loaded to the TWM system), it will be still 
passed into the algorithm but with nominal value, such as 1.0 for gains, 0.0 for phase, etc. However 
for convenience of the user who may want to call the algorithm manually it is better to make the 
algorithm in such a way it does not require any correction data at the input and it will therefore use 
nominal values. 

 

Note that independent variables (amplitude and frequency) of the 1D or 2D dependencies in the 
input quantities table may differ for each channel and even for gain and phase of the same 
correction! The ranges and steps of the independent variables depend on the user correction data 
files. Each algorithm must check the range of each of the correction individually and somehow 
respond if the correction range does not cover the required range (throw and error, warning, etc.). 

Note the 1D and 2D corrections which are dependent on the frequency or amplitude quantity may 
have one or both of the dependencies undefined! I.e. the corresponding dimension of the correction 
data ‘v’ and uncertainty ‘u’ matrices will have size of 1. In such case the algorithm shall assume the 
correction is not dependent on that quantity and apply the correction and its uncertainty in the 
whole range of frequency, amplitude or both. E.g.: 

adc_sfdr.v = [93]; means algorithm shall assume 93 dBc SFDR for all frequencies and amplitudes. 
adc_sfdr.v = [93; 90]; adc_sfdr_f.v = [1e3; 1e4]; means to assume 93 dBc for frequency 1e3 Hz and 
90 dBc for frequency 1e4. 

Note the SFDR data are not meant as corrections. These are only for estimation of the uncertainty. 



Note the ‘lsb’ parameter may not be present depending on the selected digitizer. If it is not available, 
the algorithm should use combination of the ‘adc_bits’ and ‘adc_nrng’ for estimation of the ‘lsb’.  

1.2 Input quantities preparation/conversion 
The inherent feature of the QWTB toolbox is it automatically converts vectors to horizontal (row 
vectors). Under normal conditions it is useful function because algorithm will receive the vector data 
always in the same orientation. However, in case of the 2D correction data it will cause a trouble as 
the correction data may have one dimension undefined (unity size). Therefore, the data become 1D 
vector and it may be incorrectly oriented. In order to fix it, a function 
‘qwtb_restore_twm_input_dims()’ was made (available in ‘TWM\octprog\utils’). The function shall 
be called as a first thing in the algorithm’s wrapper ‘alg_wrapper.m’. It will restore original 
orientations of all predefined correction to the ones defined in the list above. It can be also called to 
fix orientation of individual corrections, see its help. After the orientation fix it will check availability 
of the default quantities (see table above) and it will generate default values for each of them. 
Therefore the algorithm wrapper won’t fail even if none of the correction is passed in. On top of that 
is will also analyze the input quantities and sets a flags that are useful for further processing of the 
algorithm. 

Another function ‘qwtb_restore_correction_tables()’ was prepared. This will take the QWTB 
quantities and it will create TWM style correction tables for the 1D and 2D dependencies. Its use it 
not necessary, but it makes the algorithm must simpler to use as some comfortable functions for 
interpolation can be used. 

Example of the alg. startup: 

function dataout = alg_wrapper(datain, calcset) 
% Part of QWTB. Wrapper script for algorithm TWM-FPNLSF. 
             
    % Restore orientations of the input vectors to originals (before passing via QWTB) 
    % This is critical for the correction data!  
    [datain,cfg] = qwtb_restore_twm_input_dims(datain,1); 
 
    if cfg.y_is_diff 
        % Input data 'y' is differential: if it is not allowed, put error message here 
        %error('Differential input data ''y'' not allowed!');      
    end 
     
    if cfg.is_multi 
        % Input data 'y' contains more than one record: if it is not allowed, put error message here 
        error('Multiple input records in ''y'' not allowed!');  
    end 
         
    % Rebuild TWM style correction tables: 
    % This is not necessary but the TWM style tables are 
    % more comfortable to use then raw correction matrices 
    tab = qwtb_restore_correction_tables(datain,cfg); 
         
     
    % -------------------------------------------------------------------- 
    % Start of the algorithm 
    % -------------------------------------------------------------------- 
     
    % Processing stuff 
    … 
     
    % --- returning results ---     
    dataout.f.v =  
    dataout.f.u =  
    … 
            



    % -------------------------------------------------------------------- 
    % End of the algorithm. 
    % -------------------------------------------------------------------- 
 
end 
 

1.3 Output quantities 
Algorithm may return any quantities: scalars, vectors or matrices. Naming of the output quantities is 
irrelevant. It will be translated by the QWTB toolbox wrapper function and stored into the file. 

If the algorithm calculates frequency spectrum in some intermediate step of the calculation, it is 
preferred to return it as an output quantity together with its frequency scale so it can be displayed in 
the TWM software.  

1.4 Resources 
[1] TWM tool, url: https://github.com/smaslan/TWM 
[2] INFO-STRINGS, url: https://github.com/KaeroDot/info-strings 
[3] QWTB toolbox, url: https://qwtb.github.io/qwtb/ 
[4] GOLPI interface, url: https://github.com/KaeroDot/GOLPI 
[5] A231 Correction Files Reference Manual, url: 

https://github.com/smaslan/TWM/tree/master/doc/A231 Correction Files Reference 
Manual.docx 

 

https://github.com/smaslan/TWM
https://github.com/KaeroDot/info-strings
https://qwtb.github.io/qwtb/
https://github.com/KaeroDot/GOLPI
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
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Appendix #8  

 

Here appear the outcomes of the activity A2.3.3 and A2.4.4, and in 
particular: 

- The report describing: 

- The algorithms implemented including the description of 
their internal structure and an uncertainty calculation or 
estimation method; 

- The verification of algorithms. 
   

-  Sampling watt meter, power calculation algorithms.   
 

 

 



A2.4.4 Description of algorithms

Version: 2019-04-24, V0.9, Stanislav Mašláň, Marko Berginc

Note: Consider this document as a permanent draft! Further changes are very likely as
the algorithms are being further developed. However, the validation reports should reflect
current state of the algorithms in the TWM tool unless noted otherwise.

This document describes detailed internal function of algorithms developed in TracePQM activity
A2.3.2 and their uncertainty calculation developed in A2.3.5. The algorithm files are located in the
TWM project [2] in folder “octprog/QWTB” They are all integrated in the copy of QWTB toolbox [1].
This document won’t describe principle of the QWTB toolbox as it is documented on the project web
page [1]. The method how the algorithms are called by the TWM toolbox, i.e. what input quantities
they receive and what may be returned as a result is defined in the document [4].

In general, the goal of QWTB is to make a wrapper function (next it will be called just “wrapper”) that
translates the algorithm specific inputs and outputs to a unified format of input and output quantities.
This is job of the so called algorithm wrappers: PSFE, SP-WFFT, etc., which are already present in the
QWTB toolbox. These wrappers also may or may not contain some uncertainty calculation method or
methods. However, non of these wrappers apply any HW component corrections defined by the TWM
documents [4], [3]. Therefore, there is a second layer of wrappers (these will be called “TWM wrappers”
in the text), which starts with “TWM-” prefix, e.g.: TWM-PSFE, TWM-PWRTDI, etc. The TWM
wrappers contain all signal corrections defined by TWM. TWM wrappers perform the necessary TWM
correction, they call either a QWTB wrapper (e.g. PSFE) or calculate the result by themselves and
combines and returns the corrected results. Note some of the wrappers may call several other wrappers
to achieve the desired result. This approach reduces duplication of code in the QWTB toolbox. One of
these repeatedly called wrappers is “SP-WFFT” algorithm which is used for spectrum analysis.

References

[1] QWTB toolbox. https://qwtb.github.io/qwtb/.

[2] TWM tool. https://github.com/smaslan/TWM.

[3] Stanislav Mašláň. Activity A2.3.1 - Correction Files Reference Manual. https://github.com/

smaslan/TWM/tree/master/doc/A231CorrectionFilesReferenceManual.docx.

[4] Stanislav Mašláň. Activity A2.3.2 - Algorithms Exchange Format. https://github.com/smaslan/

TWM/tree/master/doc/A232AlgorithmExchangeFormat.docx.
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1 TWM-PSFE - Phase Sensitive Frequency Estimator

TWM-PSFE is a TWM wrapper for the Phase Sensitive Frequency Estimator algorithm (PSFE) [1].
PSFE is an algorithm for estimating the frequency, amplitude, and phase of the fundamental component
in harmonically distorted waveforms. The algorithm minimizes the phase difference between the sine
model and the sampled waveform by effectively minimizing the influence of the harmonic components.
It uses a three-parameter sine-fitting algorithm for all phase calculations. The resulting estimates show
up to two orders of magnitude smaller sensitivity to harmonic distortions than the results of the four-
parameter sine fitting algorithm.

The TWM wrapper TWM-PSFE is designed for single-ended transducers. It will estimate only
frequency in the differential input transducer mode. The algorithm is equipped by a fast uncertainty
estimator for the frequency quantity only.

1.1 TWM wrapper parameters

The TWM wrapper accepts inputs and corrections (see [4] for details) specified in the table 1. List of
output quantities is shown in the table 2. The TWM wrapper also accepts “calcset” options shown in
the table 3.

Table 1: List of input quantities to the TWM-PSFE wrapper.

Name Default Unc. Description
comp timestamp 0 N/A Enable compensation of phase shift by timestamp value:

φ′ = φ− 2 · π · f est · time stamp.
y
y lo

N/A
N/A

No
No

Input sample data vector and complementary low-side in-
put data vector y lo for differential mode only.

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

lsb
adc nrng
adc bits
lo lsb
lo adc nrng
lo adc bits

N/A
1000
40
N/A
1000
40

No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset
lo adc offset

0
0

Yes
Yes

Digitizer input offset voltage.

adc gain
adc gain f
adc gain a
lo adc gain
lo adc gain f
lo adc gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a
lo adc phi
lo adc phi f
lo adc phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
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Table 1: List of input quantities to the TWM-PSFE wrapper.

Name Default Unc. Description
adc aper corr
lo adc aper

0
0

No ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

time stamp 0 Yes Relative timestamp of the first sample y.
adc sfdr
adc sfdr f
adc sfdr a
lo adc sfdr
lo adc sfdr f
lo adc sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f
lo adc Yin Cp
lo adc Yin Gp
lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.
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Table 2: List of output quantities of the TWM-PSFE wrapper. The uncertainty marked * is just a
contribution of corrections, but PSFE contribution is not included and not validated.

Name Uncertainty Description
f Yes Estimated frequency [Hz].
A Yes* Estimated amplitude.
ph Yes* Estimated phase angle [rad].

Table 3: List of “calcset” options supported by the TWM-PSFE wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none” or “guf”.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

1.2 PSFE algorithm description

The algorithm implementation to the TWM structure consists of two levels: (i) wrapper “PSFE” and
its uncertainty estimator; (ii) TWM wrapper “TWM-PSFE”. The overall structure is shown in fig. 1.

START TWM corrections
loader

1) Low level 
PSFE wrapper call 

(parameter estimate) 

TWM-wrapper 
(scaling, correction

uncertainty) 

2) Low level 
PSFE wrapper call 

(uncertainty) 
Combining uncertainty

sources Returning results STOP

Low level wrapper TWM wraper

Figure 1: Overview of the TWM-PSFE algorithm wrapper.

1.3 TWM wrapper description

Block diagram of the internal structure of the TWM-PSFE wrapper is shown in fig. 2. The TWM wrapper
partially supports differential transducer input (see [3] for definition). However, in the differential mode
it only calculates frequency. The other parameters are ignored. Two differential inputs are directly
subtracted (y − y lo) in the differential mode. This is not usable for amplitude or phase estimation,
but it is sufficient for frequency estimation. The DC offset correction is applied directly to the time
domain signal y. Next, the PSFE is called first time to obtain estimates of the unscaled waveform.
The uncertainty is disabled, because not all required inputs to the uncertainty estimator are available
at this point. In single-ended mode follow corrections of the estimated signal parameters along with
the calculation of the correction uncertainties. When uncertainty calculation is enabled, the additional
inputs, such as SFDR and LSB are calculated and PSFE is called again, but this time with uncertainty
estimation enabled. The returned estimates are ignored, but the returned uncertainties are combined
with the corrections contributions and returned along the estimates A, phi and f .

1.4 PSFE description

The “Phase-Sensitive Frequency Estimation” algorithm (PSFE) is used to estimate the parameters of non
coherently sampled harmonically distorted sinewave signal. The main input parameter is the sampled
record y(n ·TS) having the length N and sampling period TS. Optionally, the initial frequency estimation
could be defined. The outputs of the algorithm are: (i) frequency, (ii) amplitude, and (iii) initial phase
of the fundamental signal and (iv) offset of the sampled signal.

The concept of the PSFE algorithm is shown in fig. 3. First, the approximate frequency of the record
is estimated using peak amplitude DFT bin frequency or using interpolated DFT frequency estimate. In
the following, the record having N samples is divided in two equally length subrecords W1 and W2. The
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Figure 2: Detailed internal structure of the TWM-PSFE algorithm wrapper.

W1 starts at the beginning of the record while the W2 starts after d number of samples within the record
where N/4 ≤ d ≤ N/2. The phases of W1 and W2 subrecords are estimated using three-parameters
sine fitting algorithm (3PSF) and the estimated phases are then subtracted to obtain estimated sampled
signal phase difference. When the subrecord distance d is selected to position two subrecords as close
as possible to the integer number of signal periods, the 3PSF phase estimation error due to harmonics
will almost completely cancel out in (the difference between the estimated phase and the fundamental
signal phase φ1 is a periodic function with frequency f , independent of the harmonic components in the
sampled signal). Using equation 1 will thus provide a more accurate frequency estimate of the sampled
signal and by repeating the procedure described above, the phase difference between the sine model and
the sampled waveform will be minimised and the estimated frequency will converge toward the actual
frequency of the sampled signal.

f̂ =
∆φ̂ε

2 · π · Ts · d
. (1)

The iterations j are completed when error according equation 2 is ε < 2.4 · 10−12 or when the number of
iterations exceeds 20. However, the PSFE algorithm typically needs only a few iterations to converge to
the final value. After obtaining the frequency, the amplitude and initial phase of the record are estimated
using the 3PSF algorithm and complete sampled record y. The PSFE algorithm shows up to two orders
of magnitude smaller sensitivity to harmonic distortions than the results of the four parameter sine
fitting algorithm with only a slight increase in noise standard deviation and only a slight increase in
computational requirements and estimation time, independent of the number of harmonic components.

ε =

∣∣∣∆φ̂ε,j−1 −∆φ̂ε,j

∣∣∣
2 · π ·N · Ts · d · f̂j−1

. (2)

1.5 Uncertainty estimator

Uncertainty estimator consists of two components: (i) Uncertainty of corrections, (ii) uncertainty of the
PSFE algorithm itself. The algorithm uncertainty is evaluated in the PSFE wrapper, the corrections
uncertainty and combining with the algorithm uncertainty is implemented in TWM-PSFE wrapper.
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Figure 3: The principle of frequency estimation by measuring the phase difference between sampled data
windows W1 and W2 [2].

Four uncertainty contributions for the PSFE algorithm were considered for the estimator (see Table 4):
jitter, resolution, interharmonics and harmonics. Additionally, several other parameters related to the
sampled signal or sampling (i.e. condition) are expected to affect the uncertainty, therefore enormous
number of Monte Carlo simulations would be needed for accurate uncertainty analysis.

Table 4: A list of parameters that were varied during the Monte-Carlo simulations.
Uncertainty contribution Variation range Reference value

RMS jitter 1 ns - 10 ns 1 ns (0 ns)
resolution 10 pV - 100 mV 10 µV (0 V)
interharmonic’s amplitude, Ai 0.1 mV - 0.2 V 10 mV (0 V)
harmonic’s amplitude, Ah 1 mV - 0.5 mV 50 mV (0 V)
Condition parameters

amplitude of the fundamental signal, A1 0.1 V – 1000 V 1 V
frequency of the fundamental signal, f1 10 Hz – 2 kHz 100 Hz
time stamp 0 s – 10 s 0.1 s
sampling frequency, fs 500 Hz – 1 MHz 10 kHz
number of samples, N 500 Sa – 1 MSa 100 kSa
ADC gain at 1 MHz∗1 1 – 1.5 1.5
ADC phase at 1 MHz∗2 –0.5 rad – 0.5 rad 0.5 rad
ADC frequency 1 · 10−6 – 5 · 10−3 1 · 10−3

transducer gain at 1 MHz∗3 0.5 – 1.0 0.6
transducer phase at 1 MHz∗4 –0.5 rad – 0.5 rad –0.5 rad
ADC aperture correction 0 or 1 1
ADC aperture 10 µs – 40 µs 20 µs

∗1 1 at DC.
∗2 0 rad at DC.
∗3 1 at DC.
∗4 0 rad at DC.

Herein we used different and slightly simplified approach. We run 52 different Monte Carlo simulation
sets. For each set only one uncertainty contribution was considered using the bold reference value given
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in Table 4. The other three uncertainty contributions were neglected by using the reference values
given in the brackets. Additionally, only one condition parameter has been varied at the time using
the variation range as defined in Table 4 while we used the reference values for the other conditions
parameters. We also verified the linearity of the uncertainty contribution by varying its value over a
certain variation range while neglecting other uncertainty contributions (using the reference values in
brackets) and keeping all condition parameters at reference values.

Effect of jitter: For each condition 5000 Monte-Carlo simulations were performed. We introduced a
random jitter to each sample while keeping overall RMS jitter value at specified value. Additionally, the
initial phase of the fundamental signal φ1 was randomly varied between +π and –π. For each simulation
a Gaussian distribution has been obtained. The uncertainty contribution of the frequency estimation
uf,jitter due to the jitter (Gaussian distribution, k = 1) is defined by equation:

uf,jitter =

(
1.341 Hz/s

2.981 + (0.622 ·N/Sample)0.521

)
· f1

1Hz
· jitter, (3)

where jitter is the value of sampling jitter.
Effect of resolution: For each condition 10000 Monte-Carlo simulations were performed. The value

of each sample has been rounded according to the resolution setting. Additionally, the initial phase of the
fundamental signal φ1 was randomly varied between +π and –π. In this case a non-Gaussian distribution
was obtained therefore the maximal error has been noted instead. The uncertainty contribution of the
frequency estimation uf,res due to the resolution (rectangular distribution) is defined by equation:

uf,res = 0.23mHz ·
(

N

100 kSa

)−1.5
·
(

fS
10 kHz

)0.9

· res
A1

, (4)

where res is the absolute ADC resolution.
Effect of interharmonics: For each condition 5000 Monte-Carlo simulations were performed. In

this case, one interharmonic with fixed amplitude Ai and with random frequency (between 1 Hz and f1)
and with random initial phase (between +π and –π) has been added to the fundamental signal. Addi-
tionally, the initial phase of the fundamental signal φ1 was randomly varied between +π and –π. In this
case a non Gaussian distribution was also obtained therefore the maximal error has been noted instead.
The uncertainty contribution of the frequency estimation uf,inter due to the presence of interharmonic
(rectangular distribution) is defined by equation:

uf,inter = 0.046Hz · Ai
A1

(
N

100 kSa

)−1
· fS

10 kHz
, (5)

where Ai/A1 is the interharmonic to fundamental amplitude ratio.
Effect of harmonics: For each condition 5000 Monte-Carlo simulations were performed. In this

case, one random harmonic component with fixed amplitude Ah and with random frequency (between
2 · f1 and n · f1 < 1MHz) and random initial phase (between +π and –π) has been added to the
fundamental signal. Additionally, the initial phase of the fundamental signal φ1 was randomly varied
between +π and –π too. In this case a non Gaussian distribution was also obtained therefore the maximal
error has been noted instead. The uncertainty contribution of the frequency estimation uf,harm due to
the presence of harmonic component (rectangular distribution) is defined by following equation (equation
is valid only for N ≥ 3000):

uf,harm = 40mHz · Ah
A1

, (6)

where Ah/A1 is the harmonic to fundamental amplitude ratio.
All uncertainty contributions are combined and recalculated for Gaussian distribution, k = 2:

uf = 2 ·
√
u2f,jitter +

uf,res
3

2
+
uf,inter

3

2
+
uf,harm

3

2
, (7)

.
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1.6 Validation

The algorithm TWM-PSFE has many input quantities and some of them are matrices. That is too
many possible degrees of freedom. Thus, varying the quantities in some systematic way would be very
complicated if the validation should cover full range of used signals and corrections. Therefore, an
alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate reference signal with known frequency f .

2. Distort the signal by inverse corrections, i.e. simulate the transducers, and digitizer (e.g. gain
errors, phase errors, DC offsets, quantisation errors, ...).

3. Run the algorithm TWM-PSFE on the signals with enabled uncertainty evaluation to obtain fre-
quency estimates and their uncertainties.

4. Compare reference and estimated frequency and decide if the errors of the algorithm for particular
frequency is smaller than the assigned uncertainties.

5. Repeat the test N times from step 1 with different setup parameters, with randomised corrections
by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of results passed (for default 95 % level of confidence). The evaluation is
made for each calculated frequency separately.

Total number of Monte-Carlo simulations was 100000. The parameters of the input signal and the
digitizer and transducer settings were randomly varied. The sampling frequency was between 500 Hz
and 500 kHz and the number of samples between 500 Sa and 200 kSa. The frequency of fundamental
signal was between 10 Hz and one tenth of the Nyquist frequency, but never above 5 kHz. The frequency
of the harmonics and interharmonics were always above the frequency of the fundamental signal but
below the Nyquist frequency. The number of harmonics that were added to the fundamental signal was
generally 10, but the number was sometimes reduced if the Nyquist limit is to be exceeded. The number
of interharmonics was 1. The amplitude of the fundamental signal was between 0.1 V and 1000 V and
the amplitude of the harmonics and interharmonics between 0.00001 and 0.05 of the amplitude of the
fundamental signal. The DC was between -10 V and +10 V. The phases of the fundamental signal as
well as of the harmonics and interharmonics were individually and randomly varied between +3.14 rad
and -3.14 rad. The ADC noise was between 1e-11 and 1e-2 of the amplitude of the fundamental signal
while the jitter was between 1e-9 s and 100e-9 s. ADC aperture was between 1e-5 s and 4e-5 s, ADC gain
between 1 and 1.5, ADC phase between +1.57 rad and -1.57 rad, frequency correction of the digitizer
timebase between 5e-8 and 5e-3, ADC offset between 0.00001 V and 0.005 V (random value for low-and
high-side channel) and number of bits between 22 and 24. Relative time-stamp of the first sample was
varied between 0 s and 10 s. The transducer gain was between 0.5 and 20 and the transducer phase was
between +1.57 rad and -1.57 rad. The resistive voltage divider low-side impedance value (i.e. resistance
and capacitance) were between 100 Ω and 500 Ω and 0.1 pF and 10 pF, respectively (only resistive voltage
divider was used in the simulations). The randomisation of corrections was also enabled which means that
not only the uncertainty of the algorithm but also the contributions of the correction uncertainties were
included in the Monte-Carlo simulations. The success rate of the TWM-PSFE algorithm uncertainty
estimator for the frequency estimation was 99.38 %.
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2 TWM-MODTDPS - Modulation analyzer in Time Domain,
by quadrature Phase Shifting

TWM-MODTDPS is algorithm for calculation of the amplitude modulation parameters of non-coherently
sampled signal in time domain. It was designed for basic estimation of the modulation parameters of a
sinusoidal carrier modulated by sine wave or rectangular wave with duty cycle 50 %.

The algorithm operates in time domain and it is based on the so called “analytical signal”. It is
capable to estimate the parameters up to modulating-to-carrier frequency ratio 33 %. The record must
contain at least 3 periods of the modulating signal and it also requires at least 10 samples per period of
carrier.

It is capable to use the differential transducer connection, however the uncertainty is not calculated
for the differential mode. The algorithm is equipped by an uncertainty estimator, which covers most of
the operating range. The estimator parameter space contains a few gaps where the algorithm may fail,
which will be always indicated as an error message. These gaps problems may be prevented by changing
the sampling parameters, e.g. by changing the samples count or a sampling rate.

2.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in table 5. Algorithm returns output quan-
tities shown in table 6. Calculation setup supported by the algorithm is shown in table 7.

Table 5: List of input quantities to the TWM-MODTDPS wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
wave shape “sine” N/A User string parameter that defines if the algorithm calcu-

lates “sine”: sinusoidal modulation or “rect”: rectangular
modulation wave shape.

comp err 0 N/A Enable self-compensation of the algorithm error (non-zero
value or “on” string).

y
y lo

N/A
N/A

No
No

Input sample data vector and complementary low-side in-
put data vector y lo for differential mode only.

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

lsb
adc nrng
adc bits
lo lsb
lo adc nrng
lo adc bits

N/A
1000
40
N/A
1000
40

No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc gain
adc gain f
adc gain a
lo adc gain
lo adc gain f
lo adc gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a
lo adc phi
lo adc phi f
lo adc phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).
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Table 5: List of input quantities to the TWM-MODTDPS wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
adc freq 0 Yes Digitizer timebase error correction:

f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
adc aper corr
lo adc aper

0
0

No ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

time stamp 0 Yes Relative timestamp of the first sample y.
time shift lo 0 Yes Low-side channel time shift [s].
adc sfdr
adc sfdr f
adc sfdr a
lo adc sfdr
lo adc sfdr f
lo adc sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f
lo adc Yin Cp
lo adc Yin Gp
lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.
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Table 5: List of input quantities to the TWM-MODTDPS wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 6: List of output quantities of the TWM-MODTDPS wrapper.
Name Uncertainty Description
f0 Yes Frequency of the carrier [Hz].
A0 Yes Amplitude of the carrier.
f mod Yes Modulating frequency [Hz].
A mod Yes Modulating amplitude.
mod Yes Modulating depth [%].
dVV Yes ∆V/V depth [%]. Alternative expression of mod, i.e.: dV V = 2 ·mod.
cpm Yes Changes per minute. Alternative expression of f mod, i.e.: cpm = 120 · f mod.
env No Modulation envelope.
env t No Modulation envelope env time vector.

Table 7: List of “calcset” options supported by the TWM-MODTDPS wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”

or “guf” for uncertainty estimator.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

2.2 MODTDPS algorithm description

The overview of the TWM wrapper structure is shown in the fig. 4. The algorithm supports differential
transducer inputs. The TWM wrapper first estimates the carrier frequency f0 and mean amplitude of
the modulated signal A0 by a PSFE algorithm. It uses these two values to obtain and apply gain and
aperture error corrections for the high-side channel y (and for low-side channel y lo in the differential
mode).

In the differential transducer mode, the wrapper also applies high-to-low side time shift correction
and phase correction to the low-side input y lo by time shifting it according to the estimate f0. This
trivial phase synchronization of the high-low side phase obviously works only to one frequency f0 and
it is dependent on its correct estimation, however it turned out to be sufficient for the purposes of this
algorithm. Next, the wrapper calculates voltage difference y = y − y lo, so the differential is reduced
to single ended input y. The transducer gain correction in the differential mode uses additional voltage
vectors Y (f0), phi(f0) and Y lo(f0), phi lo(f0) obtained from the two spectra calculated by another
QWTB algorithm “SP-WFFT”. Although the vectors have absolute values distorted by the spectral
leakage, their ratio stays fixed, so it is enough to make the transducer transfer and loading correction
function work. At this point the signal is single ended and scaled.

The next step is the main algorithm for the estimation of modulation parameters “mod tdps()” which
is shown in fig. 5. The algorithm internally calls the function “mod fit sin()” (see fig. 6), which does the
parameter estimation itself.

The algorithm itself is based on the estimation of the carrier frequency f0 by means of PSFE algorithm
[2]. Once the carrier f0 is known, the algorithm applies 90deg phase shift to the input signal y and builds
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two virtual quadrature signals (analytical signals):

ya(t) = y(t) + j · y
(
t+

pi

2 · f0

)
, (8)

yb(t) = y(t)− j · y
(
t− pi

2 · f0

)
, (9)
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Figure 6: Overview of the “mod fit sin()” function of the TWM-MODTDPS algorithm wrapper. Gold
blocks are calls of local functions of the algorithm.

The average of amplitudes of the signals ya(t) and yb(t) is roughly equal to the modulation envelope:

ev(t) = 0.5 · (|ya(t)|+ |yb(t)|) (11)

The envelope ev(t) is used as an input to the next call of the PSFE algorithm which returns modulation
amplitude Am, modulation frequency fm and modulation phase phm. The algorithm differs for the
sinusoidal and rectangular wave shape from this point.

In the sinusoidal mode, the carrier amplitude A0 is obtained as a DC value of the envelope ev(t)
using a windowed average method with Blackman window:

A0 =

∑N
t=1 w(t) · e(t)∑N

t=1 w(t)
, (12)

where the w(t) are coefficients of the Blackman window and N is samples count of the envelope. This
trivial method obtains acceptable suppression of errors caused by the non-coherent window size if at
least three modulating periods were recorded.

In the rectangular mode, the A0 from PSFE cannot be used. Only the modulation frequency esti-
mate fm and phase estimate phm are relevant. The envelope ev(t) is filtered by a low-pass 1st order
Butterworth filter with cutoff frequency fs/6. This reduces the noise caused by the harmonic and inter-
harmonic spurs present in the envelope ev(t) but does not distort the shape too much at high modulation
frequencies. Next, the phase phm of the modulation wave is used to detect the tops and lows of the
filtered envelope rectangular wave. It was experimentally decided to use 15 % to 30 % of the periods for
detection of the tops and 75 % to 85 % for the lows. The modulation parameters are calculated according
to formulas:

A0 =
1

2M

M∑
m=1

[tops {ev(t),m} − lows {ev(t),m}], (13)

Am =
1

2M

M∑
m=1

[tops {ev(t),m}+ lows {ev(t),m}], (14)
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where m is the period index and M is total count of modulation periods in the signal. The type A
uncertainty estimate is calculated from the differences between the periods m.

In the sine wave mode, the algorithm also contains a self-correcting routine that is capable to reduce
the inherent error of the algorithm itself (see diagram in fig. 5). The idea is following: First, the algorithm
core function “mod fit sin()” is called on the real waveform data y to obtain the initial estimate E of the
modulation parameters. Next, a new simulated waveform ysim is synthesized so it has the modulation
parameters E. The core function “mod fit sin()” is called again on the waveform ysim to obtain estimates
E2. Finally, an algorithm error dE = E2−E is calculated. The whole operation is repeated three times
in a loop which was sufficient to get stable error dE. The dE is either used as a correction to the initial E
(when self-correction is enabled) or it is used to estimate algorithm error uncertainty contribution, when
self-correction is disabled. This method significantly reduced the error of the algorithm even for high
modulation frequencies. The performance was evaluated so the uncertainty calculation reflects sensitivity
of this method to the imperfect input signal.

The “mod tdps()” function automatically calculates estimate of maximum error caused by the un-
certain phase shift of the modulating waveform. It is calculated by repeating the estimator 10 times for
different phase shifts and calculating maximum error. This is part of the total uncertainty budget.

2.3 Uncertainty estimator

The algorithm is too complex for evaluation of the uncertainty following the GUM guide. It is also rela-
tively slow, so the Monte-Carlo uncertainty calculation for an interactive application would be too slow
especially for waveforms longer than few thousand of samples. Therefore, a fast uncertainty estimator
was developed. The estimator is based on the massive lookup tables (LUT) that contains precalculated
uncertainties for various combinations of the parameters of the input signal.

First step for creation of the estimator was selection of the relevant signal parameters. The set was
chosen so it is minimalist, because each parameter means one more dimension of the simulation and thus
additional data in the LUT. Selection is follows:

1. Modulating periods count: The count of modulating signal periods in the recored waveform.

2. Samples per period of carrier: The ratio of sampling rate and carrier frequency fs/f0.

3. Relative modulation frequency: The ratio of the modulating frequency to carrier fm/f0.

4. Total SFDR: Combination of system SFDR (corrections) and signal SFDR (harmonics and in-
terharmonics).

5. Effective jitter: Total effective sampling jitter in seconds. This also includes equivalent value of
the residual RMS noise found in the signal. The jitter value is normalized to the carrier frequency.

6. Bit resolution: The bits count per used peak-to-peak ADC range. This is theoretically replaceable
by rms noise, but it may easily lead to nonlinear behaviour for low resolutions. Therefore, this
parameter was simulated separately.

7. Modulation depth: The ratio of the modulating amplitude to the carrier amplitude Am/A0.

The simulation ranges of the parameters were chosen according to table 8. The ranges were chosen
to cover the typical operating range, however most of the dependencies are extrapolable in one direction.

Fro simplicity it was assumed all the parameters may be correlated, so all combinations of the seven
parameters were generated (6x5x8x4x5x6x8 = 230400 combinations). At least 1000 Monte-Carlo (MC)
iteration cycles of following sequence of operations was performed for each combination:

1. Get one combination of simulation parameters Eref .

2. Randomize Eref parameters in a small range (few percent), so each MC iteration generates a
bit different signal. This is to prevent unfortunate selection of a combination Eref where the
uncertainty is exceptionally low, e.g. due to the coherent sampling.

3. Generate other random parameters, such as DC offset, phase shift of the modulation signal, random
spurs up to SFDR parameter value, etc.
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Table 8: Simulation ranges and steps of the parameters for uncertainty estimator of MODTDPS algo-
rithm.

Name Description
Modulating periods count Log. space: 3 to 30, 6 steps
Samples per period of carrier Log. space: 10 to 100, 5 steps
Relative modulation frequency Log. space: 0.01 to 0.33, 8 steps
Total SFDR List: [120; 80; 60; 30] dB, 4 steps
Effective jitter Log. space: 10−9 to 10−2, 5 steps
Bit resolution Log. space: 6 to 24 bits, 6 steps
Modulation depth Log. space: 0.01 to 0.99, 8 steps

4. Synthesize modulated waveform of known parameters.

5. Distort the waveform by: spurs, jitter, quantisation, etc.

6. Perform estimation of the modulation parameters Ex by “mod tdps()” algorithm. Note the un-
certainties returned by the “mod tdps()” itself are ignored, as they will be calculated on runtime
during actual measurements.

7. Compare estimates Ex to generated parameters Eref : ∆Ex(k) = Ex − Eref .

The set of algorithm errors ∆Ex(k) from the MC iterations k for each combination of parameters
is processed according to the GUM guide, supplement 1 [1]. The whole batch of combinations was
processed on the supercomputer, so it took only three days per configuration (“sine”, “rect”, with or
without self-corrections). The 1000 MC cycles was enough to obtain stable estimates. Output of the
calculation is 7-dimensional matrix of uncertainties of modulation parameters: f0, fm, A0 and Am.
The 7D array was manually inspected along various axes (= along simulation parameters), however it
was not possible to find a simple empiric formulas that would cover full range of any axis. There were
always some non-linearity dependencies on the other axes. All tries resulted either in significant over or
underestimation of uncertainty in some part of the parameter space.

Therefore, the whole 7D matrix was simply compressed to the log. space and 16bit integers (resolution
better 0.005) and saved to a compressed MAT file as lookup table (LUT). The size of LUT is roughly
1.7 MBytes per configuration which is still acceptable and thus it was decided to not continue with
further optimalisations. The LUT contains definitions of the axes (parameters), their permissible ranges,
interpolation modes (linear or logarithmic) and definition of the estimator action, when the parameter
is out of range (error or limit at max/min known value). A multidimensional interpolator was developed
which is capable to read the LUT and return interpolated values of the quantities stored in the LUT.
The usable range of parameters is shown in the table 9. Note the interpolator permits to extrapolate
outside the stated limits, which should prevent problems around the limits. The additional permissible
range is set to up to ±5 % of given range.

Table 9: Permissible range of signal parameters for the uncertainty estimator. The values in parenthesis
are permissible, but outside simulation range. The actions when the min or max value of axis is reached
are: “error” - generate error; “const” - return value of uncertainty at min. or max. of simulated range.

Name Range On min On max
Modulating periods count 3 to 30 (3 to ∞) error const
Samples per period of carrier 10 to 100 (10 to ∞) error const
Relative modulation frequency 0.01 to 0.33 (0 to 0.33) const error
Total SFDR 120 to 30 dB (∞ to 30 dB) error const
Effective jitter 10−9 to 10−2 (10−∞ to 10−2) const error
Bit resolution 6 to 24 bits (6 to ∞bits) error const
Modulation depth 0.01 to 0.99 error error

The estimator itself in the TWM-MODTDPS wrapper is based on the estimated modulation param-
eters and spectrum analysis of the input signal y. It obtains the parameters of the LUT axes by following
procedure:
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1. Calculate the basic parameters from corrections and estimated modulation parameters: (i) Mod-
ulating periods count; (ii) Samples per period of carrier; (iii) Relative modulation frequency; (iv)
Modulation depth; (v) Bit resolution.

2. Perform spectrum analysis to obtain: (i) Harmonics (except the ones belonging to modulation
sidebands); (ii) Interharmonics; (iii) RMS noise estimate. These value are used to calculate signal
SFDR estimate and noise, which is converted to equivalent jitter at the carrier frequency f0.

3. Interpolate the LUT table for given configuration to get the algorithm uncertainty.

4. Calculate estimate of uncertainty of the corrections. This covers estimate of the error caused by
the fact the signal scaling is made at a single frequency spot f0 instead of complicated frequency
dependent correction.

5. Combine uncertainties: (i) Runtime calculated uncertainty from “mod tdps()” itself; (ii) Uncer-
tainty from the LUT table; (iii) Uncertainty of the corrections.

2.4 Validation

The algorithm TWM-MODTDPS has many input quantities (71 in differential transducer input mode)
and some of them are matrices. That is too many possible degrees of freedom. Thus, varying the
quantities in some systematic way would be very complicated if the validation should cover full range of
used signals and corrections. Therefore, an alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate signal y with known modulation parameters Mref.

2. Distort the signal y by inverse corrections, i.e. simulate the transducers, and digitizer (e.g. gain
errors, quantisation, SFDR ...).

3. Run the algorithm TWM-MODTDPS with enabled uncertainty evaluation to obtain the harmonic
levels Mx and their uncertainties u(Mx).

4. Compare the reference and calculated harmonics and distortion and check if the deviations are
lower than assigned uncertainties:

pass(i) = |(Mref −Mx| < u(Mx), (15)

where i is test run index.

5. Repeat N times from step 1, with the same test setup parameters, but with randomised corrections
by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of pass(i) results passed (for 95 % level of confidence). The evaluation
is made for each estimated modulation parameter separately. So it is possible to inspect which
parameter fails.

The test runs count per test setup was set to N = 500, which is far from optimal infinite set, but due
to the computational requirements it could not have been much higher.

The algorithm in the uncertainty estimation mode was tested in 6 different configurations with at
least 5000 test setups per each. I.e. the algorithm was ran 15 million times in total (6x5000x500). The
processing itself was performed on a supercomputer [4] and it took about 15 days at 300 parallel octave
instances.

The randomization ranges of the signal are shown in table 10. The randomization ranges of the
corrections are shown in table 11.

The test results were split into several groups given by the randomiser setup: (i) Wave shape; (ii)
Randomisation of corrections by uncertainty enabled/disabled. When the randomisation of corrections is

19



disabled, the test runs cover only the algorithm itself and the contributions of the correction uncertainties
are ignored.

The summary of the validation test results is shown in table 12. The success rate without corrections
randomisation was close to 100 %. The success rate with corrections randomisation was a bit worse,
because the success rate of the individual test runs within the test setup was just around 95 %. Therefore,
the decision pass/fail is problematic. The obtained set of test results was manually investigated and no
cases with far outliers were detected, e.g. the failed test setups contained occasional estimates offsets
just around the uncertainty boundaries. Also no cases where all test runs failed were found.

Table 10: Validation range of the signal for TWM-MODTDPS algorithm.
Parameter Range
Sampling rate 9 to 11 kHz (no need to randomize in wider range, as all

other parameters are generated relative to this rate).
Samples count 3 to 100 kSamples.
Carrier frequency Random, so it is higher than 50 Hz and there are at least

10 samples per period.
Carrier amplitude Random from 10 to 100% of nominal input range.
Modulating frequency Random, so there are always at least 3 modulating pe-

riods in the record and so the ratio to carrier frequency
is up to 32% (24% for rectangular wave shape).

Modulating depth Random, 2 to 98%.
DC offset Random up to ±2% of carrier amplitude.
Phase angle Random for carrier, modulating frequency and spur har-

monics.
SFDR -100 to -60 dBc, 10 harmonic spurs of carrier, each spur

has random level up to SFDR, frequencies are ran-
domised by ±10% of carrier frequency.

Digitizer RMS noise 1 to 50 µV.
Sampling jitter 1 to 100 ns.
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Table 11: Validation range of the correction for the TWM-MODTDPS algorithm.
Parameter Range
Transducer type Random ’shunt’ or ’rvd’.
Nominal input range 5 to 70 V (5 to 70 A)
Aperture 1 ns to 100 µs
Digitizer gain Randomly generated frequency transfer simulating

NI 5922 FIR-like gain ripple (possibly the worst imag-
inable shape) and some ac-dc dependence. The trans-
fer matrix has up to 50 frequency spots. Nominal gain
value is random from 0.95 to 1.05 with uncertainty 5 to
50 µV/V. Maximum ac-dc value at fs/2 is up to ±1 %
with uncertainty up to 250 µV/V. Gain ripple amplitude
is random from 0.005 to 0.03 dB with up to 5 periods
between 0 and fs/2.

Digitizer SFDR Value based on table 10.
Transducer SFDR Value based on table 10. Note the “SFDR” from ta-

ble 10 is randomly split between digitizer and transducer
SFDR correction.

Digitizer DC offset ±2 mV with uncertainty 0.1 mV.
Digitizer bit resolution 16 to 28 bits.
Digitizer nominal range 1 V
Transducer gain Randomly generated frequency transfer. The transfer

matrix has 30 to 50 frequency spots. Nominal gain
value is random (see above) with relative uncertainty
50 µV/V. Maximum ac-dc value at fs/2 is up to ±2 %
with uncertainty up to 250 µV/V. Gain ripple amplitude
is 0.005 dB with 4 to 10 periods between 0 and fs/2.

Table 12: Validation results of the algorithm TWM-MODTDPS. The “passed test” shows percentage of
passed tests under conditions defined in tables 10 and 11.

Wave shape Self-corr. Rand. corr.
Passed test [%]

A0 Am f0 fm

sine on
no 100.00 100.00 100.00 100.00
yes 100.00 100.00 100.00 100.00

sine off
no 100.00 100.00 100.00 99.98
yes 100.00 100.00 100.00 100.00

rect off
no 100.00 100.00 100.00 100.00
yes 100.00 100.00 100.00 100.00
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3 TWM-FPNLSF - Four Parameter Non Linear Sine Fit

This algorithm fits a sine wave to the recorded data by means of non-linear least squares fitting method
using 4 parameter (frequency, amplitude, phase and offset) model. Due to non-linear characteristic,
convergence is not always achieved. When run in Matlab, function “lsqnonlin” in Optimization toolbox
is used. When run in GNU Octave, function “leasqr” in GNU Octave Forge package optim is used.
Therefore results can differ.

This algorithm, in general, is not suitable for distorted signals. It offers good results for signals with
low harmonic content if at least 10 periods of signal are recorded with preferably at least 50 samples per
period. The algorithm also requires initial estimate of the frequency accurate to ±500 ppm.

The algorithm supports differential transducer connection. The integrated uncertainty estimator was
developed only for the GNU Octave version. This should be still kept in mind when using the algorithm
with Matlab despite the Matlab version seems to give always more accurate results than GNU Octave.

3.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 13. Algorithm returns output
quantities shown in the table 14. Calculation setup supported by the algorithm is shown in table 15.

Table 13: List of input quantities to the TWM-FPNLSF wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
f est N/A N/A Initial estimate of the sine frequency. The estimate should

be accurate to at least 500 ppm.
comp timestamp 0 N/A Enable compensation of phase shift by time stamp value:

phi′ = phi− 2 · pi · f fit · time stamp.
y
y lo

N/A
N/A

No
No

Input sample data vector and complementary low-side in-
put data vector y lo for differential mode only.

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

lsb
adc nrng
adc bits
lo lsb
lo adc nrng
lo adc bits

N/A
1000
40
N/A
1000
40

No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset
lo adc offset

0
0

Yes
Yes

Digitizer input offset voltage.

adc gain
adc gain f
adc gain a
lo adc gain
lo adc gain f
lo adc gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a
lo adc phi
lo adc phi f
lo adc phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)
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Table 13: List of input quantities to the TWM-FPNLSF wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
adc aper corr
lo adc aper

0
0

No ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

time stamp 0 Yes Relative timestamp of the first sample y.
time shift lo 0 Yes Low-side channel time shift [s].
adc sfdr
adc sfdr f
adc sfdr a
lo adc sfdr
lo adc sfdr f
lo adc sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f
lo adc Yin Cp
lo adc Yin Gp
lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.
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Table 13: List of input quantities to the TWM-FPNLSF wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 14: List of output quantities of the TWM-FPNLSF wrapper.
Name Uncertainty Description
f Yes Frequency of the carrier [Hz].
A Yes Amplitude of the carrier.
phi Yes Phase of main signal component [rad].
ofs Yes DC offset of signal.

Table 15: List of “calcset” options supported by the TWM-FPNLSF wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”

or “guf” for uncertainty estimator.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

3.2 Algorithm description

The wrapper TWM-FPNSLF overview is shown in fig. 7. It first calls the core function “FPNLSF loop()”
on the unscaled high-side input signal y to get initial estimate of the signal frequency fx. This is
necessary to get gain and phase correcting coefficients. Follows the signal scaling in the time domain,
i.e. application of the digitizer DC offset, gain, phase and aperture corrections.

The wrapper also allows differential input sensor connection. In this case it compensates the high-low
side phase error by time shifting the low-side signal y lo according to the estimated frequency compo-
nent fx. Such a phase correction of course works only for the single frequency component fx, but
the results were acceptable as it is the main signal component. Next, it calculates differential signal
yd = y− y lo. Only additional difference is the TWM defines relatively complex transducer loading cor-
rections scheme (see [2]). This is ensured by the function “correction transducer loading()”. However,
the function operates in frequency domain, whereas FPNLSF operates in time domain and the algo-
rithm expects non-coherent sampling. Therefore, an additional step is done to obtain scaling transducer
correction factor. The windowed FFT of the high and low-side signals y and ylo is calculated by “SP-
WFFT” algorithm. The voltage vectors are obtained from the FFTs are used as an inputs to the “correc-
tion transducer loading()”. Although the voltage vectors are distorted by the spectral leakage, their ratio
stays unaffected, so the transducer scaling factor obtained from the “correction transducer loading()” is
sufficiently accurate. At this point, the differential signals y and y lo are reduced to single ended signal
yd which is correctly scaled. The “FPNLSF loop()” is called again on the differential signal yd. Next
calculation steps are identical for single ended and differential modes.

The FPNLSF algorithm itself and its uncertainty analysis was described in [4]. The basic principle
is use of the non-linear least square minimising algorithm to fit the input signal y by a four parameter
sine wave model:

ym = o+A · sin (2πft+ φ) , (16)

where o is DC offset, A is amplitude, t is time vector, f is sine frequency and φ is phase angle. This method
is quite sensitive to harmonics and especially interharmonics and also requires good initial estimates for
the minimising algorithm, however for clean signals it offers acceptable estimates of the fundamental
component.
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Figure 7: Overview of the TWM-FPNLSF algorithm wrapper.

The core function of the TWM-FPNLSF wrapper is function “FPNLSF loop()”. Structure is shown
in fig. 8. The function accompanies the FPNLSF algorithm itself by several supporting functions. First
major problem to solve was its sensitivity to the precision of initial estimate of the parameters, especially
frequency f est. It was merely impossible to perform the Monte Carlo (MC) uncertainty calculation of
the FPNLSF itself as the FPNLSF minimising process often ended in a local minima, which is not
always detectable. So the histogram of the MC iterations contained many far outliers, which made the
uncertainty unusable. Therefore, the permissible range of initial estimate fest was set to ±500 ppm
from the actual signal frequency. The FPNLSF was placed in a retry loop that tries repeatedly run the
FPNLSF with slightly randomised initial estimates until the fitted frequency f is within the ±500 ppm
range. The retry loop also contains limit for the total retries count and total timeout, so it won’t get
locked up. The loop was also accompanied by initial zero cross estimation, which tries to obtain at least
approximate initial phase estimate.

STARTZero cross phase
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Ax, fx, phx, ox 

PASS?
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retries count < limit 

STOP

no

yesno
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Figure 8: The structure of the “FPNLSF loop()” function of the TWM-FPNLSF algorithm wrapper.
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3.3 Uncertainty estimator

The algorithm is too complex for GUF uncertainty calculation. It is also relatively slow, so the Monte-
Carlo uncertainty calculation for an interactive application would be too slow especially for waveforms
longer than few thousand samples. Therefore, a fast uncertainty estimator was developed. The estimator
is based on the lookup tables (LUT) that contains precalculated uncertainties for various combinations
of the input signal parameters.

First step for creation of the estimator was selection of the relevant signal parameters. The set was
chosen so it is minimalist, because each parameter means one more dimension of the simulation and thus
additional data in the LUT. Selection is follows:

1. Periods count: The count of signal periods in the recored waveform.

2. Samples per period: The ratio of sampling rate and fundamental frequency fs/f0.

3. Total SFDR: Combination of system SFDR (corrections) and signal SFDR (harmonics and in-
terhamonics).

4. Effective jitter: Total effective sampling jitter in seconds. This also includes equivalent value of
the residual RMS noise found in the signal. The jitter value is normalized to the carrier frequency.

5. Bit resolution: The bits count per used peak-to-peak ADC range. This is theoretically replaceable
by the jitter (resp. noise), but it may easily lead to nonlinear behaviour for low resolutions.
Therefore, this parameter was simulated separately.

The simulation ranges of the parameters were chosen according to table 16. The ranges were chosen
to cover the typical operating range, however most of the dependencies is extrapolable in one direction.

Table 16: Simulation ranges and steps of the parameters for uncertainty estimator of “FPNLSF loop()”
function.

Name Description
Periods count List: [10; 20; 50; 100], 4 steps
Samples per period Log. space: 10 to 1000, 10 steps
Total SFDR List: [180; 120; 80; 40; 30] dB, 4 steps
Effective jitter Log. space: 10−9 to 10−2, 9 steps
Bit resolution Log. space: 4 to 24 bits, 8 steps

Fro simplicity it was assumed all the parameters may be correlated, so all combinations of the five
parameters were generated (4x10x4x9x8 = 11520 combinations). 1000 Monte-Carlo (MC) iteration cycles
of following sequence of operations was performed for each combination:

1. Get one combination of simulation parameters Eref .

2. Randomize Eref parameters in a small range (few percent), so each MC iteration generates a
bit different signal. This is to prevent unfortunate selection of a combination Eref where the
uncertainty is exceptionally low, e.g. due to the coherent sampling.

3. Generate other random parameters, such as DC offset, phase shift of the signal, random spurs up
to SFDR parameter value, etc.

4. Synthesize modulated waveform of known parameters.

5. Distort the waveform by: spurs, jitter, quantisation, etc.

6. Perform estimation of the signal parameters Ex by “FPNLSF loop()” algorithm.

7. Compare estimates Ex to generated parameters Eref : ∆Ex(k) = Ex − Eref .
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The set of algorithm errors ∆Ex(k) from the MC iterations k for each combination of parameters was
processed according to the GUM guide, supplement 1 [1]. The whole batch of combinations was processed
on the supercomputer, so it took only two days. The 1000 MC cycles was enough to obtain stable
estimates. Output of the calculation was a 5-dimensional matrix of uncertainties of signal parameters
estimates: frequency, amplitude, phase and DC offset. The 5D array was manually inspected along
various axes (= along simulation parameters) to verify there are no extrema. As the array is relatively
small it was decided to not look for empirical formulas to reduce the axes. Therefore, the whole 5D
matrix was simply compressed to the log. space and 16bit integers (resolution better 0.005) and saved
to a compressed MAT file as lookup table (LUT). The size of LUT is roughly 120 kBytes, which is still
acceptable. The LUT contains definitions of the axes (parameters), their permissible ranges, interpolation
modes (linear or logarithmic) and definition of the estimator action, when the parameter is out of range
(error or limit at max/min value). A multidimensional interpolator was developed which is capable to
read the LUT and return interpolated values (or errors) of the quantities stored in the LUT. The usable
range of parameters is shown in the table 17. Note the interpolator permits to extrapolate outside the
stated limits, which should prevent problems around limits. The additional permissible range is set to
up to ±5 % of given axis range.

Table 17: Permissible range of signal parameters for the uncertainty estimator of “FPNLSF loop()”
function. The values in parenthesis are permissible, but outside simulation range. The actions when the
min or max value is reached are: “error” - generate error; “const” - return value of uncertainty at min.
or max. of simulated range.

Name Range On min On max
Periods count 10 to 100 (10 to ∞) error const
Samples per period 10 to 1000 (10 to ∞) error const
Total SFDR 180 to 30 dB (∞ to 30 dB) error const
Effective jitter 10−9 to 10−2 (10−∞ to 10−2) const error
Bit resolution 4 to 24 bits (4 to ∞ bits) error const

The estimator itself in the TWM-FPNLSF wrapper is based on the estimated parameters of the
signal returned by the “FPNLSF loop()” and spectrum analysis of the input signal y. It obtains the
parameters of the LUT axes by following procedure:

1. Calculate the basic parameters from corrections and estimated parameters: (i) Periods count; (ii)
Samples per period; (iii) Bit resolution.

2. Perform spectrum analysis of y (or yd for differential mode) to obtain: (i) Harmonics; (ii) Inter-
harmonics; (iii) RMS noise estimate. These value are used to calculate signal SFDR estimate and
noise, which is converted to the equivalent jitter at the fitted frequency fx.

3. Interpolate the LUT table for given parameters to get the algorithm uncertainty.

4. Calculate estimate of uncertainty of the corrections.

5. Combine uncertainties: (i) Uncertainty from the LUT table; (ii) Uncertainty of the corrections.

Note the precalculated LUT was calculated on the GNU Octave system, which is using different
minimising algorithm than Matlab. However, the long validation test was performed with generating
many random signal parameters and no case where the calculated estimates were outside the uncertainty
were found for Matlab. In fact, the Matlab version seems to give much better results than GNU Octave.
However, this fact should be still kept in mind, as there may be some case, where Matlab performs worse.

3.4 Validation

The algorithm TWM-FPNLSF has many input quantities and some of them are matrices. That is
too many possible degrees of freedom. Thus, varying the quantities in some systematic way would be
very complicated if the validation should cover full range of used signals and corrections. Therefore, an
alternative approach was used.
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QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate signal with known frequency, amplitude, phase and DC of the fundamental signal.

2. Distort the signal by inverse corrections, i.e. simulate the transducers, and digitizer (e.g. gain
errors, quantisation, SFDR ...).

3. Run the algorithm TWM-FPNLSF with enabled uncertainty evaluation to obtain the estimated
values and corresponding uncertainties of frequency, amplitude, phase and DC of the fundamental
signal.

4. Compare the reference and calculated values and check if the deviations are lower than assigned
uncertainties.

5. Repeat N times from step 1, with different test setup parameters, different corrections randomised
by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of results passed (for 95 % level of confidence).

The total number of Monte-Carlo simulations was 100000. The parameters of the input signal, the
digitizer and transducer settings were randomly varied. The sampling frequency was between 5 kHz
and 500 kHz and the number of samples between 1 kSa and 200 kSa. The frequency of fundamental
signal was between 0.5 Hz and 45 kHz. The frequency of the harmonics and interharmonics were always
above frequency of the fundamental signal but below the Nyquist frequency. The number of harmonics
that were added to the fundamental signal was generally 10, but the number was sometimes reduced
if the Nyquist limit is to be exceeded. The number of interharmonics was 1. The amplitude of the
fundamental signal was between 0.1 V and 10 V and the amplitude of the harmonics and interharmonics
between 0.000001 and 0.01 of the amplitude of the fundamental signal. The DC was between -0.1 and
+0.1 of the amplitude of the fundamental signal. The phases of the fundamental signal as well as of the
harmonics and interharmonics were individually and randomly varied between +3.14 rad and -3.14 rad.
The ADC noise was between 1e-11 and 1e-3 of the amplitude of the fundamental signal while the jitter
was between 1e-9 s and 1e-6 s. ADC aperture was between 1e-6 s and 4e-5 s, ADC gain between 1 and
1.5, ADC phase between +1.57 rad and -1.57 rad, frequency correction of the digitizer timebase between
-5e-3 and 5e-3, ADC offset between 0.005 V and 0.005 V (random value for low-and high-side channel)
and number of bits between 22 and 24. Relative time-stamp of the first sample was varied between -10 s
and 10 s. The transducer gain was between 0.5 and 20 and the transducer phase was between +1.57 rad
and -1.57 rad. The resistive voltage divider low-side impedance value (i.e. resistance and capacitance)
were between 100 Ω and 500 Ω and 0.1 pF and 10 pF, respectively (only resistive voltage divider was used
in the simulations). The randomisation of corrections was also enabled which means that not only the
uncertainty of the algorithm but also the contributions of the correction uncertainties were included in the
Monte-Carlo simulations. The success rate of the TWM-FPNLSF algorithm for the frequency estimation
was 99.70 %, amplitude estimation 98.36 %, phase estimation 99.36 % and DC offset estimation 99.07 %.
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4 TWM-HCRMS - Half Cycle RMS algorithm

Algorithm for calculation of the so called half cycle RMS values or sliding window RMS values of a single
phase waveform. It calculates RMS value of signal in length of one period with window step defined
by the method of calculation. That is, according to the IEC 61000-3-40: (i) Class A - half-cycle step;
(ii) Class S - “sliding window” step (20 windows per period for this implementation). Examples of the
calculated values for the modes A and S are shown in fig. 9.

The algorithm is designed so it can handle non-coherent sampling and also it is capable to compensate
slow frequency drifts. It uses PSFE and resampling technique to ensure coherent sampling internally.
The user can enter signal frequency manually if coherent sampling was ensured by the digitizer.

In general, the algorithm will work better with higher sampling rates. At least 100 samples should
be recorded per period of the fundamental component (= sampling rate 5 kSa/s for 50 Hz networks).
The higher is better, because the RMS algorithm will better suppress the harmonic and interharmonic
content.

The algorithm is for single-ended input only and it is equipped with fast uncertainty estimator.

Figure 9: Example of Half Cycle RMS calculation for a “dip” event. The circles in RMS plot show values
calculated according IEC 61000-3-40 “class A”, the dashed line shows result of sliding window mode for
“class S”.

4.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 18. Algorithm returns output
quantities shown in the table 19. Calculation setup supported by the algorithm is shown in table 20.

Table 18: List of input quantities to the TWM-HCRMS wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
mode “A” N/A Mode of calculation: “A” for class A or “S” for class S.
nom f N/A N/A Optional user defined frequency of the fundamental fre-

quency. The algorithm will identify the fundamental fre-
quency by itself when it is not assigned.

y N/A No Input sample data vector.
Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

adc lsb
adc nrng
adc bits

N/A
1000
40

No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.
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Table 18: List of input quantities to the TWM-HCRMS wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
adc offset 0 Yes Digitizer input offset voltage.
adc gain
adc gain f
adc gain a

1
[]
[]

Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a

0
[]
[]

Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
adc aper corr 0 No ADC aperture error correction enable:

A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

time stamp 0 Yes Relative timestamp of the first sample y.
adc sfdr
adc sfdr f
adc sfdr a

180
[]
[]

No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f

1e-15
1e-15
[]

Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.
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Table 18: List of input quantities to the TWM-HCRMS wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 19: List of output quantities of the TWM-HCRMS wrapper.
Name Uncertainty Description
t Yes Time vector of the calculated samples [s].
env Yes Calculated half-cycle RMS values env(t).
f0 Yes Average detected fundamental frequency.

Table 20: List of “calcset” options supported by the TWM-HCRMS wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”

or “guf” for uncertainty estimator.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.
calcset.dbg plots Non-zero value to enable plotting of debugging/sig-

nal analysis plots.

4.2 Algorithm description

The overview of the wrapper TWM-HCRMS structure is shown in the diagram in fig. 10. It starts
with signal scaling and corrections. First step is digitizer timebase correction. Follows removal of the
digitizer DC offset. Next, the signal y is split into DC and AC components. Next, the wrapper calls
PSFE to estimate fundamental frequency f0 est of the signal y unless user defined f nom in algorithm
parameters. The frequency f0 est is used to obtain and apply the gain, phase, aperture error corrections
and transducer corrections to DC and AC components separately. Note the AC corrections are applied
in time domain and applies only for the f0 est frequency. No frequency dependent corrections were
implemented as the required accuracy of the algorithm is not critical for the PQ events detection. The
scaled DC and AC components are merged back to the single time domain signal y, which is ready for
the processing.

The processing itself is performed by function “hcrms calc pq()” which is shown in the fig. 11. The
first step of the algorithm is detection of the fundamental frequency and resampling to coherent sampling
if user did not defined f nom parameter. The algorithm uses PSFE algorithm called 200 times using
a sliding window of size N/200 with step N/200. So the development of the fundamental frequency
f0(t) in time is found (see example in fig. 12, top-left). The time development f0(t) is filtered and the
outliers caused by the PQ events are removed based on the simple heuristic algorithm. The removed
portions usually happens on the edges of the “dip”-like events. The missing parts are replaced by the
interpolation, so the frequency f0(t) is known in full range of the processing time t. The f0(t) is used to
calculate resampling coefficients to achieve pseudo-coherent sampling in the full duration of the signal.
The resampling by the dynamic frequency ratio is performed using ordinary spline interpolation, which
seems to produce the least harmonic distortion of the resampled signal yx. The samples count per period
of the resampled signal is chosen to be divisible by factor 2 for class A (so each period can be split to
half) or by 20 for class to S (the algorithm calculates only 20 sliding windows per period).
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Figure 10: Overview of the TWM-HCRMS wrapper for evaluation of the RMS envelope in time.
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Figure 11: Detailed structure of the main half-cycle RMS calculator and uncertainty evaluator.

The next step is period-by-period phase detection and synchronization of yx. This is almost useless
when there are at least 100 samples per period, however the first resampling is not absolutely precise,
so this additional step improves the coherent sampling of each period. The wrapper first filters the
resampled yx by a very narrow passband filter to yxf , which removes the harmonics. Next, the yxf is
split per periods and send to FFT, which calculates phase error of each period phi p(p) (see example in
fig. 12, top-right). Heuristic algorithm discards the parts of phi p(p) affected by the PQ events same as for
the first resampling step and the missing parts are replaced by the interpolation and it also upsamples the
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phase value for each time sample to phi p(t). The phi p(t) is finally used to fine tune the first resampling
coefficients and the resampling is performed again on the original data y to get synchronised signal yx.
Example of the phase detection after the resampling is shown in fig. 12, bottom-left.

Follows the main RMS calculation algorithm which calculates RMS value with step 1/2-period (class
A) or 1/20-period (class S) by ordinary non-windowed discrete RMS method:

rms(p) =

√√√√ 1

N1T
·
N∑
k=1

yx(k + p ·N1T )2, (17)

where k is sample index, p is window offset in periods and N1T is length of the period in samples.

Figure 12: Debug plots showing the intermediated stages of TWM-HCRMS signal processing.

4.3 Uncertainty calculation

The algorithm is relatively straightforward and not excessively slow, so the calculation of uncertainty
is performed on runtime when the “guf” option in “calcset” is selected. The core of the calculation is
based on the spectrum analysis of the resampled signal yx. The spectrum is used to identify dominant
harmonic and interharmonic components (example is shown in fig. 12, bottom-right). Follows a small
Monte Carlo loop which simulates the effect of harmonics and interharmonics on the RMS value of one
period of the signal. It also simulates uncertain quality of the resampling, i.e. non-perfect coherency.
The loop uses just 200 cycles and it is fast as it is performed on one period only.

The previous steps were performed on the conditions identified from the averaged spectrum of the
whole record. Therefore, if the record contained PQ events, such as “dip” or “swell”, the estimated
uncertainty will be inaccurate. So the calculated uncertainty is scaled proportionally for each period by
the actual RMS level. This simple method based on average spectrum analysis showed good agreement
with repeated calculation for each single period, so it was decided to use it as a solution of choice. The
only disadvantage is the uncertainty around event edges is larger than it may be, however RMS method
does not allow exact localisation of the events, so tries to fix this often lead to the underestimation.
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The final step is combining the uncertainty coming from the corrections with the uncertainty of the
algorithm and assigning it to the particular RMS samples. Note the uncertainty estimator also assigns the
uncertainty to the timestamps of each RMS value, however these are almost irrelevant as the technique
for detecting the PQ events introduces uncertainty orders of magnitude higher.

4.4 Validation

The algorithm TWM-HCRMS has many input quantities and some of them are matrices. That is too
many possible degrees of freedom. Thus, varying the quantities in some systematic way would be very
complicated if the validation should cover full range of used signals and corrections. Therefore, an
alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. The Following operations were performed:

1. Generate signal with known reference values.

2. Distort the reference signal by inverse corrections, i.e. simulate the transducers, and digitizer (e.g.
gain errors, quantisation, SFDR ...).

3. Run the algorithm TWM-HCRMS with enabled uncertainty evaluation to obtain the estimated
values and corresponding uncertainties of the meanRMS, maxRMS and minRMS (i.e. the output
parameters of the algorithm).

4. Compare the reference and calculated values and check if the deviations are lower than assigned
uncertainties.

5. Repeat N times from step 1, with different setup parameters, with different corrections randomised
by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of results passed (for 95 % level of confidence).

The total number of Monte-Carlo simulations was 50000. The parameters of the input signal, the
digitizer and transducer settings were randomly varied. The sampling frequency was 10 kHz and the
number of samples between 40 kSa and 100 kSa (i.e. simulation time was between 4 s and 10 s). The
frequency of fundamental signal was between 20 Hz and 240 Hz and the drift of the frequency between
-0.00005 Hz and 0.00005 Hz. The frequency of the harmonics and interharmonics were always above
frequency of the fundamental signal but below the Nyquist frequency. The number of harmonics that
were added to the fundamental signal was 10 and the number of interharmonics was 1. The nominal
RMS of the signal was between 10 V and 1000 V, the spurious free dynamic range was between 1e-3
and 1e-1. The DC value was between -5 V and +5 V. The phases of the fundamental signal as well
as of the harmonics and interharmonics were individually and randomly varied between +3.14 rad and
-3.14 rad. The ADC noise was between 1e-11 V and 1e-4 V, ADC aperture was between 1e-6 s and 4e-5 s,
ADC gain between 1 and 1.5, ADC phase between +1.57 rad and -1.57 rad, frequency correction of the
digitizer timebase between -5e-3 and 5e-3, ADC offset between -0.00001 V and 0.005 V (random value
for low-and high-side channel). Relative time-stamp of the first sample was varied between -10 s and
10 s. The transducer gain was between 10 and 500 and the transducer phase was between +1.57 rad and
-1.57 rad. The resistive voltage divider low-side impedance value (i.e. resistance and capacitance) were
between 100 Ω and 500 Ω and 0.1 pF and 10 pF, respectively (only resistive voltage divider was used in the
simulations). The randomisation of corrections was disabled which means that only the uncertainty of
the algorithm without the contributions of the correction uncertainties were included in the Monte-Carlo
simulations.

The success rate of the TWM-HCRMS algorithm was 100 % for the mean RMS estimation, 97.49 %
for the max RMS estimation and 97.41 % for the min RMS estimation. The time of event was estimated
by another algorithm.
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5 TWM-InDiSwell - Interruption, Dip, Swell event detector

This algorithm detects power quality events “dip”, “swell” and “interruption” for a single phase systems
according to the IEC 61000-3-40, “class A” (half-cycle step) or “class S” (sliding window). It returns
relative event time, duration and its residual RMS value in percents relative to the entered nominal level
nom rms. Note the result provided for the classes A and S should be identical as long as the event is
synchronised with the nominal frequency. However that is rarely the case of real life situations, so the
selection must be made depending on the prescription for the given PQ meter test or PQ event calibrator.

The algorithm internally uses RMS envelope detector TWM-HCRMS, so the accuracy of the detection
depends on its properties. In general, the algorithm will work better with higher sampling rates. At
least 100 samples should be recorded per period of the fundamental component (= sampling rate 5 kSa/s
for 50 Hz networks). The higher is better, because the RMS algorithm will better suppress the harmonic
and interharmonic content.

The algorithm is for single-ended input only and it is equipped with fast uncertainty estimator.
Example of the detected event as plotted by the algorithm is shown in the fig. 13.

Figure 13: Example of the “dip” event evaluated according to the class S of IEC 61000-3-40.

5.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 21. Algorithm returns output
quantities shown in the table 22. Calculation setup supported by the algorithm is shown in table 23.

Table 21: List of input quantities to the TWM-InDiSwell wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
mode “A” N/A Mode of calculation: “A” for class A or “S” for class S.
nom f N/A N/A Optional user defined frequency of the fundamental fre-

quency. The algorithm will identify the fundamental fre-
quency by itself when it is not assigned.

nom rms 230 N/A Optional user defined nominal RMS value of the network.
The event thresholds will be related to this value.

sag thresh 90 N/A Optional threshold value for “sag” (resp. “dip”) event eval-
uation. It is percent of nominal level nom rms.

swell thresh 110 N/A Optional threshold value for “swell” event evaluation. It is
percent of nominal level nom rms.

int thresh 10 N/A Optional threshold value for “interruption” event evalua-
tion. It is percent of nominal level nom rms.

hyst 2 N/A Detection hysteresis in percent of nominal level nom rms.
plot 0 N/A Enables plotting of the detected events. One plot per event

type will be generated with detection levels, RSM envelope
and markers of the event.

y N/A No Input sample data vector.
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Table 21: List of input quantities to the TWM-InDiSwell wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

adc lsb
adc nrng
adc bits

N/A
1000
40

No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset 0 Yes Digitizer input offset voltage.
adc gain
adc gain f
adc gain a

1
[]
[]

Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a

0
[]
[]

Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
adc aper corr 0 No ADC aperture error correction enable:

A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

time stamp 0 Yes Relative timestamp of the first sample y.
adc sfdr
adc sfdr f
adc sfdr a

180
[]
[]

No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f

1e-15
1e-15
[]

Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.
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Table 21: List of input quantities to the TWM-InDiSwell wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 22: List of output quantities of the TWM-InDiSwell wrapper.
Name Uncertainty Description
t Yes Time vector of the calculated samples [s].
env Yes Calculated half-cycle RMS values env(t).
f0 No Average detected fundamental frequency.
sag start Yes Sag (dip) event start relative time stamp [s].
sag dur Yes Sag (dip) event duration [s].
sag res Yes Sag (dip) event residual RMS level [%].
swell start Yes Swell event start relative time stamp [s].
swell dur Yes Swell event duration [s].
swell res Yes Swell event residual RMS level [%].
int start Yes Interruption event start relative time stamp [s].
int dur Yes Interruption event duration [s].
int res Yes Interruption event residual RMS level [%].

Table 23: List of “calcset” options supported by the TWM-InDiSwell wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”

or “guf” for uncertainty estimator.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.
calcset.dbg plots Non-zero value to enable plotting of debugging/sig-

nal analysis plots of the TWM-HCRMS, which is
used internally by the TWM-InDiSwell.

5.2 Algorithm description

The algorithm TWM-InDiSWell internally uses algorithm TWM-HCRMS to calculate RMS envelope of
the signal. Therefore, all input signal conditioning of y is performed in the TWM-HCRMS. The TWM-
HCRMS output RMS values and corresponding time stamps are used to detect events according to the
preset thresholds. The detection method follows the IEC 61000-3-40 standard. The start of event is
assigned to the first RMS sample whose value exceeds the threshold. End of event is assigned to the first
sample whose RMS value returned below the (threshold − hysteresis), which prevents multiple events
detection around the threshold. Flowchart of the algorithm is shown in fig. 14.
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START

TWM-HCRMS call on
signal y to get rms

envelope: 
env_time, env_rms 

u_env_time, u_env_rms 

Detect "dip" event  
from envelope. 

Detect "swell" event 
from envelope. 

Detect "interruption"
event from envelope. 

Return event quantities
and rms envelope 

STOP

un
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ty

rm
s 
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Figure 14: Flowchart of the algorithm wrapper TWM-InDiSwell. Note the green cells are calls to another
QWTB/TWM wrappers.

5.3 Uncertainty calculation

The main component of uncertainty is the output of TWM-HCRMS. However, due to the principle of
detection, especially for class A, the uncertainty of the event start can never be lower than half of the
period, as that is the resolution of the RMS detector. The duration uncertainty cannot be lower than
one full period, as the same resolution applies to the end of the event. The resolution in the class S mode
is higher, however the uncertainty remains the same as that is the requirement of the IEC standard.

5.4 Validation

The validation of the TWM-InDiSwell algorithm has not been performed by the Monte-Carlo simulations
since the algorithm is usually used with the TWM-HCRMS algorithm. It was instead tested on numerous
typical cases such as shown in Fig. 15. The uncertainty is always one half-cycle as suggested by the
standard, so the detected events were always within or exactly on the uncertainty limit as the time
resolution is also one half-cycle.

Figure 15: Validation test examples for the TWM-InDiSwell algorithm.
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6 TWM-THDWFFT - THD from Windowed FFT

This algorithm is designed for calculation of the harmonics and Total Harmonic Distortion (THD) of the
non-coherently sampled signal. It uses windowed FFT to detect the harmonic amplitudes, which limits
the achievable accuracy of the harmonics detection due to the window scalloping effect. However, the
algorithm was initially designed for THD calculation of the low-distortion signals, where the accuracy
was not critical. The relative expanded uncertainty of the harmonics is at least 0.015 % (or 0.005 % after
highly experimental correction method). On the other hand, the algorithm was designed to compensate
the spectral leakage of the noise to the harmonics near noise level, so it offers decent accuracy for the
very low distortions near self-THD of the digitizer itself.

The algorithm supports direct processing of a multiple records which are used to produce averaged
spectrum before the main calculation. This possibility should be preferred instead of repeated call of the
algorithm for each record as it reduces the noise. The algorithm supports only single-ended transducer
connection.

The algorithm returns: (i) Full spectrum; (ii) Identified harmonics; (iii) THD coefficients according
various definitions; (iv) RMS noise estimate; (v) THD+Noise estimate.

Example of the algorithm output is shown in fig. 16.

Figure 16: Example of the TWM-THDWFFT algorithm output.

6.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in table 24. Algorithm returns output
quantities shown in table 25. Calculation setup supported by the algorithm is shown in table 26.

Table 24: List of input quantities to the TWM-THDWFFT wrap-
per. Details on the correction quantities can be found in [4].

Name Default Unc. Description
f0 N/A N/A Optional user defined frequency of fundamental component.

Do not assign to enable auto detection.
f0 mode “PSFE” N/A Optional selection of the fundamental frequency auto de-

tection mode.
scallop fix 0 N/A Non-zero value to enable experimental window scalloping

error correction. It will try to use known scalloping error of
the window at given frequency to correct the error, however
it will work only for stable signals when the fundamental
frequency detection is accurate.

H 10 N/A Optional limit of maximum harmonics count to analyse (in-
cluding fundamental). Note the high values will signifi-
cantly increase calculation time!
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Table 24: List of input quantities to the TWM-THDWFFT wrap-
per. Details on the correction quantities can be found in [4].

Name Default Unc. Description
band inf N/A Optional bandwidth limit which can reduce the harmonics

count to analyse. This also affects the bandwidth of the
noise calculation.

plot 0 N/A Non-zero value, “on”, “true” or “enabled” string enables
plotting of the detected harmonics.

y N/A No Input matrix of the samples. One column per record (the al-
gorithm can directly calculate average of multiple records).

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

adc lsb
adc nrng
adc bits

N/A
1000
40

No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper corr 0 No ADC aperture error correction enable:

A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

adc aper 0 No ADC aperture value [s].
adc gain
adc gain f
adc gain a

1
[]
[]

Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc sfdr
adc sfdr f
adc sfdr a

180
[]
[]

No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f

1e-15
1e-15
[]

Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.
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Table 24: List of input quantities to the TWM-THDWFFT wrap-
per. Details on the correction quantities can be found in [4].

Name Default Unc. Description
tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 25: List of output quantities of the TWM-THDWFFT wrapper. Note the uncertainty “No” means
the algorithm may return some uncertainty but it should be ignored because it is either incomplete or
not validated.

Name Uncertainty Description
H No Harmonics count analysed.
noise bw No Bandwidth used for the noise estimation [Hz].
thd Yes Total Harmonic Distortion referenced to the fundamental.
thd2 Yes Total Harmonic Distortion referenced to the RMS value.
thdn No Total Harmonic Distortion + Noise referenced to the fundamental.
thdn2 No Total Harmonic Distortion + Noise referenced to the RMS value.
noise No RMS noise estimate.
h Yes Amplitudes of the harmonics.
f No Frequencies of the harmonics h.
spec a No Full spectrum from the windowed FFT.
spec f No Frequencies of the spectrum components spec a.
thd raw No thd without noise spectrum leakage correction.
thd2 raw No thd2 without noise spectrum leakage correction.

Table 26: List of “calcset” options supported by the TWM-THDWFFT wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none” or

“guf” for uncertainty estimator. Note the algorithm
is internally made in such a way it always calculates
the uncertainty, so this option should have no effect
in current version.

calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

6.2 Algorithm description and uncertainty evaluation

The whole algorithm is extended and improved version of the THD analyser presented in [5]. The
overview of the algorithm wrapper structure and internal functions is shown in fig. 17. The wrapper
start by a call to the top level function “thd wfft()”, which performs entire calculation and uncertainty
estimation. Next, the wrapper may optionally plot graph showing the identified harmonics and near
spectrum. Note the wrapper reduces the asymmetric uncertainty limits to symmetric as the TWM was
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not designed for such a case. This has no effect when the level of harmonics is at least twice the noise
level. It will expand the uncertainty only for very small harmonic levels near noise level.

The “thd wfft()” itself internally does just two steps: (i) Calculating spectra of input records and esti-
mates their fundamental frequency (function “thd proc waves()”); (ii) Initiates main evaluation function
“thd eval thd()”.

Call thd_proc_waves()
to get fundamental

frequency and
spectra sig 

 for each record in y 

Prepare calculation
parameters 

Call thd_wfft() to
calculate THD 

TWM-THDWFFT

Optional spectrum
plotting by function

thd_plot_spectrum() 

Formatting results to
return in QWTB style: 
thd, thd2, thdn, thdn2,

noise, harmonics,
spectrum 

STOP

thd_wfft()

Call thd_eval_thd() to
calculate the THD and

uncertainties: 
thd, thd2, thdn, thdn2,

noise, harmonics,
spectrum 

RETURN

thd_proc_waves()

Next record?

Call thd_find_freq() to
detect fundamental

frequency f_sig by given
method: PSFE,

zerocross, FPNLSF or
manual

Call ampphspectrum() 
to get windowed

amplitude spectrum amp
and frequency vector f.

RETURN

Average frequencies and
frequency vectors 

yes

all done

Figure 17: Flow chart of the algorithm wrapper TWM-THDWFFT. Note the rounded gold blocks are
calls to other local functions which are shown in another diagram or mentioned in the text.

The function “thd proc waves()” first detects fundamental frequency of each record in y. It contains
several modes of detection. The simplest is zero crossing, however it is very unreliable. Another options
if FPNLSF [7], which may fail when initial estimate from zero cross detector is poor. Last and best
option (default) is PSFE [3], which is capable to identify the fundamental frequency with good accuracy
even with strong harmonic content. User may also override the auto detection by manual entry of the
fundamental frequency. The next step is calculation of amplitude spectrum for each record y using a
windowed FFT. The widest, flattest window with highest suppression of side lobes was chosen for the
goal - Flattop HFT248D from [1]. This window offer side lobes suppression by 248 dB and scalloping
error only 0.0104 % for range ±0.5 DFT bin.

all done

Obtain window
scalloping: flat 

Generate LUT for noise
leakage correction 

Decide range of analysis: 
harmonics count and

bandwidth 

thd_eval_thd()

Obtain and apply digitizer
gain, transducer gain and

aperture corrections to
signal sig 

Average spectra sig to
sig_m and calculate type

A uncertainty sig_ua. 

Get harmonic's:
frequency, peak

amplitude, near noise
level, type A uncertainty 

Optionally call 
thd_window_gain_corr()
to correct scalloping error 

Next harmonic?
yes

Estimate RMS noise 

Prepare system SFDR
and LSB parameters 

Call 
thd_eval_harmonic() to
evaluate amplitude and

uncertainty of each
harmonic. Returns mean
values and Monte Carlo

randomized sets. 

Evaluate THD from mean
harmonic amplitudes. 

High THD mode: 
THD uncertainty using
Monte Carlo from the
randomized harmonic

sets 

High THD?

Combine and format
THD values and
uncertainties and

harmonic values and
uncertainties

Low THD mode: 
THD uncertainty using
worst case harmonics

uncertainty combination 

RETURN

yes
no

signal, parameters
corrections

uncertainty

Figure 18: Flow chart of the main algorithm function “thd eval thd()” for the TWM-THDWFFT algo-
rithm.
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The internal structure of the evaluation function “thd eval thd()” is shown in fig. 18. The function
does following steps:

1. Obtaining parameters of the window function Flattop HFT248D used for the processing.

2. Generation of lookup table (LUT), which will be used for the numeric solver that compensates
spectrum leakage of the noise to the harmonic DFT bin (details below).

3. Decision of how many harmonics to analyse based on the user limits (H and bandwidth).

4. Application of all gain corrections to scale the spectra from “thd proc waves()” to actual levels.

5. Averaging of the spectra and type A uncertainty calculation.

6. Detection of harmonics. The algorithm picks the harmonics from the average spectrum one by
one. It searches the highest DFT bin in preset frequency range for each estimated harmonics
frequency. It also extracts the nearby noise level which is needed for compensation of the noise
spectral leakage.

7. The parameters required for the uncertainty evaluation of each harmonics are obtained (system
SFDR and LSB).

8. Evaluation of the harmonic values and uncertainties using function “thd eval harmonic()” (see
below). This returns mean harmonic levels and calculated uncertainties and also randomized
harmonic levels, because it internally uses Monte Carlo.

9. Calculation of the THD coefficients from the mean harmonic amplitudes according to various
definition and calculation of their uncertainties using one of the methods (see below).

The evaluation of the THD coefficients in the step 9) is performed according to the several definitions.
The most common is so called “fundamental referenced” THD:

thd =

√
U2
2 + U2

3 + · · ·+ UM
U1

, (18)

where Ux is mean harmonic voltage and x is harmonic index and M is harmonics count. The next is
RMS value referenced mode, which uses total RMS of the signal in the denominator:

thd2 =

√
U2
2 + U2

3 + · · ·+ U2
M√

U2
1 + U2

2 + U2
3 + · · ·+ U2

M

. (19)

The results should be very close for low distortion signals. Next result is combined fundamental referenced
THD and noise THD+N:

thdn =

√
U2
2 + U2

3 + · · ·+ UM + U2
noise

U1
, (20)

where the Unoise is RMS noise in specified bandwidth (parameter band). Last definition is RMS referenced
THD+N:

thdn2 =

√
U2
2 + U2

3 + · · ·+ U2
M + U2

noise√
U2
1 + U2

2 + U2
3 + · · ·+ U2

M + U2
noise

. (21)

The algorithm also returns the same four coefficient without the noise leakage correction, however
those are just informative.

The uncertainty evaluation for the THD coefficients uses heuristic approach. The THD coefficients
are calculated from the mean values from step 8 ignoring the uncertainty and its distribution. The
uncertainty calculation method depends on the “is high” obtained in step 8, which is set when the
weighted average of the harmonic amplitudes is significantly above noise. So two cases occur:

1. is high = true: The distribution of the uncertainty of the harmonics is near Gaussian so the
randomized amplitudes from step 8) are passed to the THD formulas above and the THD is
evaluated using Monte Carlo and function “scovint()” (follows GUM guide [2]).
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2. is high = false: The distribution of the uncertainty of the harmonics is very asymmetric, so the
Monte Carlo would lead to large bias in the mean value of THD. Therefore the THD uncertainty
is evaluated using the worst case combination of the harmonic uncertainties from step 8):

[thdMAX, thdMIN] =


√

M∑
m=2

U2
mMAX

U1MIN

,

√
M∑
m=2

U2
mMIN

U1MAX

 (22)

where:

UmMAX
= Um + U+(Um), (23)

UmMIN
= Um − U−(Um). (24)

The reported asymmetric uncertainties were calculated according to:

[U+(thd), U−(thd)] = [thdMAX − thd, thd− kMIN] . (25)

The evaluation of the uncertainty of each harmonic is performed by the function “thd eval harmonic()”
shown in fig. 19. This is simple heuristic function that calculates uncertainty distribution of each har-
monic component depending on how close it is to the noise level. This is necessary, because the distri-
bution for harmonics well above the noise level will be near Gaussian, whereas the possible value of the
harmonic near noise level may be anywhere in the noise or slightly above. The result of this approach is
very asymmetric distribution that cannot be processed using GUF method. Therefore the calculation is
performed by Monte Carlo with 10000 cycles (defined as fixed option in the TWM-THDWFFT wrapper).
The performance is acceptable as long as no more than 50 harmonics are analysed. The resulting ran-
domised set of harmonic amplitudes is returned in full for further processing. However, the function also
calculates the uncertainty limits for each harmonic for given level of confidence by function “scovint()”
(implemented according to [2]).

thd_eval_harmonic()

Randomize harmonics based
on the near noise level

(asymmetric distribution,
purely empirical) 

Evaluate uncertainty by
Monte Carlo using function

scovint() 

Correct noise leakage using
pregenerated LUT: function
fft_window_leak_fix_amp() 

Evaluate uncertainty by Monte
Carlo using function scovint() 

Empirical decision if we
have significantly higher

harmonics than noise
level (flag is_high).

Return values: 
1) mean harmonics and

uncertainties 
2) randomized sets of
harmonic amplitudes 

3) is_high flag 

RETURN

signal, parameters

uncertainty

Figure 19: Flow chart of the function “thd eval harmonic()” of the TWM-THDWFFT algorithm.

The function “thd eval harmonic()” also repeats the same calculation once more with the mentioned
noise leakage correction. The problem related to wide window functions such as Flattop HFT248D is the
not only the harmonic power leaks to the more DFT bins, but also the noise energy near the harmonic
leaks to the harmonic DFT bin. This effect is normally not considered, when the narrower windows are
used and when the harmonic is several times larger than the noise. However, this algorithm uses very
wide window Flattop HFT248D and it was designed to operate near noise level. The apparent gain of
the detected harmonic can be obtained by the following procedure:
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1. generation of sine wave x(t) with amplitude Um,

2. addition of gaussian noise with level Unoise to the x(t),

3. windowing of the x(t) by selected window function (Flattop HFT248D),

4. reading the amplitude Ux from amplitude spectrum of X(f) of signal x(t).

Alternatively the same result can be obtained by means of Monte Carlo method from equation:

Ux =
1

I

I∑
i=1

∣∣∣∣∣Um + Unoise

K∑
k=1

Wk · e−j2πR(i,k)

∣∣∣∣∣ (26)

where K is number of coefficients of window function amplitude spectrum Wk and I is number of MC
iterations (at least 104). The R(i, k) is uniformly distributed random number generator from 0 to 1. The
right sum term represents a vector sum of a noise vectors with random angle and amplitude weighted
by window spectrum coefficients Wk. The resulting gain vs. noise to signal ratio is shown in fig. 20.
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Figure 20: Error of the harmonics amplitude measurement using FFT with window Flattop HFT248D.
Note the “noise” means amplitude of the noise in surrounding DFT bins, not RMS noise.

.

The direct inverse evaluation from the detected to actual harmonic level is nto possible, so the
algorithm uses iterative function based on the precalculated LUT with the gain error (the dependence in
fig. 20). The correction itself is performed by the function “fft window leak fix amp()”, which takes the
harmonic level, noise level detected around (assuming the noise is the same for all related DFT bins).
Effect of this correction is shown in fig. 21.

Figure 21: Deviation of THDWFFT algorithm from simulated THD level 10 ppm for various noise
to higher harmonic ratios. The simulated waveform has 10 harmonic components with amplitudes
Um = {0.9, 3 · 10−6, 3 · 10−6, . . . }V. Left graph shows results without noise spectral leakage correction,
right graph shows the same dependence with corrected values. The error bars show the standard deviation
of a repeated simulations.
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6.3 Validation

The algorithm TWM-THDWFFT has many input quantities (45) and some of them are matrices. That
is too many possible degrees of freedom. Thus, varying the quantities in some systematic way would be
very complicated if the validation should cover full range of used signals and corrections. Therefore, an
alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate signal y with known harmonic content Aref(h) and thus known THD thdref.

2. Distort the signal y by inverse corrections, i.e. simulate the transducers, and digitizer (e.g. gain
errors, quantisation, SFDR ...).

3. Run the algorithm TWM-THDWFFT with enabled uncertainty evaluation to obtain the harmonic
levels Ax(h), distortion thdx and their uncertainties u(Ax(h)) and u(thdx).

4. Compare the reference and calculated harmonics and distortion and check if the deviations are
lower than assigned uncertainties:

pass A(i, h) = |Aref(h)−Ax(h)| < u(Ax(h)), (27)

pass thd(i) = |thdref − thdx| < u(thdx), (28)

where i is test run index.

5. Repeat N times from step 1, with the same test setup parameters, but with corrections randomised
by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of pass A(i, h) and pass thd(i) results passed (for 95 % level of confidence).

The test runs count per test setup was set to N = 300, which is far from optimal infinite set, but
due to the computational requirements it could not have been much higher. Note the low count of test
induces uncertainty to the obtained pass rates.

The algorithm in the uncertainty estimation mode was tested in 4 different configurations with 10000
test setups per each. I.e. the algorithm was ran 12 million times in total (4x10000x300). The processing
itself was performed on a supercomputer [6] so it took about 3 days at 400 parallel octave instances.

The randomization ranges of the signal are shown in table 27. The randomization ranges of the
corrections are shown in table 28.

The test results were split into several groups given by the randomiser setup: (i) Scalloping correction
enabled/disabled; (ii) Randomisation of corrections by uncertainty enabled/disabled. When the randomi-
sation of corrections is disabled, the test runs cover only the algorithm itself and the contributions of the
correction uncertainties are ignored.

The summary of the validation test results is shown in table 29. The success rate was 100 % for all
cases.
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Table 27: Validation range of the signal for TWM-THDWFFT algorithm.
Parameter Range
Sampling rate 30 to 70 kHz (no need to randomize in wider range, as

all other parameters are generated relative to this rate).
Sampling time 0.3 to 5 seconds.
Fundamental frequency Random, so there are at least 30 DFT bins between

harmonics and the highest harmonic is no higher then
0.4 · fs.

Analysed harmonics count 5 to 10.
Fundamental amplitude 0.1 to 0.9 of fullscale digitizer input.
Harmonic amplitudes Each harmonic is randomised from 1 µV to A max of

fundamental, where the A max is randomised from
0.0001 to 0.1 of fundamental.

Phase angles Random for all harmonics.
Averaging cycles 10.
SFDR -140 to -80 dBc, all spurs have the same level.
Digitizer RMS noise 1 to 50 µV.
Sampling jitter 1 to 100 ns.

Table 28: Validation range of the correction for the TWM-THDWFFT algorithm.
Parameter Range
Transducer type Random ’shunt’ or ’rvd’.
Nominal input range 0.1 to 100 V (0.1 to 100 A)
Aperture 1 ns to 100 µs
Digitizer gain Randomly generated frequency transfer simulating

NI 5922 FIR-like gain ripple (possibly the worst imag-
inable shape) and some ac-dc dependence. The transfer
matrix has up to 50 frequency spots. Nominal gain value
is random from 0.95 to 1.05 with uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±1 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is random from
0.005 to 0.03 dB with up to 5 periods between 0 and
fs/2.

Digitizer SFDR Value based on table 27.
Transducer SFDR Value based on table 27. Note the “SFDR” from ta-

ble 27 is randomly split between digitizer and transducer
SFDR correction.

Digitizer bit resolution 16 to 28 bits.
Digitizer nominal range 1 V
Transducer gain Randomly generated frequency transfer. The transfer

matrix has up to 50 frequency spots. Nominal gain value
is random (see above) with relative uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±2 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is 0.005 dB with
4 to 10 periods between 0 and fs/2.
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Table 29: Validation results of the algorithm TWM-THDWFFT. The “passed test” shows percentage of
passed tests under conditions defined in tables 27 and 28.

Scallop. fix. Rand. corr.
Passed test [%]

thd h(1) h(2..n)

no
no 100.00 100.00 100.00
yes 100.00 100.00 100.00

yes
no 100.00 100.00 100.00
yes 100.00 100.00 100.00
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7 TWM-PWRTDI - Power by Time Domain Integration

TWM-PWRTDI is an algorithm for calculation of power parameters using a time domain integration of
u(t) · i(t) product. It is based on the use of window function to eliminate effects of non-coherent sampling
as was demonstrated in [1] and [4]. Therefore, it does work even for non-coherently sampled waveforms.
The algorithm itself without contribution of corrections can easily reach errors below 1 µW/VA with
proper selection of a sampling rate and windows size.

The algorithm can calculate all basic parameters: active power P , reactive power Q, apparent power
S, RMS voltage U , RMS current I and power factor PF . It also returns DC components separately:
Udc, Idc and Pdc. User may choose optional AC coupling mode by setting parameter “accoupling = 1”
in which case the U , I, P , Q, S and PF will be calculated without the AC component.

Note the windowed RMS method itself can calculate power in any quadrant, however it is not able to
distinguish all four quadrants. The quadrant identification (proper signs for P and Q) is obtained from
a complementary windowed FFT algorithm which is running along the main RMS calculation. Note the
quadrant selection may fail around PF = 0 (the absolute values will be correct).

The algorithm uses following definitions for the power components: (i) The AC power components
P , Q and S are related by equation:

S2 = P 2 +Q2. (29)

(ii) Power factor PF is calculated including DC components according to equation:

PF =
P

S
. (30)

(iii) The sign of Q is calculated using harmonic components method according Budenau definition:

sing(Q) = sign

{
H∑
h=1

(U(h) · I(h) · sinφ(h))

}
, (31)

where h is harmonic index, H is harmonics count, U(h), I(h) and φ(h) are harmonic voltage, current
and phase shift. Note the absolute value of Q is still calculated from AC components following equation
29. Only the sign of Q is decided from the Budenau definition 31.

The TWM-PWRTDI algorithm wrapper is able to use single-ended or differential input sensors for
voltage channel, current channel or both. The algorithm is also equipped by a fast uncertainty estimator
and the Monte Carlo uncertainty calculation method for more accurate but slower uncertainty evaluation.

7.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 30. Algorithm returns output
quantities shown in the table 31. Calculation setup supported by the algorithm is shown in table 32.

Table 30: List of input quantities to the TWM-PWRTDI wrapper.
Details on the correction quantities can be found in [5].

Name Default Unc. Description
ac coupling 0 N/A Enables virtual AC coupling of the wattmeter. This option

will cause the DC value will be ignored.
u
u lo

N/A
N/A

No
No

Input voltage sample data vector and complementary low-
side input data vector i lo (for differential mode only).

i
i lo

N/A
N/A

No
No

Input current sample data vector and complementary low-
side input data vector i lo (for differential mode only).

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

time shift 0 Yes Timeshift between voltage channel u and current channel
i.

u time shift lo
i time shift lo

0
0

Yes
Yes

Time shift between high-side channel u low-side channel
u lo (or i and i lo for current).
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Table 30: List of input quantities to the TWM-PWRTDI wrapper.
Details on the correction quantities can be found in [5].

Name Default Unc. Description
u lsb
u adc nrng
u adc bits
u lo lsb
u lo adc nrng
u lo adc bits
i lsb
i adc nrng
i adc bits
i lo lsb
i lo adc nrng
i lo adc bits

N/A
1000
40
N/A
1000
40
N/A
1000
40
N/A
1000
40

No
No
No
No
No
No
No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

u adc offset
u lo adc offset
i adc offset
i lo adc offset

0
0
0
0

Yes
Yes
Yes
Yes

Digitizer input offset voltage.

u adc gain
u adc gain f
u adc gain a
u lo adc gain
u lo adc gain f
u lo adc gain a
i adc gain
i adc gain f
i adc gain a
i lo adc gain
i lo adc gain f
i lo adc gain a

1
[]
[]
1
[]
[]
1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No
Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

u adc phi
u adc phi f
u adc phi a
u lo adc phi
u lo adc phi f
u lo adc phi a
i adc phi
i adc phi f
i adc phi a
i lo adc phi
i lo adc phi f
i lo adc phi a

0
[]
[]
0
[]
[]
0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No
Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

u adc jitter
u lo adc jitter
i adc jitter
i lo adc jitter

0
0
0
0

No
No
No
No

Digitizer sampling period jitter [s].

u adc aper
u lo adc aper
i adc aper
i lo adc aper

0
0
0
0

No
No
No
No

ADC aperture value [s].
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Table 30: List of input quantities to the TWM-PWRTDI wrapper.
Details on the correction quantities can be found in [5].

Name Default Unc. Description
u adc aper corr
u lo adc aper
i adc aper corr
i lo adc aper

0
0
0
0

No
No
No
No

ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

u adc sfdr
u adc sfdr f
u adc sfdr a
u lo adc sfdr
u lo adc sfdr f
u lo adc sfdr a
i adc sfdr
i adc sfdr f
i adc sfdr a
i lo adc sfdr
i lo adc sfdr f
i lo adc sfdr a

180
[]
[]
180
[]
[]
180
[]
[]
180
[]
[]

No
No
No
No
No
No
No
No
No
No
No
No

Digitizer SFDR 2D table.

u adc Yin Cp
u adc Yin Gp
u adc Yin f
u lo adc Yin Cp
u lo adc Yin Gp
u lo adc Yin f
i adc Yin Cp
i adc Yin Gp
i adc Yin f
i lo adc Yin Cp
i lo adc Yin Gp
i lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]
1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

u tr type
i tr type

“” No Transducer type string (“rvd” or “shunt”).

u tr gain
u tr gain f
u tr gain a
i tr gain
i tr gain f
i tr gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Transducer gain correction 2D table (multiplicative).

u tr phi
u tr phi f
u tr phi a
i tr phi
i tr phi f
i tr phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Transducer phase correction 2D table (additive).

u tr sfdr
u tr sfdr f
u tr sfdr a
i tr sfdr
i tr sfdr f
i tr sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Transducer SFDR 2D table.
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Table 30: List of input quantities to the TWM-PWRTDI wrapper.
Details on the correction quantities can be found in [5].

Name Default Unc. Description
u tr Zlo Rp
u tr Zlo Cp
u tr Zlo f
i tr Zlo Rp
i tr Zlo Cp
i tr Zlo f

1e3
1e-15
[]
1e3
1e-15
[]

Yes
Yes
No
Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

u tr Zbuf Rs
u tr Zbuf Ls
u tr Zbuf f
i tr Zbuf Rs
i tr Zbuf Ls
i tr Zbuf f

0
0
[]
0
0
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

u tr Zca Rs
u tr Zca Ls
u tr Zca f
i tr Zca Rs
i tr Zca Ls
i tr Zca f

1e-9
1e-12
[]
1e-9
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

u tr Zcal Rs
u tr Zcal Ls
u tr Zcal f
i tr Zcal Rs
i tr Zcal Ls
i tr Zcal f

1e-9
1e-12
[]
1e-9
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

u tr Yca Cp
u tr Yca D
u tr Yca f
i tr Yca Cp
i tr Yca D
i tr Yca f

1e-15
1e-12
[]
1e-15
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

u tr Zcam
u tr Zcam f
i tr Zcam
i tr Zcam f

1e-12
[]
1e-12
[]

Yes
No
Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

u Zcb Rs
u Zcb Ls
u Zcb f
i Zcb Rs
i Zcb Ls
i Zcb f

1e-9
1e-12
[]
1e-9
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

u Ycb Rs
u Ycb Ls
u Ycb f
i Ycb Rs
i Ycb Ls
i Ycb f

1e-15
1e-12
[]
1e-15
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Cable series impedance 1D table.
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Table 31: List of output quantities of the TWM-PWRTDI wrapper.
Name Uncertainty Description
U Yes RMS voltage [V].
I Yes RMS current [A].
P Yes Active power [W].
S Yes Apparent power [VA].
Q Yes Reactive power [VAr].
phi ef Yes Effective phase angle: arccos (PF ) [rad].
Udc Yes DC voltage component [V].
Idc Yes DC current component [A].
Pdc Yes DC power component [W].
spec U No Voltage channel spectrum [V].
spec I No Current channel spectrum [A].
spec S No Apparanet power spectrum [VA].
spec f No Frequency vector of spec U , spec I and spec S.

Table 32: List of “calcset” options supported by the TWM-PWRTDI wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”,

“guf” for uncertainty estimator, “mcm” for Monte
Carlo.

calcset.mcm.method Monte Carlo evaluation mode: “singlecore” - sin-
gle core evaluation, “multicore” - Parallel evaluation
using “parcellfun” for GNU Octave or “parfor” for
Matlab “multistation” - Multicore evaluation using
“multicore” package (GNU Octave only yet).

calcset.mcm.repeats Monte Carlo iterations count. Use at least 100 to get
any usable estimate.

calcset.mcm.proc no Number of parallel instances to use for the paral-
leled modes. Use zero value to not start any server
processes for the “multistation” mode. This option
expects user started the server processes manually in
the shared folder. This option causes less overhead
for the batch processing or runtime calculations.

calcset.mcm.tmpdir Jobs sharing folder for the “multistation” mode.
This should be an absolute path to the sharing folder.
Keep in mind the package “multicore” will erase the
content of this folder before each new calculation!

calcset.mcm.user fun User function to call in the “multistation” mode af-
ter startup of the serve processes. Example: “calc-
set.mcm.user fun = @coklbind2”. Leave empty to
not execute any function.

calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

7.2 Algorithm description

The TWM-PWRTDI wrapper starts with automatic cropping of the input data to a size of multiple of
two, which is required by the algorithm core. Next, the wrapper creates two virtual channels, one for
voltage and one for current, because the applied corrections are identical for both so the code duplication
is minimised. It also creates virtual sub-channels for the low-side signals u lo and i lo (differential mode).
Next, the wrapper calculates windowed spectra of each input signal u and i (and u lo, i lo) and also splits
the time domain signals u and i (and u lo, i lo) to AC and DC components which are treated separately.
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The next step are the frequency dependent corrections of the input signals. Note the windowed RMS
(WRMS) algorithm itself operates in time domain, so the frequency dependent corrections of the gain
and phase must be applied in time domain to u and i (and u lo, i lo). However, the uncertainty
calculator/estimator needs a spectrum, i.e. frequency domain representation of the time domain signals.
Therefore, the correcting code does two things at once: (i) It calculates total combined gain and phase
corrections for each virtual channel but does not apply it to time domain data u and i (and u lo, i lo)
yet; (ii) It applies the same corrections to the frequency domain representation only. At the same time
the spectra of the eventual differential pair u and ulo (and i and i lo) are merged to a single single-ended
spectrum of u and i.

In the next step, the wrapper calls the main WRMS function “proc wrms()”, which applies the
calculated corrections in time domain to u, i (and u lo, i lo), calculates the differential time domain
signal (for differential mode only) and calculates the AC RMS parameters U , I, AC power P (see below)
and the DC components U dc and I dc. Follows the uncertainty calculation (see below) of the RMS
and active power quantities and expression of the other desired quantities and their uncertainties. For
simplicity the uncertainty calculator calculates only uncertainty of the RMS voltage, RMS current a
active power. The remaining uncertainties are calculated from these three. The definitions of particular
parameters is shown in the table 33. Note the Q bud quantity in the table is reactive power estimated
from the FFT spectra of voltage and current according the Budenau definition:

Q bud =

H∑
h=1

(0.5 · U(h) · I(h) · sinφ(h)), (32)

where h is harmonic component index, H is total harmonics count, U(h) and I(h) are harmonic voltage
and current amplitudes and φ(h) is voltage to current phase shift. The purpose of the (sign)(Q bud)
term is to distinguish correct polarity of Q, because the WRMS algorithm itself cannot distinguish all
four quadrants of power. One solution would be to use Hilbert transformation on either voltage or current
waveform and repeat the WRMS calculation. This would allow to calculate the Q directly, however such
solution seemed to complex. Therefore, instead of the Hilbert transform, the sign of Q was obtained
from the Budenau’s definition. Such solution should work reliably if power factor is |PF | > 0.05 and
there are no excessive harmonics.

Table 33: Definitions of the TWM-PWRTDI output quantities based on the basic quantities U , I, P ,
U dc and I dc. Note the input quantities marked * are obtained from the other output quantity.

Returned quantity AC coupled definition DC coupled definition
DC voltage Udc U dc U dc
DC current Idc I dc I dc
DC power component Pdc U dc · I dc U dc · I dc
RMS voltage U U

√
U2 + U dc2

RMS current I I
√
I2 + I dc2

Active power P P P + U dc · I dc
Reactive power Q

√
(UI)2 − P 2 · sign(Q bud)

√
(UI)2 − P 2 · sign(Q bud)

Apparent power S (UI)2
√
U2 + U dc2 ·

√
I2 + I dc2

Power factor PF P/S∗ P/S∗
Effective phase angle phi ef atan2(Q∗, P ) atan2(Q∗, P )

7.2.1 Windowed RMS function “proc wrms()”

The core of the algorithm is function “proc wrms()”. Before the algorithm itself is described, it must be
noted the “proc wrms()” function was made in such a way it can be used for a Monte Carlo uncertainty
evaluation in a parallel manner. I.e. the function is called once for each Monte Carlo iteration (see
below). This affected its structure.

The function can be executed either on the input time domain signals u, i (and u lo, i lo) which
is used for evaluation of the power parameters and it can be also called repeatedly in the simulator
mode, where it calculates the power of synthesized signals with prescribed parameters randomized by
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input uncertainties (Monte Carlo calculation mode). The synthesizer of the waveforms is included in
this function, so the following section will show its function as well.

The function starts with selection of the mode of operation. For the simulated mode, it overrides
input signals u, i (and u lo, i lo) by a synthesized ones with known spectral components and known
total power, power factor, etc. It also applies various distortions, e.g. noise, quantisation errors, ...

Follows the calculation part which is common for both modes of operation. First, it applies the time
domain frequency dependent correction of each virtual channel (u, i, u lo and i lo)). This is done by the
“td fft filter()”. Note the function “td fft filter()” itself also estimates the phase errors it causes, which
is used only in the calculation mode (they are ignored in the simulating mode). The DC corrections to
the previously split DC components are also applied in this step.

Figure 22: Example of FFT filter profile. From left right: Gain correction, Phase correction, Detail of
phase correction. Blue - desired correction, red - applied correction.

The function “td fft filter()” is critical for correct functionality of the whole algorithm. The function
is a frequency domain filter executed per smaller windows. The function does following steps:

1. Building a filter spectral profile from the gain/phase correction data for the positive frequencies.

2. Empirical post-processing of the filter profile to suppress the errors caused by high phase angle
correction. This step applies weighting mask to the phase of the filter at its ends (at DC and
Nyquist frequency). So both “ends” of the filter have zero phase. This drastically reduces inherent
errors of this filtering method. See fig. 22 for an example.

3. Estimation of the filter post-processing errors on the phase.

4. Extending the filter profile to negative frequencies.

5. Performing the spectral filtering per small overlapping windows by a function
“sFreqDep PG Comp(y, fft size, filter)”:

(a) Obtaining Hann window function coefficients w of size fft size/2.

(b) Extend Hann by zero padding: w = [zeros(1, fft size/4), w, zeros(1, fft size/4)] to a total
size of fft size.

(c) Window fft size input samples y(offset : offset+ fft size− 1) by the window w.

(d) Performing FFT of the windowed portion of y to get spectrum Ŷ .

(e) Applying filter profile to the spectrum Ŷ .

(f) Performing inverse-FFT of the Ŷ to get time domain representation y frame.

(g) Extracting < fft size/4; fft size · 3/4 > samples of y frame.

(h) Merging y frame samples with overlapping samples of output signal yf and storing result to
yf(offset+ fft size/2).
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(i) Move offset to next frame by fft size/4 samples and repeat from step 5c for all possible
frames.

6. Removing invalid portions of the filtered signal (fft size/2 samples from beginning and end of
signal).

In the next step the “proc wrms()” evaluates the RMS parameters U , I and P according the following
definitions:

U =
1

W
·

√√√√ N∑
k=1

w(k)2 · u(k)2, (33)

I =
1

W
·

√√√√ N∑
k=1

w(k)2 · i(k)2, (34)

P =
1

W 2
·

√√√√ N∑
k=1

w(k)2 · u(k) · i(k), (35)

W =

√√√√ N∑
k=1

w(k)2, (36)

where k is a sample index, N is total samples count and w(k) is k-th sample of the window function
Blackman-Harris. For clarity, the Blackman-Harris window used in the WRMS algorithm is defined by
[2]:

w(k) = 0.35875− 0.48829 · cos
2πk

N
+ 0.14128 · cos

4πk

N
− 0.01168 · cos

6πk

N
. (37)

Note the coefficients are exact (not rounded). This window was selected because the calculation errors
of the RMS parameters due to the non-coherency decays fastest with growing number of signal periods
(see [1]).

Last step of the function “proc wrms()” is performed only for the simulation mode. The function
calculates the deviation of calculated power from the theoretical synthesized power (used for Monte Carlo
evaluation).

7.3 Uncertainty calculator and estimator

The TWM-PWRTDI algorithm wrapper is equipped by two modes of uncertainty evaluation: (i) The
ordinary Monte Carlo (MC) calculator; (ii) Fast estimator based on several precalculated lookup tables
(LUT). The MC mode is more accurate, however it may take up to several minutes to perform even just
a few hundreds of iterations. The calculation time drastically rises with the length of the record. Thus
the fast estimator was created as well.

The WRMS algorithm itself can calculate a power of any voltage and current waveforms. However,
calculation of uncertainty for general non-periodic waveforms would be extremely complex and slow.
Therefore, the uncertainty calculation is based on the analysis of spectral components obtained from the
average spectrum of the whole digitized waveform. This simplification should not have any effect, as the
algorithm is primarily intended for a calibration of stationary signals.

The first step of the uncertainty evaluation for both modes is spectral analysis of the voltage and
current spectra Uh(fh), Ih(fh) and phase shifts between the voltage and current harmonic components
ph(fh). These spectra along with their uncertainties were obtained in the corrections section (see sec-
tion 7.2). The algorithm identifies the fundamental component of power by searching the dominant
voltage harmonic assuming the fundamental voltage harmonic should be always present. The algorithm
then searches up to 100 spectral components Ux(fh), Ix(fh) and phx(fh), whose current or voltage
amplitude exceeds certain threshold relative to the fundamental harmonic. These spectral components
are successively removed from the spectra Uh(fh) and Ih(fh). Whatever is left after the removal is
considered and later used as a residual RMS noise estimate. The identified spectral components will be
marked Ux(h), Ix(h) (amplitudes) and phx(h) in the following text. Their uncertainties coming from
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the correction uncertainties will be marked u Ux(h), u Ix(h), u phx(h). The h is index of harmonic
from one to H.

The identified spectral components Ux(h), Ix(h) and phx(h) are used to calculate estimate of the
RMS and power parameters following the Budenau definition:

U rms =

√√√√ H∑
h=1

0.5 · Ux(h)2, (38)

I rms =

√√√√ H∑
h=1

0.5 · Ix(h)2, (39)

P = 0.5 ·
H∑
h=1

Ix(h) · Ix(h) · cos(phx(h)), (40)

Q = 0.5 ·
H∑
h=1

Ix(h) · Ix(h) · sin(phx(h)), (41)

S = 0.5 ·
H∑
h=1

Ix(h) · Ix(h), (42)

(43)

Following algorithm structure differ for Monte Carlo and Estimator.

7.3.1 Monte Carlo uncertainty calculator

The MC uncertainty calculator is very straightforward. It starts with preparation of the two virtual
channels. One for voltage and one for current. Each channel contains a list of the identified spectral
components Ux(h), Ix(h) and phx(h) to synthesize with assigned uncertainties coming from the correc-
tions u Ux(h), u Ix(h), u phx(h). Each channel have also assigned RMS noise, system SFDR and LSB
of the ADC. Then the WRMS processing function “proc wrms()” is called in the simulator mode repeat-
edly for each iteration of MC. The returned randomised lists of RMS voltage, RMS current and active
power are evaluated according GUM annex 1 [3] using a function “scovint()” to obtain absolute final
uncertainties of quantities U , I and P . The uncertainties of the other returned quantities are evaluated
in the wrapper (see above) from these three uncertainties.

Note the MC evaluator itself uses function “qwtb mcm exec()”. This function is internally designed
to enable parallel calculation of the MC iteration cycles. It is offers three modes of parallelisation:

1. calcset.mcm.method = ‘singlecore’: Single core calculation.

2. calcset.mcm.method = ‘multicore’: Multicore operation using “parcellfun()” from “parallel”
package for GNU Octave or “parfor” for Matlab. Note the use of Matlab’s “parfor” for paral-
lelisation is just a user wish. Actual parallelisation mode is decided by Matlab. The package
“parcellfun()” implementation does work only for Linux. Windows implementation was not func-
tional at least up to GNU Octave version 4.2.2.

3. calcset.mcm.method = ‘multistation’: Multiprocess/multistation calculation using “multi-
core” package for GNU Octave (Matlab is not supported yet). Note the The “multistation” method
requires to define shared folder path for the job files. Otherwise it will create the shared folder in
temp folder, which may not be appreciated by the SSD disks owners. The mode “multistation”
also have one specific feature. It can initiate the user function after startup of the server processes.
The function is defined in the “calcset.mcm.user fun” variable. The example of the use for this
optional input is CMI’s supercomputer “Čokl” [6] which requires to call a special script to assign
server processes to particular CPU cores.

See table 32 for list of the additional parameters. Note at least 100 iterations is the absolute minimum
for which the MC mode provides any usable uncertainty estimates. The processing time for an evaluation
at 4 cores with 1000 cycles and N = 10000 input samples is typically below one minute. However, the
situation may change drastically when high count of harmonic components is presents in the signal.
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7.3.2 Fast uncertainty estimator

The uncertainty estimator is significantly more complex than the Monte Carlo calculator. It consists
of four separate estimation routines which contributes to the final uncertainty: (i) Uncertainty of time-
domain frequency dependent filter “td fft filter()”; (ii) Uncertainty of a system SFDR; (iii) Uncertainty
WRMS algorithm for a single tone signal; (iv) Uncertainty of WRMS mutual harmonic effects. These
are executed in order. The estimation routine (i) is affecting steps (ii), (iii) and (iv). The obtained
uncertainty components from the particular steps are combined to the total uncertainty of U , I and P .
The uncertainties of the other returned quantities are evaluated in the wrapper (see above) from these
three uncertainties.

7.3.2.1 Uncertainty of time-domain frequency dependent filter “td fft filter()”

The first estimator quantifies the errors introduced by the frequency dependent gain and phase filter
“td fft filter()”. The uncertainty estimate is calculated using a complementary function “td fft filter unc()”,
which is called for voltage and current channel separately. This estimator is far most problematic. The
“td fft filter()” is using the time-¿frequency-¿time conversion (filtering in frequency domain per small
sized windows). The filtering in the frequency domain can cause hardly predictable errors when high
phase shift corrections are applied. This is especially problematic if there are significant spectral compo-
nents near the Nyquist frequency or near DC. The function have too many degrees of freedom to create a
simple but reliable estimator. Therefore, the only usable solution found to this problem was to perform
a small scale Monte Carlo (MC). In particular, 10 cycles of following steps are performed:

1. Synthesize waveform with spectral components Ux(h) (resp. Ix(h)) with random phase angles
φ(h) and with uncertain frequency ±1 DFT bin, because accuracy of the frequency estimation
from FFT spectral analysis is limited.

2. Perform the frequency dependent filtering by “td fft filter()” with calculated channel gain and
phase correction data and calculate spectrum.

3. Perform the frequency dependent correction with the same correction data in frequency domain to
the spectral components Ux(h) (resp. Ix(h)) and the generated phase angles φ(h).

4. Compare the difference of the spectral components from 3) and 2) to estimate the filter error.

The set of error estimates is processed to find a maximum probable amplitude and phase error of each
spectral component. Surprisingly this simple solution provides reliable estimates.

This gain uncertainties u fa U(h), u fa I(h) and phase uncertainties u fp U(h), u fp I(h) obtained
by this estimator are used to expand the correction uncertainties u Ux(h), u Ix(h) and u phx(h) before
following estimator steps:

u Ux(h) =
√
u Ux(h)2 + u fa U(h)2, (44)

u Ix(h) =
√
u Ix(h)2 + u fa I(h)2, (45)

u phx(h) =
√
u phx(h)2 + u fp U(h)2 + u fp I(h)2. (46)

7.3.2.2 Uncertainty of a system SFDR

The next step is estimation of the uncertainty introduced by the system SFDR (digitizer and transducer).
The effect on the U , I and P is estimated as a wost case combination of the spurs according:

u U sfdr =
1√
3
·


√√√√U2 + 0.5

S∑
s=1

U spur(s)2 − U

 , (47)

u I sfdr =
1√
3
·


√√√√I2 + 0.5

S∑
s=1

I spur(s)2 − I

 , (48)

u P sfdr =
1√
3
·

√√√√0.5

S∑
s=1

U spur(s) · I spur(s), (49)
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where U spur and I spur are vectors of voltage and current spur amplitudes (2nd, 3rd, 4th harmonic,
etc.), s is spur index and S is spurs count.

7.3.2.3 Uncertainty WRMS algorithm for a single tone signal

This step is estimation of the WRMS algorithm error for each identified spectral component Ux(h),
Ix(h). Note this estimator does not cover mutual effects between spectral components. It is just a single
tone estimator for each component. The estimation is performed by the function “wrms unc st()”. This
function uses precalculated LUT (see below) and empiric formulas to form an uncertainty interpolator
dependent on following parameters: (i) Voltage amplitude, (ii) Current amplitude, (iii) Voltage noise,
(iv) Current noise, (v) Voltage bit resolution, (vi) Current bit resolution, (vii) Periods count in the
waveform, (viii) Samples per period. The usable range of each parameter for the “wrms unc st()” is
shown in table 35. This interpolator returns a relative uncertainty estimate of frequency component
voltage u U st′(f), current u I st′(f) and active power u P st′(f). The component uncertainties are
converted to absolute and combined to obtain RMS uncertainties:

u U st =

√√√√∑F
f=1 u U st′(f)2 · Ux(f)2∑F

f=1 Ux(f)2
, (50)

u I st =

√√√√∑F
f=1 u I st

′(f)2 · Ix(f)2∑F
f=1 Ix(f)2

, (51)

u P st =

√√√√ F∑
f=1

u P st′(f)2. (52)

The LUT table itself for the interpolator of “wrms unc st()” was calculated as a worst case error
of the WRMS algorithm from 50000 Monte Carlo iterations. The simulation was performed for each
combination of parameters shown in table 34. I.e. 11x12x15x9x5 = 89100 combinations were calculated
using a supercomputer (processing time roughly two days on 300 cores). Note the phase shift between
voltage and current was randomised for each iteration as it had no effect on the relative active power
uncertainty (when expressed in units W/VA). The bit resolution of one channel was held fixed at 32 bit
as the error is defined by the worse of the voltage and current channel. Noise was also simulated for
the worse of the channels only. Manual inspection of the obtained 5-dimensional space of uncertainties
showed only the parameters “Periods count” and “Samples per period” are necessary in the LUT as
they have hardly expressible shape given by the window function. The other parameters effects were
approximated by empirical formulas. Therefore, the LUT size after compression is only 2.5 kBytes, which
is perfectly acceptable.

Table 34: Simulation ranges and steps of the parameters for uncertainty estimator of “wrms unc st()”
function.

Name Description
Periods count List: [3; 4; 5; 6; 7; 9; 11; 15; 20; 50; 100], 11 steps
Samples per period Log. space: 7 to 100, 12 steps
U to I phase shift random*
U to I amplitude ratio Log. space: 0.01 to 1, 15 steps
U bit resolution 32 bits
I bit resolution Log. space: 4 to 32 bits, 9 steps
max(U noise,I noise) Log. space: 10−7 to 10−3, 5 steps
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Table 35: The usable range of input parameters of the single tone error estimator “wrms unc st()”. The
actions on min or max value is reached are: “error” - generate error; “const” - return value of uncertainty
at min. or max. of simulated range.

Name Range On min On max
Voltage amplitude 0 to ∞ const const
Current amplitude 0 to ∞ const const
Voltage noise 0 to ∞ const const
Current noise 0 to ∞ const const
Voltage bit resolution 4 to ∞ error const
Current bit resolution 4 to ∞ error const
Periods count 3 to ∞ error const
Samples per period 7 to ∞ const const

7.3.2.4 Uncertainty of WRMS mutual harmonic effects

This estimator calculates mutual effect of spur harmonic to analysed harmonic. The paper [1] shows
example of these errors, however this effect had to be quantified extensively for means of the uncertainty
estimator. Theoretically the calculation of mutual effect should be performed for each pair of components
Ux(h), Ix(h), phx(h), however that would be very slow. So and assumption was made the fundamental
harmonic carries dominant portion of the active power, RMS voltage and current, so the mutual effects
calculation is performed only between the fundamental component Ux(1), Ix(1), phx(1) and the rest
of components Ux(h), Ix(h), phx(h), where h ≥ 2. The estimation of the mutual effect itself is done
by estimator function “wrms unc spur()”. This function is an interpolator dependent on: (i) Reference
harmonic voltage, (ii) Reference harmonic current, (iii) Relative spur frequency, (iv) Spur harmonic
voltage, (v) Spur harmonic current, (vi) Periods of reference harmonic, (vii) Samples per period of
reference harmonic. The estimator function is called once for each spur component to obtain uncertainty
components u U sp′(h− 1), u I sp′(h− 1) and u P sp′(h− 1). These (H − 1) components are combined
to a combined uncertainty due to the spur components:

u U sp(h) =

√√√√∑H−1
h=1 u U sp′(h)2 · Ux(h+ 1)2∑H

h=1 Ux(h)2
, (53)

u I sp(h) =

√√√√∑H−1
h=1 u I sp

′(h)2 · Ix(h+ 1)2∑H
h=1 Ix(h)2

, (54)

u P sp(h) =

√√√√H−1∑
h=1

u P sp′(h)2. (55)

The interpolator “wrms unc spurr()” itself is a combination of two precalculated LUT tables and
empiric formulas. First LUT is used to estimate the uncertainty of active power. It was obtained as a
worst case error of 1000 Monte Carlo iterations performed each parameter combination (10x10x7x9x15
= 94500 combinations) shown in table 36. The simulation was performed without noise or quantisation
errors, because these are already covered by the single tone WRMS estimator (section 7.3.2.3). The
simulator performed following steps for each combination:

1. Synthesize waveforms with known apparent power S ref with no spurs.

2. Calculate active power using the WRMS algorithm P dut 0.

3. Synthesize waveforms with known active power with spur at voltage channel.

4. Calculate active power using the WRMS algorithm P dut tot.

5. Calculate relative error of the WRMS power: δP (i) = |P dut tot− P dut 0|/S ref .

6. Repeat 1000 times from step 1.
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7. Estimate worst case uncertainty: δP = max δP (i) for i = 1..1000.

The simulator for the first LUT generates spur only for voltage channel, because the voltage and current
channels are interchangeable. Thus the same LUT is used twice for the estimation (once for voltage spur
effect and once for current spur effect with swapped voltage and current parameters).

The second LUT is used to estimate the spur effect to the RMS voltage (or RMS current). It was
simulated together with the first LUT. Only exception is the resulting LUT does not contain axis “U to
I amplitude ratio”, as it obviously has no effect to RMS level of single channel. So the table contains
only 11x10x9x15 = 14850 combinations. The procedure performed for each combination is following:

1. Synthesize waveform with known RMS level A ref with no spurs.

2. Calculate RMS level using the WRMS algorithm: A dut.

3. Synthesize waveform with known RMS level with spur of RMS level S ref .

4. Calculate RMS level using the WRMS algorithm: A dut tot.

5. Calculate relative error of the WRMS RMS amplitude: δA(i) = (
√
|A dut tot2 − S ref2|−A ref)/A ref .

6. Repeat 1000 times from step 1.

7. Estimate worst case uncertainty: δA = max δA(i) for i = 1..1000.

This LUT called twice to obtain spur effects for RMS voltage and RMS current.
Total size of both LUTs after compression is 265 kBytes which is still acceptable, so no further

optimalisations were performed. Total range of input parameters to the estimator “wrms unc spur()” is
shown in table 37.

Table 36: Simulation ranges and steps of the parameters for uncertainty LUT of “wrms unc spur()”
function.

Name Description
Periods count List: [3; 4; 5; 6; 7; 9; 12; 20; 50; 100], 10 steps
Samples per period Log. space: 7 to 100, 10 steps
U to I phase shift random*
U to I amplitude ratio Log. space: 0.01 to 1, 7 steps
U or I spur amplitude Log. space: 0.001 to 1, 9 steps
Relative spur frequency Log. space: 0.01 to 50 DFT bins, 15 steps

Table 37: The usable range of input parameters of the single tone error estimator “wrms unc spur()”.
The actions on min or max value is reached are: “error” - generate error; “const” - return value of
uncertainty at min. or max. of simulated range.

Name Range On min On max
Ref. component voltage 0 to ∞ const const
Ref. component current 0 to ∞ const const
Relative spur frequency 0.01 to ∞ const const
Spur component voltage 0 to ∞ const const
Spur component current 0 to ∞ const const
Periods count 3 to 100 error const
Samples per period 7 to 100 const const

7.4 Validation

The algorithm TWM-PWRTDI has many input quantities (for the differential transducer connection
about 120 quantities) and some of them are matrices. That is too many possible degrees of freedom.
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Thus, varying the quantities in some systematic way would be very complicated if the validation should
cover full range of used signals and corrections. Therefore, an alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate voltage and current signals u and i with known power parameters Pref .

2. Distort the signals u and i by inverse corrections, i.e. simulate the transducers, and digitizer (e.g.
gain errors, phase errors, DC offsets, quantisation errors, ...).

3. Run the algorithm TWM-PWRTDI on the signals u and i with enabled uncertainty evaluation to
obtain power parameters estimates Px and their uncertainties u(Pref).

4. Compare Pref and Px and decide if the errors of the algorithm for particular power parameters is
smaller than the assigned uncertainties u(Pref):

pass(i) = abs(Pref − Px) < u(Pref), (56)

where i is test run index.

5. Repeat the test N times from step 1 with the same test setup parameters, but with randomised
corrections by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of pass(i) results passed (for default 95 % level of confidence). The
evaluation is made for each calculated power parameter separately. So it is possible to inspect
which parameter fails.

The test runs count per test setup was set to N = 200, which is far from optimal “infinite” set, but
due to the computational requirements it could not have been much higher. Note the low count of test
induces uncertainty to the obtained pass rates.

The algorithm in the uncertainty estimation mode was tested in 4 different configurations with 10000
test setups per each. I.e. the algorithm was ran 8 million times in total (4x10000x200). The processing
itself was performed on a supercomputer [6] so it took only about 2 days at 400 parallel octave instances.

The test was also repeated in a smaller scale with Monte Carlo uncertainty calculation mode. 1000
test setups with 290 repetitions and 1000 Monte Carlo cycles per each repetition were performed to
validate the algorithm with the Monte-Carlo uncertainty calculator. Processing time was roughly 2 days
at 400 parallel octave instances.

The randomization ranges of the signal are shown in table 38. The randomization ranges of the
corrections are shown in table 39.

The test results were split into several groups given by the randomiser setup: (i) Single ended/d-
ifferential mode; (ii) Randomisation of corrections by uncertainty enabled/disabled; (iii) Uncertainty
estimator or Monte Carlo method. When the randomisation of corrections is disabled, the test runs
cover only the algorithm itself and the contributions of the correction uncertainties are ignored.

The summary of the validation test results is shown in table 40. The success rate without corrections
randomisation was close to 100 %. The success rate with corrections ransomisation was a bit worse,
because the success rate of the test runs within the test setup is just around 95 %. Therefore the decision
pass/fail is problematic. The obtained set of test results was manually investigated and no cases with
far outliers were detected, e.g. the failed test setups contained occasional estimates offsets just around
the uncertainty boundaries. Also no case where all test runs fails were found.

The Monte Carlo uncertainty calculation mode was a bit less successful than estimator, because its
uncertainties are more accurate, so the success rate is just around 95 % even with randomisation of
corrections disabled, so the detection of pass/fail is problematic.
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Table 38: Validation range of the signal for TWM-PWRTDI algorithm.
Parameter Range
Sampling rate random 9 to 11 kHz (all other parameters are varied rel-

ative to this sampling rate, so it is not needed to ran-
domise in wider range).

Samples count 5000 to 20000 (0.5 to 2 seconds integration time).
Fundamental frequency random, so there are at least 10 samples per period and

at least 20 full periods recorded.
Harmonics count 1 to 5 in order (no gaps).
Fundamental amplitudes 0.1 to 1 of full scale digitizer input.
Harmonic amplitudes 0.01 to 0.1 of fundamental.
Inter-harmonic frequency anywhere between harmonics, not overlapping (at least

9 DFT bins from nearest other component). If not pos-
sible to place between harmonics, the inter-harmonic is
put anywhere up to Nyquist limit.

Inter-harmonic amplitude 0.001 to 0.01 of fundamental.
Phase angles Random for all harmonics and inter-hamonics.
DC offset ±0.05 of fundamental.
SFDR -120 to -80 dBc, max. 10 harmonic components, ampli-

tude randomized for each spur in the SFDR range.
Digitizer RMS noise 1 to 10 µV.
Sampling jitter 1 to 100 ns.
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Table 39: Validation range of the correction for the TWM-PWRTDI algorithm. Note the low-side channel
corrections in the differential mode are generated in the same way.

Parameter Range
Nominal input U range 10 to 70 V
Nominal input I range 0.5 to 5 A
Aperture time 1 ns to 10 s
Digitizer gain Randomly generated frequency transfer simulating

NI 5922 FIR-like gain ripple (possibly the worst imag-
inable shape) and some ac-dc dependence. The transfer
matrix has up to 50 frequency spots. Nominal gain value
is random from 0.95 to 1.05 with uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±1 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is random from
0.005 to 0.03 dB with up to 5 periods between 0 and
fs/2.

Digitizer phase Randomly generated phase frequency transfer up to
±1 mrad with uncertainty 2 to 50 µrad.

Digitizer SFDR Value based on table 38.
Digitizer bit resolution 16 to 28 bits.
Digitizer nominal range 1 V
Digitizer DC offset Up to ±10 mV with uncertainty 0.1 mV.
Low-side channel time shift Random value so the phase shift at Nyquist frequency

won’t exceed 0.1 rad with uncertainty 20 ns.
I-to-U channel time shift Random value so the phase shift at Nyquist frequency

won’t exceed 0.1 rad with uncertainty 20 ns.
Transducer gain Randomly generated frequency transfer. The transfer

matrix has up to 50 frequency spots. Nominal gain value
is random (see above) with relative uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±2 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is 0.005 dB with
4 to 10 periods between 0 and fs/2.

Transducer phase Randomly generated phase frequency transfer up to
±1 mrad with uncertainty 2 to 50 µrad.

Table 40: Validation results of the algorithm TWM-PWRTDI. The “passed test” shows percentage of
passed tests under conditions defined in tables 38 and 39. Note the pass condition is when all tested
quantities (U , I, P , Q, S, PF ) passes. The “mode” signifies uncertainty evaluation mode (calculation
option “calcset.unc”), where “mcm” is Monte Carlo and “guf” is estimator.

Mode Connection Rand. corr. Passed test [%]

guf
single-ended

off 100.00
on 100.00

differential
off 100.00
on 100.00

mcm
single-ended

off 100.00
on 100.00

differential
off 100.00
on 100.00
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8 TWM-WRMS - RMS value by Windowed Time Domain In-
tegration

TWM-WRMS is an algorithm for calculation RMS value and DC component of signal a time domain
integration of windowed signal y(t). The windowing function eliminates effects of non-coherent sampling
as was demonstrated in [1] and [2]. Therefore, it does work even for non-coherently sampled waveforms.
The algorithm itself without contribution of corrections can easily reach errors below 1 µV/V with proper
selection of a sampling rate and windows size.

The TWM-WRMS algorithm wrapper is able to use single-ended or differential input sensors. The
algorithm is also equipped by a fast uncertainty estimator and the Monte Carlo uncertainty calculation
method for more accurate but slower uncertainty evaluation.

8.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 41. Algorithm returns output
quantities shown in the table 42. Calculation setup supported by the algorithm is shown in table 43.

Table 41: List of input quantities to the TWM-WRMS wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
ac coupling 0 N/A Enables virtual AC coupling for the RMS calculation. This

option will cause the DC value will be ignored in the RMS
calculation.

y
y lo

N/A
N/A

No
No

Input sample data vector and complementary low-side in-
put data vector y lo (for differential mode only).

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

time shift lo 0 Yes Time shift between high-side channel y low-side channel
y lo.

lsb
adc nrng
adc bits
lo lsb
lo adc nrng
lo adc bits

N/A
1000
40
N/A
1000
40

No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset
lo adc offset

0
0

Yes
Yes

Digitizer input offset voltage.

adc gain
adc gain f
adc gain a
lo adc gain
lo adc gain f
lo adc gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a
lo adc phi
lo adc phi f
lo adc phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

70



Table 41: List of input quantities to the TWM-WRMS wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
adc jitter
lo adc jitter

0
0

No
No

Digitizer sampling period jitter [s].

adc aper
lo adc aper

0
0

No
No

ADC aperture value [s].

adc aper corr
lo adc aper

0
0

No
No

ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

adc sfdr
adc sfdr f
adc sfdr a
lo adc sfdr
lo adc sfdr f
lo adc sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f
lo adc Yin Cp
lo adc Yin Gp
lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.
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Table 42: List of output quantities of the TWM-WRMS wrapper.
Name Uncertainty Description
rms Yes RMS level [V] or [A].
dc Yes DC component [V] or [A].
spec A No Amplitude spectrum [V] or [A].
spec f No Frequency vector of spec A.

Table 43: List of “calcset” options supported by the TWM-WRMS wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”,

“guf” for uncertainty estimator, “mcm” for Monte
Carlo.

calcset.mcm.method Monte Carlo evaluation mode: “singlecore” - single core
evaluation, “multicore” - Parallel evaluation using “par-
cellfun” for GNU Octave or “parfor” for Matlab “multi-
station” - Multicore evaluation using “multicore” pack-
age (GNU Octave only yet).

calcset.mcm.repeats Monte Carlo iterations count. Use at least 100 to get
any usable estimate.

calcset.mcm.proc no Number of parallel instances to use for the paralleled
modes. Use zero value to not start any server pro-
cesses for the “multistation” mode. This option expects
user started the server processes manually in the shared
folder. This option causes less overhead for the batch
processing or runtime calculations.

calcset.mcm.tmpdir Jobs sharing folder for the “multistation” mode. This
should be an absolute path to the sharing folder. Keep
in mind the package “multicore” will erase the content
of this folder before each new calculation!

calcset.mcm.user fun User function to call in the “multistation” mode af-
ter startup of the serve processes. Example: “calc-
set.mcm.user fun = @coklbind2”. Leave empty to not
execute any function.

calcset.loc Level of confidence [-].
calcset.verbose Verbose level.
calcset.fetch luts Optional, non-zero will prefetch uncertainty LUT tables

to global variables to make the execution faster. Note
this was intended ONLY for validation process where
reduction of disk access is beneficial.

calcset.dbg plots Optional, non-zero will plot some debugging graphs.

8.2 Algorithm description

The TWM-WRMS algorithm is a wrapper of TWM-PWRTDI algoritm. It copies the input data and
correction to both voltage and current channels of TWM-PWRTDI (see sectition 7), executes it and
copies either voltage or current results to the TWM-WRMS results depending on the used transducer
type. Internal principle of operation is thus identical as for TWM-PWRTDI. This “backwards” solution
was used because it was not possible to effectively build the TWM-PWRTDI power algorithm from single
channel processing using TWM-WRMS. As a result it is a bit slower, because most of the TWM-PWRTDI
is not used in TWM-WRMS. Block diagram is shown in fig. 23.
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Figure 23: Internal structure of TWM-WRMS algorithm.
.

8.3 Uncertainty calculator and estimator

The TWM-WRMS algorithm wrapper is equipped by two modes of uncertainty evaluation: (i) The
ordinary Monte Carlo (MC) calculator; (ii) Fast estimator based on several precalculated lookup tables
(LUT). The MC mode is more accurate, however it may take up to several minutes to perform even just
a few hundreds of iterations. The calculation time drastically rises with the length of the record. Thus
the fast estimator was created as well.

The WRMS algorithm itself can calculate a RMS of any voltage and current waveforms. However,
calculation of uncertainty for general non-periodic waveforms would be extremely complex and slow.
Therefore, the uncertainty calculation is based on the analysis of spectral components obtained from the
average spectrum of the whole digitized waveform. This simplification should not have any effect, as the
algorithm is primarily intended for a calibration of stationary signals.

Detailed description of the uncertainty evaluation can be found in the TWM-PWRTDI algorithm.

8.4 Validation

Only limited validation of TWM-WRMS was performed as it internally uses TWM-PWRTDI (see sec-
tition 7).

Table 44: Validation results of the algorithm TWM-WRMS. The “passed test” shows percentage of
passed tests under conditions defined in tables 38 and 39. The “mode” signifies uncertainty evaluation
mode (calculation option “calcset.unc”), where “mcm” is Monte Carlo and “guf” is estimator.

Mode Connection Rand. corr. Passed test [%]

guf
single-ended

off 100.00
on 100.00

differential
off 100.00
on 100.00

mcm
single-ended

off 100.00
on 100.00

differential
off 100.00
on 100.00
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9 TWM-WFFT - Windowed FFT spectrum analysis

Algorithm for single or multi-tone harmonic analysis using windowed FFT. The algorithm performs
windowed FFT of the signal, applies TWM corrections and extracts FFT bin(s) with selected frequencies.
It also calculates rms value estimate, however rms will be usable only for coherent sampling. The main
purpose of the algorithm is interchannel phase shift and voltage ratio analysis. That will work even for
non-coherent sampling, when non-rectangular window is used.

Note the harmonics spacing in the spectrum must be higher, then width of the selected window! E.g.
the wide ”flattop 248D” needs at least some 25 FFT bins spacing. Also note the wider windows have
higher equivalent noise bandwidth, so the noise in the analysed harmonic is amplified. See section 9.3
for more details on the effects of windows.

The TWM-WFFT algorithm wrapper is able to use single-ended or differential input sensors. The
algorithm is also equipped with a fast uncertainty estimator for the harmonic components.

9.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 45. Algorithm returns output
quantities shown in the table 46. Calculation setup supported by the algorithm is shown in table 47.

Table 45: List of input quantities to the TWM-WFFT wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
f nom N/A N/A Optional nominal frequency (or vector of frequencies) to

extract from the spectrum. The algorithm will choose the
nearest FFT bin(s). If the f nom is not assigned, the al-
gorithm will search the fundamental component by calling
PSFE algorithm [1].

h num N/A N/A Optional list of relative harmonic frequencies related to the
f nom. E.g.: when f nom = 50 Hz and h num = [123],
the extracted frequencies will be [50, 100, 150] Hz.

window ”rect” N/A Window type used before FFT. ”rect” window can be used
for coherent sampling without significant interharmonic
components only. Another windows may be used for non-
coherent sampling, however the harmonic analysis will be
usable only for interchannel amplitude ratios and phase dif-
ferences for the non-coherent case!

y
y lo

N/A
N/A

No
No

Input sample data vector and complementary low-side in-
put data vector y lo (for differential mode only).

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

time stamp 0 Yes Relative timestamp of the first sample y.
time shift lo 0 Yes Time shift between high-side channel y low-side channel

y lo.
lsb
adc nrng
adc bits
lo lsb
lo adc nrng
lo adc bits

N/A
1000
40
N/A
1000
40

No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset
lo adc offset

0
0

Yes
Yes

Digitizer input offset voltage.
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Table 45: List of input quantities to the TWM-WFFT wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
adc gain
adc gain f
adc gain a
lo adc gain
lo adc gain f
lo adc gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a
lo adc phi
lo adc phi f
lo adc phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter
lo adc jitter

0
0

No
No

Digitizer sampling period jitter [s].

adc aper
lo adc aper

0
0

No
No

ADC aperture value [s].

adc aper corr
lo adc aper

0
0

No
No

ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

adc sfdr
adc sfdr f
adc sfdr a
lo adc sfdr
lo adc sfdr f
lo adc sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Digitizer SFDR 2D table.

adc Yin Cp
adc Yin Gp
adc Yin f
lo adc Yin Cp
lo adc Yin Gp
lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.
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Table 45: List of input quantities to the TWM-WFFT wrapper.
Details on the correction quantities can be found in [3].

Name Default Unc. Description
tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 46: List of output quantities of the TWM-WFFT wrapper.
Name Uncertainty Description
f No Exact frequencies of selected FFT bins.
A Yes Amplitude(s) of selected FFT bins.
ph Yes Phase angle(s) of selected FFT bins [rad]. Wrapped

to ±π range.
dc Yes DC component [V] or [A].
rms Yes RMS level estimate [V] or [A]. Calculated from all

detected harmonics (not just the selected in f list).
spec A No Full amplitude spectrum [V] or [A].
spec f No Frequency vector of spec A.

Table 47: List of “calcset” options supported by the TWM-WFFT wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none” or

“guf” for uncertainty estimator.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

9.2 Algorithm description

The TWM-WFFT algorithm is a wrapper of SP-WFFT algorithm. For differential mode it calls SP-
WFFT twice. Once for high-side and once for low-side. It applies TWM corrections (offset, digitizer gain,
digitizer phase, digitizer aperture) to both differential channels (high and low side). Next it calculates
the differential signal. Follows transducer gain and phase correction which is common for single-ended
and differential modes. Last step is extraction of user defined harmonic components which are selected
as FFT bins nearest to the selected frequencies.
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9.3 Uncertainty calculator and estimator

The TWM-WFFT algorithm wrapper is equipped by fast uncertainty estimator. The estimator calculates
uncertainty correctly only for the coherent sampling case! It uses two main components: (i) TWM
corrections contribution and (ii) Noise, bit resolution, jitter and SFDR effects.

TWM corrections component (i) comprises of gain, phase corrections of the digitizer and transducer
and offset correction of the digitizer. These components are calculated along with application of the
corrections and will apply even for non-coherent sampling case correctly.

The other components (ii) requires further processing. The rms noise is estimated from the full
spectrum with removed harmonic components. Sampling Jitter may be defined by user correction data
as well as bit resolution. SFDR of the digitizer and transducer are also definable by user and their
effect to extracted harmonics can be easily calculated. The uncertainty contribution coming from the
noise, jitter and bit resolution were calculated following the formulas in [2], section 4.10 Noise. The
components are automatically calculated for any window type. The validity of the implementation was
checked by Monte Carlo simulation. However, it is not known weather these approximations are valid
for non-coherent case.

The uncertainty estimator does not take into account any effects caused by the interleaving of side
lobes of the particular harmonics and also effects of non-coherent sampling. I.e. harmonic spacing in
the spectrum must be wide enough, so the side lobe of one harmonic does not interfere with another.
All windows containing only harmonic components (Hann, Hamming, Flattops, Blackman, etc.) have
final width, so for the coherent sampling they can affect the other harmonics only up to finite distance.
However, in non-coherent case they have side lobes with finite amplitude in full bandwidth of the FFT.
E.g. Blackman–Nuttall window have almost constant side lobes at -100 dBc, so when we have funda-
mental with level of 1 V and second harmonic with level of 10 mV, the second harmonic will be affected
by up to 10−5 · 1 V. That is 0.1 %. This must be taken into account by user when using the algorithm
for non-coherent sampling and proper window function should be selected.

Another problem related to the non-coherent sampling not covered by the estimator is scalloping
loss. Whenever the actual frequency of the harmonic component does not match FFT bin frequency
exactly, there will be error given by flatness of the window in range ±0.5 FFT bin. E.g. even flattest
window ”flattop 248D” has this flatness only roughly 0.01 %, which may not be acceptable for some
measurements. As it is not possible to tell algorithmically if all the frequency components are coherent,
the uncertainty contribution of this effect was intendedly omitted from the calculation and user must
add the effect to the uncertainty budget manually.

In general, wider window functions with more harmonic components have lower side lobes and better
flatness, so they are more suitable for non-coherent measurements. However the cost for this is higher
noise bandwidth, which increases type A uncertainty up to several times.

9.4 Validation

The algorithm TWM-WFFT has many input quantities and some of them are matrices. That is too
many possible degrees of freedom. Thus, varying the quantities in some systematic way would be very
complicated if the validation should cover full range of used signals and corrections. Therefore, an
alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate signals y with random and known harmonic content Href .

2. Distort the signal y by inverse corrections, i.e. simulate the transducers, and digitizer (e.g. gain
errors, phase errors, DC offsets, quantisation errors, ...).

3. Run the algorithm TWM-WFFT on the signal y with enabled uncertainty evaluation to obtain
harmonic parameter estimates Hx and their uncertainties u(Hx).
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4. Compare Href and Hx and decide if the errors of the algorithm for particular parameters is smaller
than the assigned uncertainties u(Hx):

pass(i) = abs(Href −Hx) < u(Hx), (57)

where i is test run index.

5. Repeat the test N times from step 1 with the same test setup parameters, but with randomised
corrections by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of pass(i) results passed (for default 95 % level of confidence). The
evaluation is made for each parameter separately (DC component, fundamental amplitude and
phase and other harmonics’ amplitudes and phases). So it is possible to inspect which parameter
fails.

The test runs count per test setup was set to N = 500, which is far from optimal “infinite” set, but
due to the computational requirements it could not have been much higher. Note the low count of test
induces uncertainty to the obtained pass rates.

The algorithm in the uncertainty estimation mode was tested in 4 different configurations with 10000
test setups per each. I.e. the algorithm was ran 20 million times in total (4x10000x500). The processing
itself was performed on a supercomputer [4] so it took only about 2 days at 400 parallel octave instances.

The randomization ranges of the signal are shown in table 48. The randomization ranges of the
corrections are shown in table 49.

The test results were split into several groups given by the randomiser setup: (i) Single ended/differ-
ential mode; (ii) Randomisation of corrections by uncertainty enabled/disabled. When the randomisation
of corrections is disabled, the test runs cover only the algorithm itself and the contributions of the cor-
rection uncertainties are ignored. This option was chosen because corrections uncertainties may mask
the algorithm uncertainty.

The summary of the validation test results is shown in table 50. In both cases the pass rates were
very close to expected 95 % boundary and no cases where all test runs fails were found.

Table 48: Validation range of the signal for TWM-WFFT algorithm.
Parameter Range
Sampling rate random 9 to 11 kHz (all other parameters are varied rel-

ative to this sampling rate, so it is not needed to ran-
domise in wider range).

Samples count 5000 to 20000 (0.5 to 2 seconds integration time).
Fundamental frequency random, so there are at least 10 samples per period and

at least 20 full periods recorded. It is rounded so the
sampling is always coherent.

Harmonics count 1 to 5 in order (no gaps, e.g.: [1, 2, 3, 4] or [1, 2]).
Fundamental amplitudes 0.1 to 1 of full scale digitizer input.
Harmonic amplitudes 0.01 to 0.1 of fundamental.
Phase angles Random for all harmonics.
DC offset ±0.05 of fundamental.
SFDR -120 to -80 dBc, max. 10 harmonic components, ampli-

tude randomized for each spur in the SFDR range.
Digitizer RMS noise 1 to 10 µV.
Sampling jitter 1 to 100 ns.
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Table 49: Validation range of the correction for the TWM-WFFT algorithm. Note the low-side channel
corrections in the differential mode are generated in the same way.

Parameter Range
Nominal input range 0.1 to 10
Aperture time 1 ns to 10 µs
Digitizer gain Randomly generated frequency transfer simulating

NI 5922 FIR-like gain ripple (possibly the worst imag-
inable shape) and some ac-dc dependence. The transfer
matrix has up to 50 frequency spots. Nominal gain value
is random from 0.95 to 1.05 with uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±1 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is random from
0.005 to 0.03 dB with up to 5 periods between 0 and
fs/2.

Digitizer phase Randomly generated phase frequency transfer up to
±1 mrad with uncertainty 2 to 50 µrad.

Digitizer SFDR Value based on table 48.
Digitizer bit resolution 16 to 28 bits.
Digitizer nominal range 1 V
Digitizer DC offset Up to ±10 mV with uncertainty 0.1 mV.
Low-side channel time shift Random value so the phase shift at Nyquist frequency

won’t exceed 0.1 rad with uncertainty 20 ns.
Transducer gain Randomly generated frequency transfer. The transfer

matrix has up to 50 frequency spots. Nominal gain value
is random (see above) with relative uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±2 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is 0.005 dB with
4 to 10 periods between 0 and fs/2.

Transducer phase Randomly generated phase frequency transfer up to
±1 mrad with uncertainty 2 to 50 µrad.

Table 50: Validation results of the algorithm TWM-WFFT. The “passed test” shows percentage of
passed tests under conditions defined in tables 48 and 49.

Connection Rand. corr.
Passed test [%]

dc A(1) ph(1) A(2..n) ph(2..n)

Single ended
no 100.00 100.00 100.00 100.00 100.00
yes 99.99 100.00 99.99 100.00 100.00

Differential
no 100.00 100.00 100.00 100.00 100.00
yes 99.97 99.98 99.97 99.98 99.98
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10 TWM-Flicker - Flicker algorithm

The TWM wrapper TWM-Flicker is an algorithm for evaluation of the short term flicker parameters. It
calculates instantaneous flicker sensation Pinst and short-term flicker severity Pst Sampling rate has to
be higher than 7 kHz. If sampling rate is higher than 23 kHz, signal will be down sampled by algorithm.
More than 600 s of signal is required as the algorithm needs at least a minute to settle the filters. Typical
sampling time value is above 660 s. The algorithm requires either Signal Processing Toolbox when run
in MATLAB or a signal package when run in GNU Octave. Frequency of line (carrier frequency) f line
can be only 50 or 60 Hz.

The algorithm was implemented according IEC 61000-4-15 [3], [4], [2] and [5].
The algorithm wrapper is equipped by a simple uncertainty estimator based on the worst observed

error of the algorithm on the tabulated Pst values for various sampling rates.
Note the algorithm output slightly differ for Matlab and GNU Octave implementation. The cause

of this difference was not yet identified. Also the observed performance in the Matlab 2017b was about
five times higher then in GNU Octave 4.2.2 on the same computer.

10.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 51. Algorithm returns output
quantities shown in the table 52. Calculation setup supported by the algorithm is shown in table 53.

Table 51: List of input quantities to the TWM-Flicker wrapper.

Name Default Unc. Description
f line N/A N/A Nominal frequency of the network (50 HZ or 60 Hz).
y N/A No Input sample data vector.
Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

lsb
adc nrng
adc bits

N/A
1000
40

No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset 0 Yes Digitizer input offset voltage.
adc gain
adc gain f
adc gain a

1
[]
[]

Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a

0
[]
[]
0

Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
adc aper corr 0 No ADC aperture error correction enable:

A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

adc Yin Cp
adc Yin Gp
adc Yin f

1e-15
1e-15
[]

Yes
Yes
No

Digitizer input admittance 1D table.

adc sfdr
adc sfdr f
adc sfdr a

180
[]
[]

No
No
No

Digitizer SFDR 2D table.
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Table 51: List of input quantities to the TWM-Flicker wrapper.

Name Default Unc. Description
tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Table 52: List of output quantities of the TWM-Flicker wrapper.
Name Uncertainty Description
Pst Yes Short-term flicker severity.
Pinst No Instantaneous flicker sensation.

Table 53: List of “calcset” options supported by the TWM-Flicker wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none” or “guf”.
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

10.2 Algorithm description

The structure of the TWM-Flicker algorithm wrapper is shown in fig. 24. The wrapper first applies
correction to scaled the input signal y to actual measured level. The scaling is simplistic. The user
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defined frequency f line with tolerance 2 Hz is assumed to be dominant component of the input signal y.
Thus, the gain correction of digitizer, aperture error gain correction and transducer gain correction are
obtained for the f line only. Resulting combined gain correction is applied to the time domain signal y.
The wrapper also applies DC gain correction despite the main QWTB wrapper “flicker sim” which does
the flicker calculation is not using it.

After the signal is scaled, the wrapper calls the main QWTB algorithm “flicker sim” to evaluate the
flicker parameters.

TWM-Flicker

Split AC and DC 
part of signal y. 

Obtain combined digitizer
gain correction,
transducer gain

correction, aperture gain
error correction 

Apply gain correction to
AC and DC part of y. 

Merge AC and DC back
to single signal y.  

Call flicker_sim QWTB
algorithm to get Pst and

Pinst. 

STOP

Estimate uncertainty of
Pst. Return results. 

Fix digitizer DC offset. 

signal corrections

corrections

ac

dc

dc
 g

ai
n

ac
 g

ai
n

ac
 g

ai
n 

un
ce

rta
in

ty

signal

Figure 24: TWM-flicker algorithm wrapper diagram. The green blocks are calls to another QWTB
wrappers.

10.2.1 QWTB algorithm wrapper “flicker sim”

The core of the flicker algorithm is QWTB wrapper “flicker sim”. It calculates the flicker using a function
“flicker sim(u, fs, f line, ...)”. In general the algorithm calculates according to the block diagram shown
in fig. 25.

The algorithm starts by checking of the input sampling rate. It will throw an error if the sampling
rate is below 7 kHz. If the sampling rate is higher than 23 kHz, the algorithm will perform downsampling
to a sampling rate near 17 kHz, which was empirically identified as optimal for the rest of the algorithm.
Follows removal of the DC component and calculation of the RMS level of the whole signal u, which is
used just for determination of the 120 V or 230 V systems.

Next step half-cycle RMS envelope calculation. The signal u is first passed via narrow passband filter
(1st order Butterworth with passband 50 to 60 Hz). The filtered, theoretically noise-free signal is used
for the zero-crossing detection. Next, RMS value of each half-cycle is calculated, so the u half rms
envelope is calculated. This is input for the main flicker calculation as shown in fig. 25.

Following description of the flicker algorithm blocks is direct citation of report [1]:
Block 1 is the voltage adapter that scales the input mains frequency voltage to an internal reference

level. Flicker measurements can be made independently of the actual input voltage level by this way.
Block 2 is the squaring multiplier that recovers the voltage fluctuation by squaring the input voltage

signal. This block is simulating the behaviour of a lamp. Block 3 contains two sections. First section
is composed of a cascade of two filters, a low-pass type and a high-pass type. Low-pass filter eliminates
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Figure 25: Flicker calculation block diagram according IEC 61000-4-15 [3].

the double mains frequency ripple components in the signal. High-pass filter eliminates any DC voltage
components in the signal. Second section is a weighting filter that simulates the frequency response of the
human visual system to sinusoidal voltage fluctuations of a coiled filament gas-filled lamp (60 W/230 V
or 60 W/120 V). Block 4 contains a squaring multiplier and a low-pass filter.

Combination of Block 2, Block 3 and Block 4 composes a non-linear system that simulates flicker
signal applied to a lamp and human eye-brain response to this light. Output of the Block 4 is the
instantaneous flicker severity P inst.

Block 5 is the statistical analysis block that contains two sections. First section forms a cumulative
probability function and second section forms a flicker level classifier. After the proper statistical evalu-
ation of the P inst values for 10 minutes observation, short-term flicker value P st is generated by this
block.

10.3 Uncertainty estimator

The uncertainty estimation is performed when the calcset.unc =‘guf’. The estimation is performed at
the TWM-Flicker algorithm wrapper level as the uncertainty comes partially from the gain uncertainty
and timebase error uncertainty. However, it was found the effect of the typical gain and frequency
uncertainties is so low, it is not even necessary to include their effect, because the error of the algorithm
itself is orders of magnitude higher. So the uncertainty of this algorithm was estimated from maximum
observed deviations of the calculated P st for various sampling rates at tabulated values from IEC 61000-
4-15 [3]. In particular the uncertainty was set to fixed 2% of the P st value for level of confidence 95%.
It is quite highs value, however the limits of the IEC 61000-4-15 [3] are at least three times higher, which
is sufficient for a calibration purposes.

10.4 Validation

Validation of the algorithm was performed using a simulator function “verify flicker sim()” present on the
“flicker sim” QWTB wrapper folder. This function automatically performs series of the tests according
different versions of IEC 61000-4-15 [3]. The test was run for various sampling rates to verify the
algorithm works in full range of sampling rates. Example of the results is shown in the fig. 26.

84



Figure 26: Example of flicker algorithm “flicker sim” validation against IEC 61000-4-15 [3], edition 2,
for sampling rate fs = 50 kHz.
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11 TWM-MFSF - Multi-Frequency Sine Fit

TWM-MFSF is an algorithm for estimating the frequency, amplitude, and phase of the fundamental and
harmonic components in a waveform. Amplitudes and phases of harmonic components are adjusted to
find minimal sum of squared differences between sampled signal and multi-harmonic model. When all
sampled signal harmonics are included in the model, the algorithm is efficient and produces no bias. It can
even handle aliased harmonics, if they are not aliased back exactly at frequencies where other harmonics
are already present. Further, it can also handle non harmonic components, when their frequency ratio
to the fundamental frequency is exactly known a-priori. It is based on the [5] and [3].

The TWM wrapper TWM-MFSF is equipped with a Monte Carlo uncertainty calculator and also a
fast uncertainty estimator limited for certain types of signal and algorithm setup.

11.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in table 54. Algorithm returns output
quantities shown in table 55. Calculation setup supported by the algorithm is shown in table 56.

Table 54: List of input quantities to the TWM-MFSF wrapper.

Name Default Unc. Description
fest 0 N/A Initial estimate of fundamental frequency [Hz]. Options:

ExpComp N/A N/A List of relative frequencies of the harmonic components to
fit (e.g. [1, 2, 4, 3.3] means to fit fundamental, 2nd and 4th
harmonic and interharmonic 3.3 · f0).

H 3 N/A Alternative to ExpComp. Defines number of harmonics to
fit, i.e. 3 means to fit fundamental, 2nd and 3rd harmonic.

CFT 3.5e-11 N/A Cost Function Threshold for the MFSF minimising algo-
rithm. Note the uncertainty estimator was calculated for
the default value only!.

comp timestamp 0 N/A Enable compensation of phase shift by time stamp value:
phi′ = phi− 2 · pi · f fit · time stamp.

y N/A No Input sample data vector.
Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

lsb
adc nrng
adc bits

N/A
1000
40

No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

adc offset 0 Yes Digitizer input offset voltage.
adc gain
adc gain f
adc gain a

1
[]
[]

Yes
No
No

Digitizer gain correction 2D table (multiplier).

adc phi
adc phi f
adc phi a

0
[]
[]
0

Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

adc jitter 0 No Digitizer sampling period jitter [s].
adc aper 0 No ADC aperture value [s].
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Table 54: List of input quantities to the TWM-MFSF wrapper.

Name Default Unc. Description
adc aper corr 0 No ADC aperture error correction enable:

A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

adc Yin Cp
adc Yin Gp
adc Yin f

1e-15
1e-15
[]

Yes
Yes
No

Digitizer input admittance 1D table.

adc sfdr
adc sfdr f
adc sfdr a

180
[]
[]

No
No
No

Digitizer SFDR 2D table.

tr type “” No Transducer type string (“rvd” or “shunt”).
tr gain
tr gain f
tr gain a

1
[]
[]

Yes
No
No

Transducer gain correction 2D table (multiplicative).

tr phi
tr phi f
tr phi a

0
[]
[]

Yes
No
No

Transducer phase correction 2D table (additive).

tr sfdr
tr sfdr f
tr sfdr a

180
[]
[]

No
No
No

Transducer SFDR 2D table.

tr Zlo Rp
tr Zlo Cp
tr Zlo f

1e3
1e-15
[]

Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

tr Zbuf Rs
tr Zbuf Ls
tr Zbuf f

0
0
[]

Yes
Yes
No

Loading corrections: Transducer output buffer output se-
ries impedance 1D table. Leave unassigned to disable buffer
from the correction topology.

tr Zca Rs
tr Zca Ls
tr Zca f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

tr Zcal Rs
tr Zcal Ls
tr Zcal f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

tr Yca Cp
tr Yca D
tr Yca f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

tr Zcam
tr Zcam f

1e-12
[]

Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

Zcb Rs
Zcb Ls
Zcb f

1e-9
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

Ycb Rs
Ycb Ls
Ycb f

1e-15
1e-12
[]

Yes
Yes
No

Loading corrections: Cable series impedance 1D table.
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Table 55: List of output quantities of the TWM-MFSF wrapper. The quantities marked * may have
partial or none assigned uncertainty depending on the selected uncertainty calculation mode. They will
be available only for Monte Carlo uncertainty method.

Name Uncertainty Description
f Yes Vector of frequencies of all fitted components [Hz].
A Yes Vector of amplitudes of all fitted components.
ph Yes* Vector of phases of all fitted components [rad].
thd Yes Total harmonic distortion of the fitted components [%].

Note it is a fundamental referenced value.

Table 56: List of “calcset” options supported by the TWM-MFSF wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”,

“guf” for uncertainty estimator, “mcm” for Monte
Carlo.

calcset.mcm.method Monte Carlo evaluation mode: “singlecore” - sin-
gle core evaluation, “multicore” - Parallel evaluation
using “parcellfun” for GNU Octave or “parfor” for
Matlab “multistation” - Multicore evaluation using
“multicore” package (GNU Octave only yet).

calcset.mcm.repeats Monte Carlo iterations count. Use at least 100 to get
any usable estimate.

calcset.mcm.proc no Number of parallel instances to use for the paral-
leled modes. Use zero value to not start any server
processes for the “multistation” mode. This option
expects user started the server processes manually
in the job sharing folder. This option causes less
overhead for the batch processing or runtime calcu-
lations.

calcset.mcm.tmpdir Jobs sharing folder for the “multistation” mode.
This should be an absolute path to the sharing folder.
Keep in mind the package “multicore” will erase the
content of this folder before each new calculation!

calcset.mcm.user fun User function to call in the “multistation” mode af-
ter startup of the server processes. Example: “calc-
set.mcm.user fun = @coklbind2”. Leave empty to
not execute any function.

calcset.loc Level of confidence [-].
calcset.verbose Verbose level.
calcset.dbg plots Non-zero value shows debugging plots of the MFSF

uncertainty calculator.

11.2 Algorithm description

Internal structure of the TWM-MFSF wrapper is shown in the fig. 27. The wrapper supports only
single-ended input, so the signal conditioning is simple. The wrapper starts by a call of the QWTB
algorithm “MFSF” to calculate the estimates of the harmonics. This call is performed with uncertainty
option disabled, because at this point the required parameters for its calculation are not know.

Follows correction of the timebase frequency error. Next, the DC offset of the digitizer is corrected. In
the next step, the wrapper compensates the aperture error, digitizer gain and phase errors and transducer
gain and phase errors. At the same time the uncertainties of the corrections are calculated.

Next, the uncertainty calculator/estimator takes place. First, the required parameters for the calcu-
lation are prepared: jitter, system SFDR and digitizer resolution. Then, the wrapper calls the QWTB
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“MFSF” algorithm for the second time, but this time with enabled uncertainty calculation. Returned
uncertainties are scaled by the correction factors so they match the scaled estimates. Next, the algorithm
uncertainties are combined with the correction uncertainties and the required quantities are expressed
and returned.

TWM-MFSF

Call MFSF QWTB
algorithm with disabled

uncertainty to get
estimates: f, A, ph, dc 

Fix timebase error of f. 

Fix digtitizer DC offset of
dc. 

Fix aperture error for: 
A, ph 

Apply digitizer gain and
phase corrections to: 

A, ph, dc 

Apply transducer gain
and phase corrections to: 

A, ph, dc 

Get system parameters: 
SFDR, LSB, jitter, etc. 

Call MFSF QWTB
algorithm with enabled
uncertainty to get its

uncertainty estimates:
u_f, u_A, u_ph, u_dc 

Scale uncertainties u_f,
u_A, u_ph, u_dc by gain

correction factors to
match f, A, ph, dc. 

Combine algorithm and
correction uncertainties

of: f, A, ph, dc 

Express quantities: 
f0, f, A, phi, dc, thd 

STOP

signal

es
tim

at
es

un
ce

rta
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ty

Optional uncertainty
calculation

Figure 27: Structure of TWM-MFSF algorithm wrapper. Note the green blocks are calls to another
QWTB wrappers.

11.2.1 QWTB algorithm MFSF

The structure of the QWTB wrapper “MFSF”, which contains the fitting function “MFSF()” itself is
shown in fig. 28. The wrapper starts with optional override of the internal initial estimator of fundamental
component frequency by function “ipdft spect()”. Follows the call of the “MFSF()” function itself. The
function returns fitted harmonic coefficients f , A, ph and offset O. It also calculated Total Harmonic
Distortion (THD) following the “fundamental referenced” definition:

THD =

√∑H
h=2A(h)2

A(1)
, (58)

where h is harmonic index and H is harmonics count.
The Multi-Frequency Sine-Fit algorithm itself (function “MFSF()”) is used to estimate the harmonic

components that are present in non-coherently sampled periodic signal. The main input parameter is
the sampled record y(n ·TS) having the length N , the sampling period TS and the index signal harmonics
to be estimated k = [1, h]. Optionally, the method for initial guess estimation and the cost function
threshold can be defined (the default value for the threshold is 3.5 ·10−11). The outputs of the algorithm
are: (i) frequency of the fundamental signal f1, (ii) amplitudes A1 to Ah and (iii) the phases φ1 to φh of
the analysed fundamental signal and harmonics, (iv) offset of the sampled signal A0, (v) total harmonic
distortion THD, (vi) total number of iterations and (vii) variance amplitude estimate.

The frequency of the fundamental signal f1, and complex amplitudes Acomp,k are estimated first
by nonlinear-least-square algorithm which iteratively minimize the KNLS function (equation 59) using
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Figure 28: Structure of MFSF algorithm wrapper. Note the green blocks are calls to another QWTB
wrappers, the gold cells are calls to another functions described in the text.

Gauss-Newton procedure [4]. The first approximate frequency of the record y is estimated using either
peak amplitude DFT bin frequency or interpolated DFT frequency estimate.

KNLS(Acomp,0, Acomp,1, ..., Acomp,h, f1) =

N∑
n=1

(
y(n · TS)−

h∑
k=−h

Ak · expj·k·n·2·π·f1·TS

)2

, (59)

A−k = A∗k. (60)

After the complex harmonic amplitudes Acomp,k are defined the amplitudes Ak and the phases φk of
the fundamental signal and harmonic components as well as the offset A0 and the THD of the record
are calculated using following equations:

Ak =
√
A2

comp,real,k +A2
comp,imag,k, k ∈ [1, h], (61)

φk = arctan
Acomp,imag,k

Acomp,real,k
, k ∈ [1, h], (62)

A0 = Acomp,0, (63)

THD =

∑h
k=2A

2
k

A2
1

. (64)

11.2.2 Uncertainty calculation

The TWM-MFSF supports two modes of uncertainty calculation. First option is the Monte Carlo mode,
which is slower, but more accurate and it can handle any number of fitted components. Second option
is fast estimator, which is less accurate, but considerably faster.

Note the uncertainty calculation is split between the “TWM-MFSF” wrapper and “MFSF” wrapper
as shown in fig. 27. The uncertainty of the algorithm is calculated in the “MFSF” wrapper, whereas the
uncertainty of the corrections is included in the TWM wrapper “TWM-MFSF”.

First part of the uncertainty calculation is in the “MFSF” wrapper and it is common for both modes of
calculation . The spectrum analysis of the input signal is performed by the “SP-WFFT” algorithm with
the windowing function “Flatttop HFT116D” [1], which has low scalloping and good spectral resolution.
The spectrum is heuristically analysed:

1. The fitted components are removed from the spectrum. These are not relevant for the uncertainty
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evaluation, as they are already known from the “MFSF()” function itself, but they must be removed
from the spectrum before searching the additional frequency components.

2. All harmonics of the fundamental frequency “f0” exceeding the threshold relative to the fundamen-
tal component are identified and removed in a full bandwidth.

3. Up to 100 residual components (harmonic or inter-harmonic) exceeding the threshold relative to
the fundamental component are identified and removed in a full bandwidth.

4. The residual signal is taken as RMS noise.

Following steps differ for the Monte Carlo mode and estimator.

11.2.2.1 Monte Carlo

The Monte Carlo would be extremely slow if all harmonics and inter-harmonics are taken into account,
because in fact it takes longer to synthesize the waveform with all the frequency components than
to apply MFSF algorithm. So, before Monte Carlo itself, a selection of the dominant components is
performed. All fitted components are simulated, up to 10 harmonics of “f0” are simulated and 10 of
the remaining harmonic and inter-harmonics with highest amplitudes are simulated. The rest of the
components identified from the spectrum is added to the RMS noise and simulated together as a noise.

The Monte Carlo (MC) simulation itself is performed by the function “proc MFSF()”, which is called
once for each MC iteration cycle. The function does following steps:

1. Randomize fundamental frequency f0 in a small range ±0.001 Hz/Hz to prevent accidental lock in
some local minimum of uncertainty.

2. Generate time vector with the jitter effect.

3. Generate list of fitted harmonics and randomise their amplitudes by ±1 % to reflect fitted amplitude
uncertainty. Generate random phase angles of the harmonics, because it is not easy to state what
was accuracy of the fit. This should produce the worst case errors.

4. Randomise the fitted harmonics by system SFDR.

5. Generate additional harmonics of the f0, based on the identified list from the spectrum. Randomize
their amplitudes by ±1 % and generate random phase.

6. Generate inter-harmonics based on the spectral analysis. Randomise frequency by ±1 DFT bin to
reflect resolution of FFT spectrum, amplitude by 1 % and generate random phase.

7. Synthesize waveform with all the harmonics and inter-harmonics.

8. Add RMS noise.

9. Add random offset with very pessimistic uncertainty, because MFSF may not estimate the DC
correctly, when not all harmonics are in the fitted list.

10. Perform quantisation of the waveform.

11. Call “MFSF()” to get estimates of f , A, ph and O.

12. Compare the estimates to the actually generated parameters.

The results from the iterations are processed according to the GUM Annex 1 [2] using function “scovint()”
to get uncertainties of the estimated components.

Note the MC evaluator itself uses function “qwtb mcm exec()”. This function is internally designed
to enable parallel calculation of the MC iteration cycles. It offers three modes of parallelisation:

1. calcset.mcm.method = ‘singlecore’: Single core calculation.
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2. calcset.mcm.method = ‘multicore’: Multicore operation using “parcellfun()” from “parallel”
package for GNU Octave or “parfor” for Matlab. Note the use of Matlab’s “parfor” for paral-
lelisation is just a user wish. Actual parallelisation mode is decided by Matlab. The package
“parcellfun()” implementation does work only for Linux. Windows implementation was not func-
tional at least up to GNU Octave version 4.2.2.

3. calcset.mcm.method = ‘multistation’: Multiprocess/multistation calculation using “multi-
core” package for GNU Octave (Matlab is not supported yet). Note the The “multistation” method
requires to define shared folder path for the job files. Otherwise it will create the shared folder in
temp folder, which may not be appreciated by the SSD disks owners. The mode “multistation”
also have one specific feature. It can initiate the user function after startup of the server processes.
The function is defined in the “calcset.mcm.user fun” variable. The example of the use for this
optional input is CMI’s supercomputer “Čokl” [6] which requires to call a special script to assign
server processes to particular CPU cores.

See table 56 for list of the additional parameters. Note at least 100 iterations is the absolute minimum
for which the MC mode provides any usable uncertainty estimates. The processing time for an evaluation
at 4 cores with 1000 cycles and N = 10000 input samples, 3 fitted harmonics and 10 additional spur
harmonics is typically below 20 seconds. However, the situation may change drastically when more
harmonics is fitted or high count of spur harmonic components is presents in the signal.

11.2.2.2 Fast estimator

The MFSF algorithm estimates several output parameters therefore the uncertainty was analysed for the
frequency and the amplitude of the fundamental signal f1 and A1, and for the amplitudes of the other
harmonic components A2 to Ah. The phases, the offset A0 and the THD are additional informative
parameters calculated by the MFSF algorithm, therefore the uncertainty analysis for those parameters
was not performed.

Three uncertainty contributions were considered in this study (see Table 57): resolution, jitter and
noise. Additionally, several other parameters related to the sampled signal or sampling (i.e. condition)
are expected to affect the uncertainty therefore enormous number of Monte Carlo simulation would be
needed for accurate uncertainty analysis.

Table 57: A list of parameters that were varied during the Monte-Carlo simulations.
Uncertainty contribution Variation range Reference value

RMS jitter 1 ns - 10 ns 1 ns (0 ns)
resolution 10 pV - 100 mV 10 µV (0 V)
noise, SNR∗1 102 - 106 1000 (infinite)
Condition parameters

amplitude of the fundamental signal, A1 0.1 V – 1000 V 1 V
frequency of the fundamental signal, f1 10 Hz – 200 Hz 100 Hz
SFDR∗2 0 – 0.5 0.1
sampling frequency, fs 5 kHz – 200 kHz 10 kHz
number of samples, N 500 Sa – 100 kSa 10 kSa

∗1 SNR in this study is defined as an amplitude of the fundamental signal vs.
the RMS noise ratio.
∗2 SFDR is spurious-free dynamic range which is defined as the harmonic am-
plitude to fundamental signal amplitude ratio.

Herein, different and slightly simplified approach was used. We run 18 different Monte Carlo simula-
tion sets. For each set only one uncertainty contribution was considered using the bold reference value
given in Table 57. The other two uncertainty contributions were neglected by using the reference values
given in the brackets. Additionally, only one condition parameter has been varied at the time using
the variation range as defined in Table 57 while we used the reference values for the other condition
parameters. We also verified the linearity of uncertainty contribution by varying its value over a certain
variation range while neglecting the other uncertainty contributions (by using the reference values given
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in brackets) and keeping all condition parameters at reference values. For each combination of uncer-
tainty contribution, condition and variation range we performed 25000 simulation where one additional
harmonic component has been randomly chosen between 2nd and 10th components. Additionally, the
initial phases of the fundamental signal and harmonic component have been randomly varied between +π
and −π. For each simulation a Gaussian distribution has been obtained. The uncertainty contribution
(Gaussian distribution, k = 1) for each estimated parameter (i.e. f1, A1, Ak) due to the resolution, noise
and jitter are defined by equations 68 to 76. The uncertainty contributions for each estimated parameter
are finally combined, and recalculated for Gaussian distribution, k = 2:

uf1 = 2 ·
√
u2f1,res + u2f1,noise + u2f1,jitter, (65)

uA1
= 2 ·

√
u2A1,res

+ u2A1,noise
+ u2A1,jitter

, (66)

uAh
= 2 ·

√
u2Ah,res

+ u2Ah,noise
+ u2Ah,jitter

. (67)

uf,res = 0.52 mHz ·
(

fS
10 kHz

)1.6

·
(

N

10 kSa

)−2
·
(
res

A1

)
, (68)

uA1,res = 0.5 ·
(
f1
fS

)0.5

· res, (69)

uAh,res = 1.3 ·
(
f1
fS

)0.5

· res, (70)

uf,noise = 5.5 µHz ·
(

fS
10 kHz

)
·
(

N

10 kSa

)−1.5
·
(
SNR

1000

)−1
, (71)

uA1,noise = 10 µHz ·
(

N

10 kSa

)−0.5
·
(
A1

1 V

)1

·
(
SNR

1000

)−1
, (72)

uAh,noise = 25 µHz ·
(

N

10 kSa

)−0.5
·
(
A1

1 V

)1

·
(
SNR

1000

)−1
, (73)

uf,jitter = 1 µHz ·
(

fS
10 kHz

)1.2

·
(

N

10 kSa

)−1.7
·
(

f1
100 Hz

)0.55

·
(
jitter

1 ns

)1.2

, (74)

uA1,jitter = 2.1 µV ·
(
A1

1 V

)1

·
(

f1
100 Hz

)1

·
(
jitter

1 ns

)1

, (75)

uAh,jitter = 5 µHz ·
(

N

10 kHz

)−0.5
·
(
A1

1 V

)1

·
(

f1
100 Hz

)1

·
(
jitter

1 ns

)1

. (76)

11.3 Validation

The algorithm TWM-MFSF has many input quantities and some of them are matrices. That is too
many possible degrees of freedom. Thus, varying the quantities in some systematic way would be very
complicated if the validation should cover full range of used signals and corrections. Therefore, an
alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed:

1. Generate signal with known frequency, amplitude, phase of the fundamental fundamental and
harmonics component and with a know DC offset.

2. Distort the signal by inverse corrections, i.e. simulate the transducers, and digitizer (e.g. gain
errors, quantisation, SFDR ...).
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3. Run the algorithm TWM-MFSF with enabled uncertainty evaluation to obtain the estimated values
and corresponding uncertainties of the frequency (fundamental signal), amplitude (fundamental
signal and harmonics), phase (fundamental signal and harmonics), DC and THD estimation.

4. Compare the reference and calculated values and check if the deviations are lower than assigned
uncertainties.

5. Repeat N times from step 1, with different setup parameters, different corrections randomised by
their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of results passed (for 95 % level of confidence).

Following validation applies only to the fast uncertainty estimator. The Monte-Carlo uncertainty
calculator was not validated.

The total number of Monte-Carlo simulations was 200000. The parameters of the input signal, the
digitizer and transducer settings were randomly varied. The sampling frequency was between 5 kHz and
200 kHz and the number of samples between 500 Sa and 100 kSa. The frequency of fundamental signal
was between 10 Hz and 200 Hz. The frequency of the harmonics and interharmonics were always above
frequency of the fundamental signal but below the Nyquist frequency. The number of harmonics that
were added to the fundamental signal and that needs to be estimated by the algorithm was 3. The number
of interharmonics was 1. The amplitude of the fundamental signal was between 0.1 V and 1000 V and the
amplitude of the harmonics and interharmonic between 0.00001 and 0.05 and between 0.00001 and 0.02
of the amplitude of the fundamental signal, respectively (the amplitudes have been varied individually
for each harmonics and interharmonic). The DC offset was between -10 and +10 of the amplitude of the
fundamental signal. The phases of the fundamental signal as well as of the harmonics and interharmonic
were individually and randomly varied between +3.14 rad and -3.14 rad. The ADC noise was between
1e-11 and 1e-3 of the amplitude of the fundamental signal while the jitter was between 1e-9 s and 1e-7 s.
Additionally, the spur has been added to the signal (spurious free dynamic range was 100e-6, number
of spurs 10). ADC aperture was between 1e-5 s and 4e-5 s, ADC gain between 1 and 1.5, ADC phase
between +1.57 rad and -1.57 rad, frequency correction of the digitizer timebase between -5e-3 and 5e-3,
ADC offset between 0.005 V and 0.005 V and number of bits between 22 and 24. Relative time-stamp of
the first sample was varied between -10 s and 10 s. The transducer gain was between 0.5 and 20 and the
transducer phase was between +1.57 rad and -1.57 rad. The resistive voltage divider low-side impedance
value (i.e. resistance and capacitance) were between 100 Ω and 500 Ω and 0.1 pF and 10 pF, respectively
(only resistive voltage divider was used in the simulations). The randomisation of corrections was also
enabled which means that not only the uncertainty of the algorithm but also the contributions of the
correction uncertainties were included in the Monte-Carlo simulations.

The success rate of the TWM-MFSF algorithm for the fundamental frequency estimation was 99.91 %,
99.63 % for the amplitude of the fundamental signal, 99.40 % for the amplitude of the harmonics, 99.77 %
for the phase of the fundamental signal, 77.62 % for the phase of the harmonics, 68.24 % for the DC and
59.59 % for the THD.

Note the preliminary tests for the Monte Carlo method show much higher success rates at least for
the harmonics, however the processing time is much higher.
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12 TWM-PWRFFT - Power by FFT

Algorithm for calculation of power parameters from FFT spectra of voltage and current channels. It
calculates the power in full bandwidth. It designed for coherent sampling.

The algorithm can calculate all basic parameters: active power P , reactive power Q, apparent power
S, RMS voltage U , RMS current I and power factor PF . It also returns DC components separately:
Udc, Idc and Pdc. User may choose optional AC coupling mode by setting parameter “accoupling = 1”
in which case the U , I, P , Q, S and PF will be calculated without the AC component.

The algorithm uses following definitions for the power components: (i) The AC power components
P , Q and S are related by equation:

S2 = P 2 +Q2. (77)

(ii) Power factor PF is calculated including DC components according to equation:

PF =
P

S
. (78)

(iii) The sign of Q is calculated using harmonic components method according Budenau definition:

sing(Q) = sign

{
H∑
h=1

(U(h) · I(h) · sinφ(h))

}
, (79)

where h is harmonic index, H is harmonics count, U(h), I(h) and φ(h) are harmonic voltage, current
and phase shift. Note the absolute value of Q is still calculated from AC components following equation
77. Only the sign of Q is decided from the Budenau definition 79.

The TWM-PWRFFT algorithm wrapper is able to use single-ended or differential input sensors for
voltage channel, current channel or both. The algorithm is also equipped by a fast uncertainty estimator.

12.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in the table 58. Algorithm returns output
quantities shown in the table 59. Calculation setup supported by the algorithm is shown in table 60.

Table 58: List of input quantities to the TWM-PWRFFT wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
ac coupling 0 N/A Enables virtual AC coupling of the wattmeter. This option

will cause the DC value will be ignored.
u
u lo

N/A
N/A

No
No

Input voltage sample data vector and complementary low-
side input data vector i lo (for differential mode only).

i
i lo

N/A
N/A

No
No

Input current sample data vector and complementary low-
side input data vector i lo (for differential mode only).

Ts
fs
t

N/A
N/A
N/A

No
No
No

Sampling period or sampling rate or sample time vector.
Note the wrapper always calculates in equidistant mode, so
t is used just to calculate Ts.

time shift 0 Yes Timeshift between voltage channel u and current channel
i.

u time shift lo
i time shift lo

0
0

Yes
Yes

Time shift between high-side channel u low-side channel
u lo (or i and i lo for current).
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Table 58: List of input quantities to the TWM-PWRFFT wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
u lsb
u adc nrng
u adc bits
u lo lsb
u lo adc nrng
u lo adc bits
i lsb
i adc nrng
i adc bits
i lo lsb
i lo adc nrng
i lo adc bits

N/A
1000
40
N/A
1000
40
N/A
1000
40
N/A
1000
40

No
No
No
No
No
No
No
No
No
No
No
No

Either absolute ADC resolution lsb or nominal range value
adc nrng (e.g.: 5 V for 10 Vpp range) and adc bits bit res-
olution of ADC.

u adc offset
u lo adc offset
i adc offset
i lo adc offset

0
0
0
0

Yes
Yes
Yes
Yes

Digitizer input offset voltage.

u adc gain
u adc gain f
u adc gain a
u lo adc gain
u lo adc gain f
u lo adc gain a
i adc gain
i adc gain f
i adc gain a
i lo adc gain
i lo adc gain f
i lo adc gain a

1
[]
[]
1
[]
[]
1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No
Yes
No
No
Yes
No
No

Digitizer gain correction 2D table (multiplier).

u adc phi
u adc phi f
u adc phi a
u lo adc phi
u lo adc phi f
u lo adc phi a
i adc phi
i adc phi f
i adc phi a
i lo adc phi
i lo adc phi f
i lo adc phi a

0
[]
[]
0
[]
[]
0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No
Yes
No
No
Yes
No
No

Digitizer phase correction 2D table (additive).

adc freq 0 Yes Digitizer timebase error correction:
f tb′ = f tb · (1 + adc freq.v)
The effect on the estimated frequency is opposite:
f est′ = f est/(1 + adc freq.v)

u adc jitter
u lo adc jitter
i adc jitter
i lo adc jitter

0
0
0
0

No
No
No
No

Digitizer sampling period jitter [s].

u adc aper
u lo adc aper
i adc aper
i lo adc aper

0
0
0
0

No
No
No
No

ADC aperture value [s].
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Table 58: List of input quantities to the TWM-PWRFFT wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
u adc aper corr
u lo adc aper
i adc aper corr
i lo adc aper

0
0
0
0

No
No
No
No

ADC aperture error correction enable:
A′ = A · pi · adc aper · f est/ sin(pi · adc aper · f est)
phi′ = phi+ pi · adc aper · f est

u adc sfdr
u adc sfdr f
u adc sfdr a
u lo adc sfdr
u lo adc sfdr f
u lo adc sfdr a
i adc sfdr
i adc sfdr f
i adc sfdr a
i lo adc sfdr
i lo adc sfdr f
i lo adc sfdr a

180
[]
[]
180
[]
[]
180
[]
[]
180
[]
[]

No
No
No
No
No
No
No
No
No
No
No
No

Digitizer SFDR 2D table.

u adc Yin Cp
u adc Yin Gp
u adc Yin f
u lo adc Yin Cp
u lo adc Yin Gp
u lo adc Yin f
i adc Yin Cp
i adc Yin Gp
i adc Yin f
i lo adc Yin Cp
i lo adc Yin Gp
i lo adc Yin f

1e-15
1e-15
[]
1e-15
1e-15
[]
1e-15
1e-15
[]
1e-15
1e-15
[]

Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No

Digitizer input admittance 1D table.

u tr type
i tr type

“” No Transducer type string (“rvd” or “shunt”).

u tr gain
u tr gain f
u tr gain a
i tr gain
i tr gain f
i tr gain a

1
[]
[]
1
[]
[]

Yes
No
No
Yes
No
No

Transducer gain correction 2D table (multiplicative).

u tr phi
u tr phi f
u tr phi a
i tr phi
i tr phi f
i tr phi a

0
[]
[]
0
[]
[]

Yes
No
No
Yes
No
No

Transducer phase correction 2D table (additive).

u tr sfdr
u tr sfdr f
u tr sfdr a
i tr sfdr
i tr sfdr f
i tr sfdr a

180
[]
[]
180
[]
[]

No
No
No
No
No
No

Transducer SFDR 2D table.
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Table 58: List of input quantities to the TWM-PWRFFT wrapper.
Details on the correction quantities can be found in [1].

Name Default Unc. Description
u tr Zlo Rp
u tr Zlo Cp
u tr Zlo f
i tr Zlo Rp
i tr Zlo Cp
i tr Zlo f

1e3
1e-15
[]
1e3
1e-15
[]

Yes
Yes
No
Yes
Yes
No

RVD transducer low-side impedance 1D table. Note this is
related to loading correction and it has effect only for RVD
transducer and will work only if adc Y in is defined as well.

u tr Zca Rs
u tr Zca Ls
u tr Zca f
i tr Zca Rs
i tr Zca Ls
i tr Zca f

1e-9
1e-12
[]
1e-9
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer high side terminal series
impedance 1D table.

u tr Zcal Rs
u tr Zcal Ls
u tr Zcal f
i tr Zcal Rs
i tr Zcal Ls
i tr Zcal f

1e-9
1e-12
[]
1e-9
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer low side terminal series
impedance 1D table.

u tr Yca Cp
u tr Yca D
u tr Yca f
i tr Yca Cp
i tr Yca D
i tr Yca f

1e-15
1e-12
[]
1e-15
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Transducer output terminals shunting
impedance.

u tr Zcam
u tr Zcam f
i tr Zcam
i tr Zcam f

1e-12
[]
1e-12
[]

Yes
No
Yes
No

Loading corrections: Transducer output terminals mutual
inductance 1D table.

u Zcb Rs
u Zcb Ls
u Zcb f
i Zcb Rs
i Zcb Ls
i Zcb f

1e-9
1e-12
[]
1e-9
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Cable series impedance 1D table.

u Ycb Rs
u Ycb Ls
u Ycb f
i Ycb Rs
i Ycb Ls
i Ycb f

1e-15
1e-12
[]
1e-15
1e-12
[]

Yes
Yes
No
Yes
Yes
No

Loading corrections: Cable series impedance 1D table.
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Table 59: List of output quantities of the TWM-PWRFFT wrapper.
Name Uncertainty Description
U Yes RMS voltage [V].
I Yes RMS current [A].
P Yes Active power [W].
S Yes Apparent power [VA].
Q Yes Reactive power [VAr].
phi ef Yes Effective phase angle: arccos (PF ) [rad].
Udc Yes DC voltage component [V].
Idc Yes DC current component [A].
Pdc Yes DC power component [W].
spec U No Voltage channel spectrum [V].
spec I No Current channel spectrum [A].
spec S No Apparanet power spectrum [VA].
spec f No Frequency vector of spec U , spec I and spec S.

Table 60: List of “calcset” options supported by the TWM-PWRFFT wrapper.
Name Description
calcset.unc Uncertainty calculation mode. Supported: “none”,

“guf” for uncertainty estimator
calcset.loc Level of confidence [-].
calcset.verbose Verbose level.

12.2 Algorithm description

The TWM-PWRFFT algorithm internally uses TWM-WFFT (section 9) algorithm to calculate spectra
of voltage and current channels. The amplitude spectra UH(f) and IH(f) and the phase difference φH(f)
between them are processed to obtain the power parameters:

U =

√√√√ F∑
f=1

0.5 · UH(f)2, (80)

I =

√√√√ F∑
f=1

0.5 · IH(f)2, (81)

P =

F∑
f=1

0.5 · UH(f) · IH(f) · cos(φH(f)), (82)

Qbud =

F∑
f=1

0.5 · UH(f) · IH(f) · sin(φH(f)), (83)

Q =
√
S2 − P 2 · sign(Qbud), (84)

where f is frequency component and F is total spectrum components count. For DC coupling mode, the
DC components are included:

U =
√
UH(0)2 + U2, (85)

I =
√
IH(0)2 + I2, (86)

P = UH(0) · IH(0) + P. (87)

The S and PF are then calculated using following formulas:

S = U · I, (88)

PF =
P

S
. (89)
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12.2.1 Uncertainty calculation

Uncertainty is calculated from the spectrum component uncertainties returned by the TWM-WFFT
algorithm.

u(U) =

√√√√ 1

(2 · U)2

F∑
f=1

u(UH(f))2 · UH(f)2, (90)

u(I) =

√√√√ 1

(2 · I)2

F∑
f=1

u(IH(f))2 · IH(f)2, (91)

u(P ) =

√√√√√0.5

F∑
f=1

 IH(f)2 · cos(φH(f))2 · u(UH(f))2

+UH(f)2 · cos(φH(f))2 · u(UH(f))2

+UH(f)2 · IH(f)2 · sin(φH(f))2 · u(φH(f))2

, (92)

u(S) =
√
I2 · u(U)2 + U2 · u(I)2, (93)

u(Q) =

√
S2 · u(S)2 + P 2 · u(P )2

S2 − P 2
. (94)

For DC coupling mode, the uncertainties are expanded (empiric formulas):

u(PDC) =
√

1.5 · I2DC · u(UDC)2 + 1.5 · U2
DC · u(IDC)2 + u(P )2, (95)

u(UDC) =
√
u(UDC)2 + 1.5 · u(U)2, (96)

u(IDC) =
√
u(IDC)2 + 1.5 · u(I)2, (97)

u(U) =

√
U2
DC · u(UDC)2 + U2 · u(U)2

U2
DC + U2

, (98)

u(I) =

√
I2DC · u(IDC)2 + I2 · u(I)2

I2DC + I2
, (99)

u(S) =
√
I2 · u(U)2 + U2 · u(I)2. (100)

Power factor PF uncertainty is calculated empirically using Monte Carlo:

f o r k = 1:2000
Px = P + (1 − 2∗ rand )∗u(P) ∗ 3 ˆ 0 . 5 ;
Sx = S + (1 − 2∗ rand )∗u(S ) ∗ 3 ˆ 0 . 5 ;
v PF [ k ] = Px/Sx ;

end
u(PF) = max( abs ( v PF − PF) ) / 3 ˆ 0 . 5 ;

12.2.2 Validation

The algorithm TWM-PWRFFT has many input quantities (for the differential transducer connection
about 120 quantities) and some of them are matrices. That is too many possible degrees of freedom.
Thus, varying the quantities in some systematic way would be very complicated if the validation should
cover full range of used signals and corrections. Therefore, an alternative approach was used.

QWTB test function “alg test.m” was created, which performs the validation using randomly gen-
erated test setups. It randomizes the signal parameters, correction quantities and uncertainties and
algorithm configurations in ranges expected to occur during the real measurements. The test is run
many times to cover full operating range of the algorithm. Following operations are performed for each
random test setup:

1. Generate voltage and current signals u and i with known power parameters Pref .
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2. Distort the signals u and i by inverse corrections, i.e. simulate the transducers, and digitizer (e.g.
gain errors, phase errors, DC offsets, quantisation errors, ...).

3. Run the algorithm TWM-PWRFFT on the signals u and i with enabled uncertainty evaluation to
obtain power parameters estimates Px and their uncertainties u(Pref).

4. Compare Pref and Px and decide if the errors of the algorithm for particular power parameters is
smaller than the assigned uncertainties u(Pref):

pass(i) = abs(Pref − Px) < u(Pref), (101)

where i is test run index.

5. Repeat the test N times from step 1 with the same test setup parameters, but with randomised
corrections by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of pass(i) results passed (for default 95 % level of confidence). The
evaluation is made for each calculated power parameter separately. So it is possible to inspect
which parameter fails.

The test runs count per test setup was set to N = 500, which is far from optimal “infinite” set, but
due to the computational requirements it could not have been much higher. Note the low count of test
induces uncertainty to the obtained pass rates.

The algorithm in the uncertainty estimation mode was tested in 4 different configurations with 10000
test setups per each. I.e. the algorithm was ran 20 million times in total (4x10000x500). The processing
itself was performed on a supercomputer [2] so it took only about 5 days at 200 parallel octave instances.

The randomization ranges of the signal are shown in table 61. The randomization ranges of the
corrections are shown in table 62.

The test results were split into several groups given by the randomiser setup: (i) Single ended/differen-
tial mode; (ii) Randomisation of corrections by uncertainty enabled/disabled. When the randomisation
of corrections is disabled, the test runs cover only the algorithm itself and the contributions of the
correction uncertainties are ignored.

The summary of the validation test results is shown in table 63. The success rate without corrections
randomisation was close to 100 %. The success rate with corrections ransomisation was a bit worse,
because the success rate of the test runs within the test setup is just around 95 %. Therefore the decision
pass/fail is problematic. The obtained set of test results was manually investigated and no cases with
far outliers were detected, e.g. the failed test setups contained occasional estimates offsets just around
the uncertainty boundaries. Also no case where all test runs fails were found.

Table 61: Validation range of the signal for TWM-PWRFFT algorithm.
Parameter Range
Sampling rate random 9 to 11 kHz (all other parameters are varied rel-

ative to this sampling rate, so it is not needed to ran-
domise in wider range).

Samples count 5000 to 20000 (0.5 to 2 seconds integration time).
Fundamental frequency random, so there are at least 10 samples per period and

at least 20 full periods recorded but always coeherent.
Harmonics count 1 to 5 in order (no gaps).
Fundamental amplitudes 0.1 to 1 of full scale digitizer input.
Harmonic amplitudes 0.01 to 0.1 of fundamental.
Phase angles Random for all harmonics and inter-hamonics.
DC offset ±0.05 of fundamental.
SFDR -120 to -80 dBc, max. 10 harmonic components, ampli-

tude randomized for each spur in the SFDR range.
Digitizer RMS noise 1 to 10 µV.
Sampling jitter 1 to 100 ns.
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Table 62: Validation range of the correction for the TWM-PWRFFT algorithm. Note the low-side
channel corrections in the differential mode are generated in the same way.

Parameter Range
Nominal input U range 10 to 70 V
Nominal input I range 0.5 to 5 A
Aperture time 1 ns to 10 s
Digitizer gain Randomly generated frequency transfer simulating

NI 5922 FIR-like gain ripple (possibly the worst imag-
inable shape) and some ac-dc dependence. The transfer
matrix has up to 50 frequency spots. Nominal gain value
is random from 0.95 to 1.05 with uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±1 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is random from
0.005 to 0.03 dB with up to 5 periods between 0 and
fs/2.

Digitizer phase Randomly generated phase frequency transfer up to
±1 mrad with uncertainty 2 to 50 µrad.

Digitizer SFDR Value based on table 61.
Digitizer bit resolution 16 to 28 bits.
Digitizer nominal range 1 V
Digitizer DC offset Up to ±10 mV with uncertainty 0.1 mV.
Low-side channel time shift Random value so the phase shift at Nyquist frequency

won’t exceed 0.1 rad with uncertainty 20 ns.
I-to-U channel time shift Random value so the phase shift at Nyquist frequency

won’t exceed 0.1 rad with uncertainty 20 ns.
Transducer gain Randomly generated frequency transfer. The transfer

matrix has up to 50 frequency spots. Nominal gain value
is random (see above) with relative uncertainty 2 µV/V.
Maximum ac-dc value at fs/2 is up to ±2 % with uncer-
tainty 50 µV/V. Gain ripple amplitude is 0.005 dB with
4 to 10 periods between 0 and fs/2.

Transducer phase Randomly generated phase frequency transfer up to
±1 mrad with uncertainty 2 to 50 µrad.

Table 63: Validation results of the algorithm TWM-PWRFFT. The “passed test” shows percentage of
passed tests under conditions defined in tables 61 and 62. Note the pass condition is when all tested
quantities (U , I, P , Q, S, PF ) passes.

Connection Rand. corr. Passed test [%]

single-ended
off 100.00
on 100.00

differential
off 100.00
on 99.95

References
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Sampling watt meter, power calculation algorithms 
 

Matlab implementations of JV sampling watt meter (a sub. set) 

 

Containing: 

 

1. Simulated signal generation (Amplitude, phase, sampling rate, etc.) 
 

2. Compensation for Frequency-dependent Gain and Phase errors. 
o Generation of a few pre-defined compensations: 

 Null-compensation 
 Cable-delay compensation 
 3458A’s Frequency dependent response from Aperture size 

o Compensation algorithm (time-to-Frequenzy-to-time) 
 

3. Calculation of base Power and PQ-parameters: 
o RMS-Voltage RMS-Current, AC and DC 
o Active Power 
o Reactive Power 
o Apparent Power 
o Power factor 

 
4. Simple testing of result 

o Calculation of theoretical correct value  
o Calculate the deviation between algorithm output and theoretical values. 

 

  

  



1:  Simulated signal generation (Amplitude, phase, sampling rate, etc.) 

 

Generate Test signal (func.)   
testsignal.m   Inputs:  
 N  Numbers of samples 
 fs Sampling frequency 
 bf Base signal frequency (ex:50Hz) 
 amp Base signal Amplitude (rms) 
 phi Base signal phase in degrees 
 dc  Base signal DC-offset 
 noiseamp random noise amplitude 
 Output:  
 s 1-dim. Data array with the generated simulated data 

 

 

2: Compensation for Frequency-dependant Gain and Phase errors. 

Functions: 

Main compensation function  Inputs:  
sFreqDep_PG_Comp.m U1, U2 Sampling buffer data arrays (uncompensated) 
 fft_size FFT size 
 CmpVector1 

CmpVector2 
Complex vector holding Gain and Phase 
compensation 

 Outputs:  
 Uc1, Uc2 Compensated Data arrays for Channel 1 & 2 
 first, last Index of beginning and end-part of the input 

buffer that the output represents (*) 
(* When compensating for phase, a certain numbers of samples at the ends will be unusable)  

When compensating for phase, a certain numbers of samples at the ends will be unusable. The 
function only returns the useful data array in the middle, which is shorter than the Input array.  The 
function returns two compensated arrays and indicate the index of first and last relative to where in 
the Input data array it originates.  

As a thumb-of-rule, the function returns the array between index:  

< fft_size/2  : SIZE - ~fft_size/2 > , 

and the cut-off at the end depends on the matches between the Input-length and the FFT-length-
multiple. If an fft-buffer is incomplete, the surplus data will be discarded. The length of the output is 
(last - first). 

 

  



Functions that generate a Compensation vector.  

Pre.made Compensation func. Inputs: Func. Description: 
NullCompVector.m            FFT_size Default Null compensation 
ConstantDelayCompVector.m                 fs, FFT_size, delay_s Generate compensation for cable-delay 

(constant delay) 
H3458ACompVector.m fs, FFT_size, intgration_time Generate compensation for the HP3458A 

frequency-dependant gain, as a function 
of the Aperture time. 

 Outputs:  
 CompVector Complex array used as argument for 

sFreqDep_PG_Comp.  
 

I addition to these examples, the user should characterize their own setup, to identify the phase and 
gain corrections needed in the spectra.  

The  CompVector has this form: 

Complex array of length FFT_size, the absolute value of the complex value is the gain, and the 
angel[rad] give the phase correction. 

For element i,   

    freq[hz]=fs/FFT_size*i;  for i <0,FFT_size/2-1> , and     

    freq[hz]=fs/FFT_size*(FFT_size-i); for i <FFT_size/2, FFT_size-1 >  

The Phi is complex-conjugated, and thus the phi-values are symmetric for the first and second half of 
the array, so the sign of the values and the order are flipped round FFT_size/2.  

 

     

 

 

 

 

Gain: Gain values are mirrored round the center of the array. 

 

  



Other functions: 

Help-functions: Description: 
HannFcompMask.m    Generate window masking edge-effects of the inv. FFT 
PackMan.m     Generate indexing for position of FFT-window 
sincm.m          The sinc-function: [sin(x)/x] 
hanningw.m   Even-number Hanning-window function, with asymmetric peek-

point  
FDcomp.m                    The core “time-frequency-time”-domain comp.function (FFT) 

 

 

 

 

 

4: Calculation of base Power and PQ-parameters:  

Functions: 

Main Calculation function Inputs:  
swm1.m                      U1 Compensated sampled data array for U1 

(Voltage-channel) 
 U2 

 
Compensated sampled data array for U2 
(Current-channel) 

 rootedWW  Windowing-function1(*)  
 WW Windowing-function2(*) 
Main Parameters calculated are: Outputs:  
 U1rmws RMS-value of U1(Voltage-channel) 
 U2rmws RMS-value of U1(Voltage-channel) 
 U1dc DC-offset of U1 (Voltage-channel) 
 U2dc DC-offset of U2 (Current-channel) 
 Pact RMS-value of Active Power 
 Prea RMS-value of Reactive Power 
 Papp RMS-value of Apparent Power 
 PF Power factor 

(* For efficiency, calculating the window once, and give the arrays as argument for repeated calls) 

 

 

  



4:  Simple testing of result 

Example-
implementation 

Input/output Example code, demonstrating the use of the algorithms for 
calculating Power and PQ-parameters on simulated input data 

SWM_PUI_v1.m   None 
  
1 Data_in:  Two arrays of sampled or simulated 3458A voltage-data. 

Simulated data used in this example: testsignal(N,fs,Hz,U,Udc,dPhi,noise); 
 
Array-length: To Archive better then 1ppm max. error contribution from the calculation algorithm, The 
length of the data arrays should contain more data than 32(*) periods of the base signal. In addition, 
since the compensation algorithm will throw away some data points at the start and end of the buffer, 
the size of the buffer should be at least be: 

N= fs/BaseFreq*32.0 + 2*FFT_size; 
 
 

 
(* for Hanning-window, more the 32 periodes is needed for better then 1ppm) 

 
2 Compensation of frequency-dependent errors (phase-Gain),  

sFreqDep_PG_Comp(U1,U2,fft_size,CmpVector1,CmpVector2); 
 
 
Tree examples of simulated compensations is provided. 
For example: compensation for cabel delay, or the Frequency-dependant gain of the HP3458A. 

3 The main algorithm, The Time-based calculation of Base Power and PQ-Properties: 
  
 [U1rmws, U2rmws, Pact, Papp, Prea, PF] = swm1(Uc1, Uc2, rootedWW); 
 The two arrays from the Compensation algorithm is input here. 
 
Main Paraneters calculated are: 
RMS-value(U1,U2),DC(U1,U2), Active Power,Reactive Power,Apparent Power,Power factor 
 
ACCURRACY:  
Contribution of uncertainty depends on the Input data length relative to the Base signal period 
length. For better then max. 1ppm error contribution, the input data length must be longer 
than 32 periods of the Base signal. 

4 Testing of the calculated values against the theoretical (ref) values. 
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Appendix #9  

 
 

A2.4.5 – Description and building of TWM software structure 



A2.4.5 - TWM structure 
This report also covers at least partially following activities: 

A2.1.1 – Flow chart of TWM tool 

A2.1.2 – Extension for a multiple digitizers 

A2.1.4 – Concept of the LV to Octave/Matlab interface 

A2.2.2 – Integration of the drivers to the virtual driver 

A2.4.2 – TWM tool structure 

A2.4.3 – Acquisition and control module description 

A2.4.4 – Processing module description 

A3.3.3 – Guidance on integration of new HW 

 

Following text describes internal structure of the TWM (LabVIEW version).  

1.1 References 
[1] TWM tool, url: https://github.com/smaslan/TWM 
[2] INFO-STRINGS, url: https://github.com/KaeroDot/info-strings 
[3] QWTB toolbox, url: https://qwtb.github.io/qwtb/ 
[4] GOLPI interface, url: https://github.com/KaeroDot/GOLPI 
[5] A232 Algorithms exchange format, url: 

https://github.com/smaslan/TWM/tree/master/doc/A232 Algorithm Exchange Format.docx 
[6] A231 Correction Files Reference Manual, url: 

https://github.com/smaslan/TWM/tree/master/doc/A231 Correction Files Reference 
Manual.docx 

[7] A231 Data Exchange Format, url: 
https://github.com/smaslan/TWM/tree/master/doc/A231 Data exchange format and file 
formats.docx 
 

1.2 Abbreviations 
LV – LabVIEW 
CVI – LabWindows CVI 
EOS – End of string 
DWORD – unsigned 32bit variable 
INT16 – signed 16bit integer 
INT32 – signed 32bit integer 
INT64 – signed 32bit integer 
Double – 64bit real number 
Cluster – LabVIEW structure of elements 

https://github.com/smaslan/TWM
https://github.com/KaeroDot/info-strings
https://qwtb.github.io/qwtb/
https://github.com/KaeroDot/GOLPI
https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithm%20Exchange%20Format.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Data%20exchange%20format%20and%20file%20formats.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Data%20exchange%20format%20and%20file%20formats.docx


Bool – Logic variable 
HDD – Hard drive 
TWM – The LV program developed in scope of TracePQM project 
GUI – Graphical User Interface 
HW – HardWare 
QWTB – Q-Wave toolbox [3] 
INFO – Brain-dead structured, human readable text file 
Matlab – Matlab SW (Mathworks)  
GNU Octave – Open source equivalent of Matlab that happens to be almost 100% comatible 
m-script – Matlab/Octave’s function file 
 

1.3 Overview 
The TWM is organized according to the diagram shown in Figure 0-1. The whole TWM application 
consists of two parts: 

(i) LabVIEW modules (Control and Processing) that controls the instruments, initiates 
processing and serves as a user interface 

(ii) Calculation or Processing module based on the Matlab/GNU Octave which performs the 
processing of the acquired data, post-processing and formatting the data for displaying 
and generation of the measurement report (summary of the results formatted in 
compact form). 

 

Figure 0-1: TWM tool structure. The coloured frames are used to distinguish the process in which the tasks run.  

The modules communicate on runtime via the GOLPI interface [4] and via files in the measurement 
folder [7]. So TWM appears as one interactive application. This apparent complication has several 
benefits. The separation of the acquisition and processing enables several features: 



(i) The acquired data may be processed at any time. It is possible to just record batch of 
measurements without processing which may be helpful for time consuming 
calculations. The processing of the whole batch of measurements can be initiated later 
either via TWM or on a supercomputer.  

(ii) The same acquired data can be used for calculation of multiple parameters using 
multiple algorithms.  

(iii) The measurement data is (can be) archived so the data may be reprocessed later if new 
parameters or correction are needed. 

(iv) The Processing module can run independently on the Control module so TWM can run 
even without installed Matlab/GNU Octave and the processing can run on any system 
without drivers required for the TWM (e.g. supercomputer). 

(v) The Processing module is identical for LabVIEW and CVI version of the tool and the data 
are interchangeable. 

(vi) The processing module is FULLY transparent. The m-functions of the module do 
everything: loading the acquired data, loading correction, processing, saving results, 
loading and formatting results for display, generating report. 

The control module is split into four separate processes that run in parallel. Main process is “GUI 
Process”. It contains configuration panels of the HW, configuration panels of the measurement, 
configurations of the result display and selector of the correction files for the HW components. 

When the user wants to initiate a new measurement the “GUI process” will create “Measurement 
Process” which does following: 

(i) Loads correction files. 
(ii) Loads selected QWTB algorithm’s configuration from QWTB alg. database file. 
(iii) Builds measurement sequence. 
(iv) Initiates acquisition. 
(v) Stores acquired data and full copy of the Corrections and QWTB alg. setup to the 

measurement folder. 
(vi) When requested by user, initiates processing of the acquired waveforms. 
(vii) Signalizes “new result available” to the GUI process. 
(viii) Repeats from (iv) until all acquisitions are done or user terminates the process by “STOP” 

button. 

When “GUI Process” receives notification of the new result or user requires refresh of the results 
view, it will initiate refresh of the results view according to the current view setup by initiating 
another process “Results Viewer Process”. This process will search the measurement folder and will 
update the results view or initiates export of the measurement report. Note this process requires 
Matlab/GNU Octave, because the actual post-processing and formatting is done in 
Matlab/GNU Octave. The split into the processes means they can partially run in parallel, so when 
the digitizers are acquiring new waveforms, the “Results Viewer Process” can simultaneously 
perform the post-processing and displaying. The user can even plot graphs of the so far measured 
results during the measurements. 

Finally, TWM contains “Server control process”, which allows to control some of the TWM functions 
and query status and data. The communication happens via Windows named pipe, so it can be 
controlled from any environment. The key point of this feature is the TWM can be controlled by 
another application that e.g. performs sequence of measurements. However, note the interface is in 



development stage and it is not part of the TracePQM project. Thus, it may not be fully developed 
before end of the project so it will be documented separately when it is ready to use. 

1.4 GOLPI 
The communication between LabVIEW and Matlab/GNU Octave is ensured by the GOLPI interface 
[4]. The interface was designed for bidirectional runtime communication between LV and 
GNU Octave. The communication happens via the pipes which transfers commands and data 
between the two environments. User can also inspect the communication in console window. The 
pipes are based on the DLL library “lv_process.dll” which is part of the project [4]. The 
“lv_process.dll” can be used in any language such as CVI. However, it ensures just a low level text 
data exchange. Variables transfer between the LV and GNU Octave is done at LV level. 

The project TracePQM also calls for a communication with Matlab which is far more popular among 
the potential users. Therefore, the GOLPI library for LV was modified so it also enables almost identic 
communication with Matlab via the Matlab Script nodes. The nodes are hidden in the GOLPI so from 
outside there is no difference between use of GOLPI for Matlab and GNU Octave and there should be 
no difference apart from the performance, which may differ significantly. The only functional 
difference may be in some algorithms, where Matlab and GNU Octave implementation differs (see 
algorithms documentation). 

1.4.1 Multi-process GOLPI access 
The TWM is a multi-process application. It was not principally possible to ensure the GOLPI is 
accessed from only one process at the time, so obvious problem arises – the resource sharing 
between the processes. Obviously only one process can work with Matlab at the time. This is ensured 
by additional LV library “GOLPI Multi Process.lvlib”. This lib contains several functions. First, before 
the lib can be used, user must call the VI “golpi_mpc_init_session.vi”, which will initiate the GOLPI 
instance session.  

 

Figure 0-2: Initializing VI of the multiprocess library. This must be called somewhere at the beginning of the TWM 
application before any other access to the GOLPI is made.  

This VI initializes the GOLPI instance session, i.e. local variable “GOLPI”, which is part of the “main.vi”. 
This is only VI that can access this variable directly! All other VIs accesses the “GOLPI” variable via 
reference. The initialization itself is part of the VI “GOLPI Initialize.vi” whose location in the “main.vi” 
is shown in Figure 0-3.  



 

Figure 0-3: The location of the multiprocess initialization VI. 

Before exiting the TWM, the multi-process GOLPI session should be closed by calling VI 
“golpi_mpc_close_session.vi”. This will also optionally force the GNU Octave process to close, so 
there is no zombie process left on exit. 

 

Figure 0-4: VI for closing the multi-process GOLPI session. The "exit octave" option will force the Octave or Matlab to 
close (terminate the process). 

Whenever any part of TWM needs accessing the GOLPI instance, it must first obtain the GOLPI 
session by calling VI “golpi_mpc_get_access.vi”. The VI will wait indefinitely for the access to the 
GOLPI session. That is internally solved by semaphores. It won’t return until all other processes 
released the GOLPI by “golpi_mpc_release.vi” or until the semaphore is destroyed by 
“golpi_mpc_close_session.vi”. It retunes the local copy of the GOLPI session, which must be store 
back by the “golpi_mpc_release.vi” (see below). 

 

Figure 0-5: VI for gaining exclusive access to the GOLPI. The "golpi session" is reference to the TWM local variable 
“GOLPI”. The “allow octave start” option will allow autoamtic startup of GNU Octave/Matlab, when it is not running yet. 

“don’t querry version” will disable query of the version, which is quite time consuming. The main output is “GOLPI ref 
out”, which is the GOLPI reference to be used with the GOLPI library VIs. The VI also returns “golpi session out”, which is 

the multi-process GOLPI session that contains some more elements that may be useful. 

When the work with GOLPI is finished, the user must call VI “golpi_mpc_release.vi” to store the local 
copy of “GOLPI ref” (or “golpi session”) back to the TWM variable “GOLPI” and to release the 
exclusive access to the GOLPI. This will clear the semaphore and thus allow other processes to gain 
access by “golpi_mpc_get_access.vi”. 



 

Figure 0-6: VI for releasing the exclusive access to the GOLPI. It accepts  

Example of usage of the multi-process GOLPI is shown in Figure 0-7. The “GOLPI” variable reference 
is obtained from somewhere (typically from the TWM measurement session “session”). The exclusive 
access is gained, the GOLPI commands are executed and the exclusive access is released again. 

 

Figure 0-7: Accessing GOLPI in TWM tool. Before any operation with GOLPI instance, user must obtain the exclusive 
access. Follow the operations with GOLPI. When done, the GOLPI instance must be released. 

1.5 Control and data acquisition module 
The Control and acquisition module consists of two sub-modules: (i) Control (user interface GUI), (ii) 
Acquisition.  

This module controls and run the data acquisition by managing initial settings of the sampling 
process, call to specific instrument drivers through an abstraction layer and handles the acquisition 
of data from the ADCs, while ensuring storage of the acquired data into the file system.  

The controlled of the acquisition process is based on parameters set by the user.  Parameters are set 
prior to data acquisition. Important parameters are filenames, sampling frequency, length of 
sampling sequence and repetitions. When first called, the module will evaluate the settings, and for 
certain parameters, the will be prompted with a GUI for confirmation.   

During the acquisition, the module updates the values that is visible for the user in the Main window, 
such as status, the sampling progress, and update of the trace-view and FFT-view if applicable. Finally 
the data is collected from the instruments and stored to the file system as defined by the 
parameters.  



 

Figure 0-8: The top-level of this module: Call to the user panel for parameter setting, before Data Acquisition. The 
acquisition stars by call to the Meas Asyncronious start, which start the main acquisition in a separate process. 

 

1.5.1 Control module 
The Control submodule is a set of subroutines that let user set up the sampling environment and 
controls the acquisition proses. It also performs validity-check of the parameters before the data 
acquisition starts, and updates  

Part of the control is the user interface. It can be called separately or as part of the start of 
acquisition. When the acquisition has been selected, a validity-check is done by the control module, 
and if it finds any issue, the user will be prompted with the GUI for user confirmation.  

The acquisition will be performed based on the settings set in the “Meas Config Panel”.   

 

The submodules for the control are: 

• “ADC Config Panel”, where specification of digitizer type and related parameters are set, and  
• “Meas Panel”  for the acquisition the, which are the interface where device none-specific 

parameters are set. Here things like filename and algorithm selection can be done as well.  



Certain parameters are relevant for each specific sample run, and in the main data acquisition these 
parameters are is set in the “Meas Panel”   

Meas Panel: 

Parameters for sampling and storage is set here, as well as selection of post processing algorithm.  
The inputs ensure the instrument drivers can be initiated correctly and data is stored at appropriate 
locations. 

The Acquisition is set up by the “Set Measurement” or “Start” option on the front panel. 

lvprog\measure\Meas Config Panel.vi 
 

 

Figure 0-9: Invoking of the user panel for setting the data acquisition parameters. This is called before the Meas 
Asynchronous start, which start the main acquisition 

 

Throughout the data acquisition-loop, the front display, data for the View Record and the View FFT is 
updated with current data. This is done through the “GUI Update Wave” and the “GUI Update FFT”. 
These two vi’s are called in the acquisition subroutines. (Yellow colour VI-icons) 

         

 

  



1.5.2 Acquisition module 
The acquisition module runs in a separate process (see Figure 0-1).  

The “main measurement loop” is where the system is set up for data acquisition, and where the 
system is cleaned up and closed after the sampling is finished. 

 

Figure 0-10: MeasMain (details removed for clarity) The overall sequence of the acquisition process. The steps are in 
short; Initiate, Measure, Close/Reset. 

For this module, the following four functions are involved: 

• Initialize status fields in the mail GUI  
• Initialize digitizer (instrument) 
• Call to the main measurement loop (where sampling is done) 
• Close digitizer v. channels 
• Reset digitizer 

         

               

 

Data acquisition: 

The active data acquisition is done as a subsequence of the “main measurement loop”.  

The VI “Meas Loop Sequence” is the outer loop, to accommodate for repetitions. 

The steps are in short: 

• Set the sampling parameters to the devises 
• Open the file system for data storage to File 
• Take One record of data from the ADC (data acquisition 
• Store data to file system 



• Update views on the Main GUI 
• (pipe data to the DSP-algorithm) 

 

 

Figure 0-11: Meas Loop Sequence. Outer loop of the data acquisition sequence 

Inner loop: Data acquisition. “measure\Meas Single Record.vi” 

The core of the data acquisition module is found in this VI.  The main task of this VI is to get data 
from instrument and pipe it into the data stream to the next level, the storage and processing.  In 
addition it do the time critical initiation of the hardware.  

Overview of main steps taken by this VI: 

 Get the ADC- cofig. (from the control module)  
 Opens the MatLab data stream 
 Initiate ADC 
 Open data stream for the result. 
 (Fast-loop for repeated sampling series  

o Fatch data from instrument 
o and write the data to Data stream 

 Clean-up ADC after sampling 
 Close the Data stream 

 

Figure 0-12: Meas Single Record: The inner loop of the Data Acquisition sequence. 

                           

             



            

       

  

 

 

1.5.2.1 Modular driver design 
The project objectives call for a modular driver concept. The key idea is the Acquisition module does 
not access the drivers of the particular instruments directly, because each digitizer requires 
completely different approach. Therefore the TWM tool would have to use different structure to 
work with different digitizers. So it was decided to insert a command translation layer in between the 
acquisition module and the drivers of physical instruments. This layer was called virtual digitizer. All 
HW specific function calls of each digitizer are translated to a universal format and merged into a few 
basic VI functions which are, for the acquisition module, identic for any digitizer no matter how 
different is the HW control implementation inside. The basic block diagram of the TWM in current 
version is shown in Figure 0-13. 

 

Figure 0-13: Block diagram of TWM Virtual drivers. 

 



 

Figure 0-14: Virtual digitizer driver structure and data flow. Green: virtual driver functions; Red: TWM acquisition 
module; White: Instrument specific part. 

 

Detailed view on the driver structure and its usage in the TWM acquisition module is shown in Figure 
0-14. The virtual driver functions are shown in green colour. It was decided the driver should not 
directly write the sample data file, because whenever format of the data changes, each driver would 
have a different implementation. That is not effective and clean solution. The amount of data in the 
streaming mode can easily exceeds memory limit, which is just around 1 GB for the 32bit LabVIEW, 
so the driver cannot simply collect the sample data and then send them to TWM acquisition module 
at once for saving. Therefore, a rather complex solution capable of runtime storage of sample data 
based on the background digitizing process(es) was developed. Thanks to the acquisition in the 
separate process(es) the main fetch loop is non-blocking. Fetching and storing of the sample data 
runs continuously, so just a limited memory buffers are needed. The acquisition module can easily 
refresh sampling status and terminate it at any point even if the HW drivers do not allow that directly 
(e.g. by killing the process(es)). Furthermore, the execution priority of the digitizing process(es) was 
increased. This way the digitizing runs unaffected by the workload of rest of the application. That 
may be crucial for the time critical 3458A streaming mode and for high speed streaming from the 
NI 5922 cards. The throughput was tested and the limiting factor was HDD, which limited the write 



speed to some 120 Mbytes/s. However, as will be shown in the following chapters, the drivers for 
other, simpler digitizers do not need to use such a complex structure.  

1.5.2.2 Virtual driver functions structure 
Following chapters describes particular functions of the virtual digitizer, describes their inputs and 
outputs, behaviour and also explains where and when are they called by the TWM acquisition 
module. 

To implement a new driver one must adapt and merge the low level instrument driver functions so 
they principally fit into the functions below (resp. the green coloured blocks in Figure 0-14). Note 
there are also a few more functions that need to be implemented apart from the functions shown in 
the Figure 0-14.  

The virtual driver is a just a wrapper layer that translates the standardized inputs and outputs to the 
particular instrument drivers. See example for “Setup channels” for DMM 3458A driver: 

 

Each of the following functions contains the case selectors with one item per digitizer “type”. Each 
function extracts the session related to the particular digitizer (“3458A” in the example) from the 
virtual digitizer “adc session”, it executes the function(s) of the instrument driver(s) and it stores the 
modified session “3458A” back to the virtual digitizer “adc session”. Other functions are made the 
same way. The only exception is the configuration panel for the digitizers which will be described 
separately.  

There are just a few steps to be done to integrate new drivers. First, change the type definition of 
“type” in the “adc session”, i.e. add a new item to “type” Enum. The item names should be chosen 
clearly, such as “NI 9234”. Next, a session cluster (or class) of the new driver must added to the “adc 
session”. This object can contain absolutely anything. It depends on the driver. Finally, each of the 
case selectors in each of the virtual driver functions must be extended by the new page, e.g. 



“NI 9234” and the driver functions must be inserted. TWM will then automatically allow to use the 
new digitizer without any changes in the rest of the application.  

1.5.2.2.1 ADC session 
“ADC session” is a virtual digitizer cluster that has to contain all sub-sessions of the particular 
digitizers. It also contains several common items. Details on content of this cluster at the time of 
writing this document (may extend in future): 

Name Type Meaning 
niScope cluster 5922 (niScope) driver session. 
3458A cluster Virtual DMM 3458A driver session. 
Dsdll cluster DirectSound driver session. 
simadc cluster Simulated ADC session. 
* * New driver sessions… 

Type enum Selected digitizer type 
{‘niScope’,’3548A’,’DirectSound’,’dummy’}. 

modified? bool Flag set by TWM to “True” when HW setup was modified. 

channel idn str 1D array of string Array of last queried identifier strings of particular channels 
of selected digitizer. One item per channel. 

aux instr idn str 1D array of string Array of last queried identifiers of auxiliary HW related to 
the selected digitizer (e.g.: AWG, Counter, etc.). 

 

Adding a new digitizer means the session of the digitizer driver will be added and “type” enum will be 
redefined to contain unique identification name of a new digitizer. The rest must not be changed. 

 

1.5.2.3 Virtual driver function reference manual 

1.5.2.3.1 Initialize driver (optional) 
Some digitizer drivers may need to perform some step to make them usable. This optional function is 
called once automatically on the TWM startup.  

 

Function inputs and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 
 

1.5.2.3.2 Enumerate devices (optional) 
This optional function is called manually in the digitizer selection panel. It was added, because some 
of the drivers may require additional manual refresh of the installed HW configuration. It was used 
for the DirectSound drivers where it enumerates available input capture devices.  



 

Input and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 
capture devices 
ring ref in reference 

to ring 
Reference to a ring control to be filled with 
enumerated devices. 

 

1.5.2.3.3 Initialize digitizer (required) 
It is first function called by TWM before new measurement. Its purpose is to initialize and identify all 
HW components related to the digitizer. E.g.: for virtual digitizer based on the 3458A multimeters it is 
one or more 3548A units and optionally a pulse generator AWG or a counter. The function also sets 
the parameters which are not expected to change during the whole measurement session, such as 
mode of sampling (“DC V”, “DSDC”, …), coupling, etc. It always returns unique and clear identifiers of 
the channels and auxiliary HW. 

 

Inputs and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 

reset? in bool Force reset of the instruments? Similar to standard 
instrument driver template. 

channel idn 
strings out 1D array 

of strings Queried identifiers for each virtual channel.  

aux intr. idn 
strings out 1D array 

of strings 
Queried identifiers of additional HW related to the 
selected digitizer.  

all instruments 
idn strings out 1D array 

of strings All identifiers merged to one array. 

 

1.5.2.3.4 Setup channels (required) 
This function is called once per group of measurements. I.e. it is not recalled before each repetition 
cycle so the driver must be prepared to perform several acquisition without recalling this. It will 
configure the virtual channels of and the virtual digitizer to the desired setup prior the acquisition. 



This function sets sampling rate, sample count, aperture, triggers, ranges, etc. The digitizer shall be 
ready to start acquisition after this function call. 

 

Input and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 
fs [Hz] in double Desired sampling rate in [Hz]. 
samples count in double Desired samples count per channel. 
trigger in cluster Trigger setup cluster. 

aperture [s] in double Desired aperture of the ADC. Note this parameter will be 
ignored if digitizer does not support it. 

 

Cluster “trigger” contains following items: 

Name Type Meaning 

source Enum 

Trigger type {‘Immediate’ – start immediately; ‘External’ – 
from external trigger input; ‘Level’ – input channel level 
trigger}. Note the ‘Level’ is always related to the first 
channel. This may be eventually configured in driver specific 
configuration panel. 

slope Enum Trigger slope sensitivity for “Level” and “External” triggers 
{“POS” or “NEG”}. 

coupling Enum 
Coupling of the “Level” trigger {“DC” or “AC”}. Eventual 
other configurations must be handled by the driver itself 
and set from configuration panel. 

level [V] Double Trigger level for “Level” mode in Volts. 
 

1.5.2.3.5 Initiate sampling (required) 
This is when TWM is ready to digitize. This function should immediately initiate the sampling (arm 
the virtual digitizer) and return. The actual operation depends on the implementation of the “Fetch 
samples” function (see below). 

 

Input and outputs: 

Name Direction Type Meaning 



adc session in In cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in In cluster Error signal. 
error out out cluster Error signal. 
 

1.5.2.3.6 Fetch samples (required) 
The function is called in the loop to fetch the sample data and status. Purpose of this function is to 
obtain the acquired data from the virtual digitizer channels. There are three basic options for its 
implementation depending on the particular digitizer:  

(i) Blocking function that won’t return until all samples were acquired. This is suitable for 
smaller counts of samples, however the cost for this solution is TWM cannot query state 
of the sampling and the termination by STOP command is harder to implement (or 
impossible) as well as timeout. This is typical way the most of the instrument drivers are 
made. 

(ii) Asynchronous function that just checks weather the sampling is done and eventually 
returns available samples block. When not done, it will just return status if possible. This 
way the sampling loop is not blocked and the TWM can update sampling status and 
easily terminate sampling by STOP command. This mode is however not possible for all 
digitizers as some of them do not allow asynchronous operation. 

(iii) Complex implementation shown in the Figure 0-14 where the “Initiate sampling” just 
starts the “digitizer process(es)” and the “Fetch samples” periodically checks, weather 
there are a new sample data available. If so, it returns block of samples that is stored to 
the file by “Store samples”. It is hard to implement, but it seems to be very useful for the 
3458A streaming driver and for high speed PXI 5922 driver because the process(es) may 
be run with increased priority. This should prevent overflows for high speed digitizing or 
time critical digitizing (3548A). 

Note this function always receives LV reference to a global Boolean variable “STOP”. This reference 
can be used as an alternative way to terminate the sampling (default is “Abort Digitizing Process”). 
Note the driver function must not change the values of “STOP”. It is just for reading. 

 

Input and outputs: 

Name Direction Type Meaning 
adc session in in Cluster Virtual digitizer session. 
adc session out out Cluster “adc session in” copy with eventual changes. 
error in in Cluster Error signal. 
error out out Cluster Error signal. 

stop ref in Reference 
to bool 

Reference to the global Boolean variable STOP. The 
variable becomes “True” when stop is requested. The 
function cannot modify the flag. 

data packet Out Cluster Cluster with block of sample data. 
aux data Out Cluster Cluster of additional data returned by the driver.  



fetching done? Out Bool This flag must be “True” when sampling is finished or it 
was terminated. 

 

The “data packet” is a cluster containing following: 

Name Type Meaning 
int32 2D array of int32 2D array of samples. One column per channel. 
int16 2D array of int16 2D array of samples. One column per channel.  

is int16? Bool Defines which of the “int16” or “int32” is valid. The other 
must be empty. 

all done? Bool “True” when all samples were fetched. 
sampling? Bool “True” when digitizing is in progress. 

valid? Bool 
“True” means the other items are valid. Otherwise they are 
ignored by acquisition module. This may indicate the 
iteration of fetching was returned no data. 

instr buffer [%] Double Indicates utilisation of the digitizer buffer. This is e.g. used 
for the 5922. May be “NaN” is not supported. 

queue buffer [%] Double Utilisation of the data queue between digitizing process(es) 
and fetch function. May be “NaN” if not supported. 

offset [smpl] Int64 Offset of the first sample in the block from start of the 
acquisition. Counting from zero. 

count [smpl] Int64 Samples count in the sample array per channel. May be 
zero if no data fetched. 

 

The “aux data” content: 

Name Type Meaning 

T smpl 1D array int64 Indices of the samples to which the temperature readings 
are aligned. 

T [deg C] 2D array of 
doubles 

2D array of temperature readings during the acquisition. 
One column per channel, one row per item of “T smpl”. 
Note this is optional and the arrays may be empty. 

Time stamp [s] Double 
Relative timestamps returned by the channels. These are 
relative time intervals in Seconds of the first sample of each 
channel related to some common event, e.g. reset of 5922. 

Gain [V] 1D array of 
doubles 

Gain factors to get voltage from the integers in data 
packets. One per channel. 

Offset [V] 1D array of 
doubles 

DC offset to add to real samples to get actual voltage. One 
per channel. 
u(k) = gain*y(k) + offset; u – voltage, y – integer sample  

Increment [s] Double Sampling period [s]. 

Valid? Bool 

“True” means the other items are valid. Otherwise they are 
ignored by acquisition module. Note the driver may return 
this cluster valid any time during the sampling. Whenever 
the flag is set, acquisition module remembers the data. So it 
does not matter if it returns at the start or the end of 
sampling. 

 



1.5.2.3.7 Cleanup session (required) 
This function should terminate everything that may have left in the memory/system after the 
“Initiate sampling” function, e.g.: the processes, queues, shared memory, etc. This is called by TWM 
every time to cleanup after acquisition (even terminated or failed). 

 

Input and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 
 

1.5.2.3.8 Close digitizer (required) 
This function is called after acquisitions are done even in case of error or termination. This function 
should put all affected instruments to some default safe state and close opened sessions to them. It 
is strongly recommended to put the instruments to such a state so they cannot be damaged. E.g.: not 
50 Ω input, higher range, etc. Also it is good practice to turn all instruments programmatically to the 
local control as some of them may not even have “Local” button. 

 

Input and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 

Reset to preset 
mode (True) In Bool 

“True” means the function should reset the digitizer 
instruments to some safe default state before closing the 
handles. 

 

1.5.2.3.9 Abort Digitizing Process (recommended) 
This function is called in the fetch loop when GUI signalizes STOP command. Implementation 
depends on the “Fetch samples” variant. For variant (i) it cannot be used as the function is blocking. 
For the other two variants, it may either send the signal to the digitizer if it supports such a function, 
or it can kill the digitizing process(es) (variant iii). Naturally “Fetch samples” must be able to 
recognize the digitizing process(es) were terminated and also signalize sampling done so acquisition 
module will leave the fetching loop.  



 

Inputs and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 
Send abort 
signal? In Bool Sends abort only when “True”. Nothing happens when 

“False”.  
 

1.5.2.3.10 Get Digitizer Capabilities (required) 
This function returns capabilities of the selected digitizer. It is called at various places of the TWM. It 
should NOT touch the HW by itself! All HW related information shall be obtained in the “Initialize 
digitizer” function and kept in the digitizer session even after “Close digitizer” is called! TWM decides 
by itself when to call “Initialize Digitizer”+”Close digitizer” to refresh the parameters so the time 
consuming querying is not performed when it is not needed. The capabilities are used to limit the 
GUI entries and disable the unsupported features. The driver should just query the information from 
the session and return the desired capabilities.  

 

Inputs and outputs: 

Name Direction Type Meaning 
adc session in in cluster Virtual digitizer session. 
adc session out out cluster “adc session in” copy with eventual changes. 
error in in cluster Error signal. 
error out out cluster Error signal. 

Initialize HW? In Bool 
Forces new query of the instruments capabilities. 
Otherwise uses last queried capabilities from digitizer 
session (fast mode). 

Parameters In Cluster Cluster of some parameters that may be needed to 
obtain the capabilities. 

Capabilities Out Cluster Cluster of obtained capabilities. 
 

Cluster “parameters” contains following: 

Name Type Meaning 
fs [Hz] Double Current sampling rate in [Hz 
aperture [s] Double Aperture time [s]. 
 



Cluster “capabilities” contains following: 

Name Type Meaning 
Max samples 
count Int64 Maximum number of samples to be acquired in one record. 

Max fs [Hz] 
Min fs [Hz] Double Maximum and minimum sampling rate [Hz]. 

Ts step [s] Double Available sampling period step in which the rates can be set. 

fs step [Hz] Double Available sampling rate step that can be set by digitizer. Note either 
“Ts” of “fs” step can be used. The other must be “NaN”. 

Smpl rate step 
mode Enum Mode of sampling rate selection {‘const period’,’const frequency’}. 

Selects which of the “Ts” of “fs” is valid. 
Max Ts [s] 
Min Ts [s] Double Maximum and minimum sampling period [s]. 

Aper min [s] 
Aper max [s] Double Minimum and maximum apertures [s]. Or “NaN” if not supported. 

Channels count Double Number of virtual channels available configured.  
Allows 
streaming? Bool Set when the driver supports two modes: memory buffer and direct 

streaming. If it supports just one, it is ignored. 
Streaming on? Bool Streaming mode configured. 
Has level trig? Bool Driver/digitizer supports level triggering. 
Has ext trig? Bool Driver/digitizer supports external input triggering. 
Has aperture? Bool Driver/digitizer supports setting the appertures. 
Has ranges? Bool Driver/digitizer can set multiple ranges. 
Has 
temperature? Bool Driver/digitizer supports temperature measurement. 

Has temperature 
log? Bool Driver/digitizer supports temperature logging during acquisition. 

Has selfcal? Bool Driver/digitizer supports self-calibration routine. 
 

1.5.2.3.11 Get Current Setup (required) 
Similar to the “Get Digitizer Capabilities”. It should not touch the HW. It should return last used 
configuration from the digitizer session. This function returns two groups of parameters. First, the 
standard ones, e.g.: sampling rate, samples count, trigger, etc. Next, the specific for given digitizer.  

 

Function inputs and outputs: 

Name Direction Type Meaning 
adc session in In cluster Virtual digitizer session. 
adc session out Out cluster “adc session in” copy with eventual changes. 
error in In cluster Error signal. 
error out Out cluster Error signal. 
Common 
attributes Out Cluster Standard attributes/parameters of the digitizer. 

Device specific Out 1D array 1D array of clusters containing: 



attributes of clusters “name” – attribute name string 
“value” – 1D array of test string with formatted value 
“is constant per group” – when trues, the attribute is 
stored just once for measurement group. Otherwise 
it is stored for each record. 
Note the value may be numeric. In that case format 
the number to decimal, floating or exponential 
format with decimal dot “.”. These attributes are not 
used by TWM anywhere, they are just store as 
additional items to the measurement session header. 
They will appear there as “name:: value” or as: 
#startmatrix:: name 
  value(1); value(2);… 
#endmatrix:: name 
Note the “aperture” value is one of these attributes. 

 

Cluster “common attributes” contains following items: 

Name Type Meaning 
Count [smpl] Int64 Configured number of samples to acquire per channel. 
Channels count Int32 Number of configured channels in the virtual digitizer. 
fs [Hz] Double Configured sampling rate in [Hz]. 

Ranges [V] 1D array of 
doubles 

Array of set range values as defined by the particular 
drivers. One value per virtual channel of the digitizer. 

Trigger Cluster Trigger setup, see above. 
Ext freq. locked? Bool Status of PLL lock if supported. 
Streaming on? Bool Set when streaming is enabled. 

Is int16? Bool Set when data is/will be in int16 format for the configured 
sampling setup. 

Bitres Int32 Actual bit resolution (how many bits are utilised in the 
integer). 

 

1.5.2.3.12 GUI Get Info (recommended) 
This function takes digitizer session and returns a brief description of the digitizer which is displayed 
in the digitizer panel. It must not touch the HW. It may contain e.g. trigger connection notes (3458A 
mode). It is called in the digitizer configuration panel. 

 

Inputs and outputs: 

Name Direction Type Meaning 
adc session in In cluster Virtual digitizer session. 
Configuration 
description Out String String with brief description of the current 

configuration of the digitizer. 
 



1.5.2.3.13 Selfcal Virtual Channels (optional) 
This function should initiate self-calibration of the digitizer HW components if such function is 
supported. It is synchronous operation. TWM is blocked during its execution.  

 

Inputs and outputs: 

Name Direction Type Meaning 
adc session in In cluster Virtual digitizer session. 
adc session out Out cluster “adc session in” copy with eventual changes. 
error in In cluster Error signal. 
error out Out cluster Error signal. 
 

1.5.2.3.14 Digitizer configuration panel (required) 
The digitizers in the TWM must be configured before they can be used. The configuration is done in a 
panel “Digitizer configuration”. The panel contains page control with one page per digitizer: 

 

A new page must be added to implement a new digitizer. The order of the pages must match the 
order in the “type” Enum in the “adc session”. The new page can contain any configuration needed 
for the new digitizer. On initialization the current settings from the digitizer sessions must be set to 
the panel items related to the particular digitizers: 



 

Accordingly before exiting the panel, the new settings must be stored back to the “adc session”: 

 



The panel itself is based on the Event structure. Most of the events are common for all digitizers and 
thus doesn’t need to be modified. However, each digitizer may have some special requirements 
which must be placed in the new event. Example for DirectSound driver: 

 

1.6 Processing module 
Processing module consists of two components: (i) LabVIEW VI’s and (ii) Matlab/Octave functions. 
The Matlab functions are common for the LabWindows/CVI version of the tool and they can be used 
standalone without TWM. 

1.6.1 Processing module – LabVIEW component 
The LV component of the processing module consists of several parts: (i) Processing configuration 
GUI; (ii) Algorithm execution routines; (iii) Results viewer/interpreter; (iv) Batch processing GUI. The 
TWM allows two modes of processing. The first and simplistic is an execution of user entered m-code 
as it is and simple display of eventual calculated results. This is intended just for debugging purposes 
and simple tests and it won’t be described to details. The relevant mode is execution of a QWTB 
algorithm [3]. In this mode, the TWM interacts on runtime with the QWTB m-functions via the GOLPI 
interface [4] to obtain the information about available algorithms or execute them or to retrieve the 
calculated results. Logical flow of the processing module in runtime processing during measurements 
is shown in Figure 0-15. Note the Matlab does not return any data back to the LV (apart from error 
messages). The results are stored back to the measurement folder and queried asynchronously by 
the TWM tool whenever requested. 

 

Figure 0-15: Processing module logic flow. Note the grey blocks are not part of the processing module.  

1.6.1.1 Processing configuration GUI 
The processing GUI is a panel dedicated to configuration of the new calculation. It is shared for the 
runtime processing of the sampled data and also for the batch processing of previously sampled 
data. It has several sub-functions. 



 

Figure 0-16: GUI panel of the QWTB processing setup. 

First, it queries the list of available algorithms by calling an m-function “qwtb_load_algorithms.m” via 
the VI “Meas Proc QWTB Load List of Algorithm.vi”. The obtained algorithms are displayed in the 
selector. The function also applies the filtering of the algorithms based on the content of file 
“qwtb_list.info”. This is needed to prevent user of TWM from selecting QWTB algorithms that are not 
compatible with TWM.  

 

Figure 0-17: Loader VI of the QWTB algorithms. “session” is the measurement session of TWM and the “menu ring” is a 
reference to the control that receives the list of available algorithms. 

Next, the GUI allows to select the algorithm from the list and query its options and description. This is 
done by calling the m-function “qwtb_load_algorithm.m” via the VI “Meas Proc QWTB Load 
Algorithm.vi”. The GUI will obtain the standard QWTB info entries, such as the full name, brief 
description and notes. It will also query the TWM specific flags which tell TWM if the algorithm can 
accept differential input sensors, if it is algorithm with multiple inputs (e.g. power) and if it can 
process multiple records at once. It also queries available modes of uncertainty calculation so user 
can select only the valid ones. The function also queries the list of algorithm’s user parameters and 
displays them in the parameter matrix.  



 

Figure 0-18: Loader VI of the QWTB algorithm. The “session” is the measurement session of TWM, “qwtb alg selector” is 
the ref. to the ring with loaded and selected algorithm IDs. The “qwtb unc mode” and “param table” are references to 

the uncertainty mode selector ring and to the user parameters table. 

Finally, when user confirms the calculation, the GUI will parse the eventual user parameters and 
stores them together with the selections made to a processing session. It does not store anything to 
the processing related file “qwtb.info” [7]! The processing setup is stored at the time of digitizing or 
before batch processing starts. 

1.6.1.2 Algorithm execution routines 
There are several processing related routines. First, the processing setup generated by the processing 
GUI must be stored to the processing info file “qwtb.info” in the measurement folder [7]. This is done 
by VI function “Meas Proc QWTB Write Algorithm Processing Header.vi”. The VI is called just once 
before the sequence of measurements as the processing setup is the same for all acquisitions. 

 

Figure 0-19: Writer of QWTB processing setup. The "sequence item" contains the measurement root path. The 
"processing setup" is the setup obtained from processing setup GUI. 

Next routine is the VI “Meas Process Record.vi”. This VI will initiate the QWTB algorithm execution by 
calling m-function “qwtb_exec_algorithm.m”. The VI does not transfer anything but measurement 
folder and record index to the Matlab. The rest of the configuration is obtained by the m-function 
from “qwtb.info”. Note the VI also does not query anything back from the Matlab (apart from 
eventual error). The results are stored to the measurement folder and this VI just notifies the other 
process of TWM that new result is available. The VI is equipped by the timeout capability, which 
allows to limit the processing time, but it will work only for GNU Octave. No way of terminating the 
Matlab Script Node was found yet. When the timeout ran out for GNU Octave, the calculation 
actually still runs. Just the VI returns and error. So the user may need to manually restart the GOLPI 
before next operations. 

 

Figure 0-20: Data processing executer. The “session” is measurement session of TWM, the “sequence item” contains 
measurement root path and index of current record. The “result string label” is not part of QWTB processing (it is used 

only for the raw m-code processing). 



The “new result” notification VI “Meas Proc QWTB Notify Result Queue.vi” can be (is) called from 
anywhere from the TWM. It internally uses queue to which it stores the configuration flags that 
defines what the results viewer will do. Note it cannot be used before initiating the queue by VI 
“Meas Proc QWTB Initialize Result Queue.vi”!  

 

Figure 0-21: New result notifier VI. The "session" is optional. The "plot setup" takes place only when the “show graph” is 
set. The “new session” must be set when new meas. folder is selected, the “new result” must be set when new record 

was processed or reprocessed, the “show graph” will display result as graph instead as a matrix. When no flag is set, the 
TWM will just refresh current result view. 

1.6.1.3 Results viewer/interpreter 
The calculated results are displayed by the results viewer process. It is a standalone process VI that is 
initiated from the main process of TWM whenever the “new result” queue contains the refresh 
notification. The asynchronous execution in another process was chosen because the process of 
retrieving the results and formatting the data take considerable time, so the synchronous execution 
in the GUI process would lockup the main panel GUI.  However, the asynchronous execution just 
unloads the main panel, but the results viewer still uses the GOLPI to communicate with the Matlab. 
Therefore, when the refresh is initiated during the measurement, the algorithm execution routines 
(see above) and the results viewer shares the same Matlab instance, so only one of those two can 
operate at the time. This will result in delays in the processing or results viewing when the operations 
take longer time. However, the solution is in fact mostly effective, because the results viewing 
happens when the digitizers are acquiring new record, so there are no collisions. 

 

Figure 0-22: Results viewer panel. 



The periodic checking of the “new result” and eventual execution of the main viewer process is done 
in the timeout event of TWM main panel GUI by VI “Meas Proc QWTB Update Result View.vi”. The VI 
checks execution state of the previous call of the results viewer process (ref. to the process is 
entered from the local variable “qwtb view VI ref”). If the process is finished, it will check the state of 
the “new result” notifier and eventually initiate the results viewer process. The reference to the new 
process is returned and stored back to the “qwtb view VI ref”. The VI may or may not return the 
“qwtb view” depending on the execution state of the process itself. When it just returned, the TWM 
stores the viewer session “qwtb view” back to the local variable. Note the “qwtb view VI ref” must 
not be lost, otherwise there will be memory leakage of unclosed references! 

 

Figure 0-23: TWM results viewer process executer (located in main panel GUI event structure in the timeout event). Note 
the “qwtb view VI ref” must be preserved in the local variable otherwise there would be memory leakage! This VI may or 

may not return the “qwtb view” depending on the state of execution of the results viewer process.  

The results viewer process itself is VI “Meas Proc QWTB Update Result View Process.vi”. The VI 
accepts references to all the results viewing GUI controls, e.g. the selectors of the algorithm, 
quantities, etc. Is starts by obtaining the information about the selected measurement, i.e. it queries 
list of available results for current (or selected) correction folder. This is done by call of m-function 
“qwtb_get_results_info.m”. It fills in the GUI controls: list of processed algorithms; list of quantities 
for selected algorithm; list of channels/phases. Next, the VI takes the result view selector value and 
uses them as parameters for m-function call “qwtb_get_results.m” for matrix display or 
“qwtb_plot_results.m” for graph display. When successful, the VI will update the results matrix in the 
main panel. 

 

Figure 0-24: Results viewer VI. Note the "session in" and "QWTB result session out" were intededly converted to 
"variable" data type, which is much easier to handle when using assycnhronou function calls. 

Eventual export of the results table to the Excel sheet is performed in the main panel of TWM in the 
event structure. The exporting and other functions are available in right click popup menu of the 
results matrix. 

TODO: condensed report export. 

1.6.1.4 Batch processing GUI 
TWM enables either runtime processing of the records or a batch processing. The batch processing is 
performed in the panel “Meas Batch Proc QWTB panel.vi”, which is shown in Figure 0-26. The logic 
flow of the batch processor is shown in Figure 0-25. The panel allows user to select measurement 
session and select the particular records to be processed. User must also set the configuration of the 
processing. This configuration will invoke the “Processing configuration GUI” as was described above. 



When the configuration is confirmed, the new calculation setup is store to the “qwtb.info” by VI call 
“Meas Proc QWTB Write Algorithm Processing Header.vi”. Next use may initiate the processing, 
which will call the “Meas Process Record.vi” for each record. The panel has no other relevant sub-VIs. 

 

Figure 0-25: Logical flow of the TWM’s batch processing of the previously recorder measurements. 

 

Figure 0-26: Batch processing panel. 

1.6.2 Processing module – Matlab component 
The Matlab component of the processing module is standalone set of m-functions. They are 
executed from TWM via the GOLPI interface [4]. From typical user point of view the only four 
functions are to be called directly: 

1) “qwtb_exec_algorithm.m” for execution of the processing on the measurement session. 
2) “qwtb_get_results_info.m” to get information about available results in the session. 
3) “qwtb_get_results.m” to load and format results for displaying in matrix form. 
4) “qwtb_plot_result.m” to load and display results as a graph. 

The rest of the m-functions are either sub-functions of abovementioned or special functions that are 
rarely used directly. Only the top level functions will be described in following sections. 



1.6.2.1 qwtb_exec_algorithm.m 
Function “qwtb_exec_algorithm.m” is top level function for execution of the algorithm on the TWM 
data. This is the function to be called when new processing is to be initiated. It performs all steps 
needed for the processing: 

(i) Load record(s) and correction files from the measurement folder using function 
“tpq_load_record.m”. 

(ii) Loads processing setup from “qwtb.info” [7] from measurement session. 
(iii) Executes the selected algorithm on each channel or phase of the measurement session. 
(iv) Stores the results to the measurement folder using function “qwtb_store_results.m”. 
(v) Updates content of the “results.info” [7] so it contains information about the newly 

processed algorithm. 

The details on the function call are shown in Table 0-1.  

Table 0-1: Processing module m-function “qwtb_exec_algorithm.m” – execution of the TWM algorithm on the TWM 
data. 

Function prototype: 
qwtb_exec_algorithm(meas_file, calc_unc, is_last_avg, avg_id, 
group_id) 
 
Parameters: 
Name Data type Description 
meas_file Char string Full path to the measurement session header INFO file 

“…/session.info”. 
calc_unc Char string 

 
Override uncertainty calculation mode from “qwtb.info”. Allowable 
values: ‘’ (default), ‘none’, ‘guf’ or ‘mcm’ (see QWTB documentation 
[3]). 

is_last_avg Bool Flag that should be set to confirm all records for the calculation are 
in available. If not set and algorithm requires multiple records at 
once, the function will do nothing (no error). 

avg_id Integer Optional index (1, 2, 3, …) of the repetition cycle of the 
measurement session to process. The function processes the last 
available record if value is zero. 

group_id Integer Optional index (1, 2, 3, …) of the group index of the measurement 
session. Zero value selects the last available group. 

 
Returns values: 
None. Function can only generate errors. 
 

1.6.2.2 qwtb_get_results_info.m 
This m-function will retrieve selected information on the available results in the selected 
measurement folder. This function is mainly intended for the interface to the TWM, so the return 
values are formatted in a way that is easily readable by GOLPI [4]. The vectors of strings and matrices 
are returned as a CSV style strings. E.g. the Matlab table “A = [‘code’,’55’;’msg’,’Hallo’]” will be 
returned as a string: “code\t55\nmsg\tHallo”. Note the column and row separators may vary. The 
function prototype and return values are listed in the Table 0-2. 



Table 0-2: Processing module m-function “qwtb_get_results_info.m” – query of the TWM results information. 

Function prototype: 
[res_files, res_exist, alg_list, chn_list, var_names] 
 = qwtb_get_results_info(meas_root, alg_id) 
 
Parameters: 
Name Data type Description 
meas_root Char string Path to the measurement session folder (no session file name!). 
alg_id Char string QWTB algorithm ID string, e.g. “TWM-PWRTDI”. Leave empty to 

load the last available results from the “results.info” [7]. 
 
Returns values: 
Name Data type Description 
res_files Char string CSV string with the list of available results files for the given 

measurement folder and algorithm. The list is separated by ‘\t’. 
res_exist Bool Non-zero of the result(s) exists.  
alg_list Char string CSV string with the list of algorithm IDs that were processed in the 

measurement folder. The list is separated by ‘\t’. 
chn_list Char string CSV string with the list of available channel/phase names for the 

selected algorithm. The list is 2D matrix with ‘,’ as column separator 
and ‘;’ as a row separator. Each row contains one channel name 
(e.g. “u1,i1” for single input algorithms) or single phase name (e.g. 
“L1” for dual input algs.).  

var_names Char string CSV string with the list of available result quantities for given 
algorithm. The list is separated by ‘\t’. 

 
Errors: 
The function won’t return error when “meas_root” contains no results (yet). It will return error only 
if the desired “alg_id” is not found or the data in the measurement folder are inconsistent. 
 

1.6.2.3 qwtb_get_results.m 
This m-function will retrieve and format the selected results data in to a text matrix. The function 
performs following operations: 

(i) Selects the result from the measurement folder and loads its data using function 
“qwtb_load_results.m”. The function also enables selection of the quantities to be 
loaded and optional averaging of multiple results. 

(ii) Formats the quantities to a matrix form in one of the supported view modes (scalars, 
vectors, matrices). 

The function plots the data in two ways. When all quantities are scalar and “cfg.max_dim” is set to 
scalar, it will show the quantities development in time, i.e. their values for each repetition cycle of 
the measurement. If the “cfg.max_dim” is set to vector mode, the vector(s) of the quantities will be 
shown horizontally. Note the function limits maximum allowable number of element to be displayed 
by option “cfg.max_array”, because displaying 1000 values would be extremely slow. If the amount 
of data exceeds the “cfg.max_array”, the quantity in the table “txt” will contain “only graph” string 
instead of the data to indicate user may display the long vector as plot by function 
“qwtb_plot_result.m”. 



Note this function is primarily intended for linking to the TWM tool, so it returns the text matrices in 
a CSV string format which is easier to handle by LV and GOLPI interface [4]. E.g. the Matlab 2D cell-
array “A = {‘code’,’55’;’msg’,’Hallo’}” will be returned as a string: “code\t55\nmsg\tHallo”. Note the 
column and row separators may vary for various returned variables. The function prototype and 
return values are listed in the Table 0-3.  

Table 0-3: Processing module m-function “qwtb_get_results.m” – query of the TWM results as a text matrix. 

Function prototype: 
[txt, desc, var_names, chn_index] 
 = qwtb_get_results(meas_root, res_id, alg_id, cfg, var_list) 
 
Parameters: 
Name Data type Description 
meas_root Char string Path to the measurement session folder (no session file name!). 
res_id Integer Index of result(s) to load. Use -1 to load last available result, >1 to 

select particular result or 0 to average all results. 
alg_id Char string QWTB algorithm ID string, e.g. “TWM-PWRTDI”. Leave empty to 

load the last available results from the “results.info” [7]. 
cfg Structure Configuration structure for the results formatting. All elements are 

optional. 
cfg.max_dim = maximum shown dimension of quantity 

{0: scalars, 1: vectors, 2: matrices} 
cfg.max_array = Maximum size of vector to be shown in 

the matrix 
cfg.unc_mode = Uncertainty display mode {0: none, 1: 

val±unc, 2: alternating rows 
val,unc,val,unc,…} 

cfg.group_mode = Grouping of the multichannel results {0: 
sort by channels, 1: sort by quantities} 

cfg.phi_mode = phase display mode {0: ±pi, 1: 0-2pi, 2: 
±180°, 3: 0-360°} 

cfg.phi_ref_chn = non-zero index of reference channel to 
use as a phase reference, use zero to 
disable interchannel phase display 

var_list Cell array 
of char 
string 

List of quantity names to load and display. Empty list will load all 
quantities. The list may contains only the names obtained by the 
“qwtb_get_results_info.m” function. 

 
Returns values: 
Name Data type Description 
txt Char string CSV string with 2D matrix of the formatted result values with ‘\t’ as 

column separator and ‘\n’ as row separator. First row contain table 
headers, first column contains quantity names with channel/phase 
indices. The rest of table are formatted quantity values.  

desc Char string CSV string with 1D matrix of text descriptions of each data row of 
the “txt” matrix. The list is separated by ‘\t’. 

var_names Char string CSV string with 1D matrix of short quantity name for each data row 
of the “txt” matrix. The list is separated by ‘\t’. 

chn_index 1D array of 
integers 

Vector of channel/phase index for each row of “txt”. 



 
Errors: 
The function should throw an error only if the results data is inconsistent, which should not happen. 
 

1.6.2.4 qwtb_plot_result.m 
This function is equivalent of the “qwtb_get_results.m”, except it will display the one selected 
quantity as a plot, instead of in the matrix. The plot can be made from a single record or average of 
records. If the scalar quantities are selected, the function will plot quantity value for each repetition 
cycle of the measurement. If the vector quantities are selected, the function plots the vector. Matrix 
quantities are not supported. The detail on the function are shown in Table 0-4. 

Table 0-4: Processing module m-function “qwtb_plot_result.m” – plotting selected quantity of the TWM results. 

Function prototype: 
[] = qwtb_plot_result(meas_root, res_id, alg_id, chn_id, cfg, 
var_name, plot_cfg) 
 
Parameters: 
Name Data type Description 
meas_root Char string Path to the measurement session folder (no session file name!). 
res_id Integer Index of result(s) to load. Use -1 to load last available result, >0 to 

select particular result or 0 to average all results. 
Alg_id Char string QWTB algorithm ID string, e.g. “TWM-PWRTDI”. Leave empty to 

load the last available results from the “results.info” [7]. 
chn_id Integer Index of channel/phase to plot. Use zero to plot all channels/phases 

in one plot. 
Cfg Structure Configuration structure for the results formatting. All elements are 

optional. 
cfg.max_dim = maximum shown dimension of quantity 

{0: scalars, 1: vectors, 2: matrices} 
cfg.phi_mode = phase display mode {0: ±pi, 1: 0-2pi, 2: 

±180°, 3: 0-360°} 
cfg.phi_ref_chn = non-zero index of reference channel to 

use as a phase reference, use zero to 
disable interchannel phase display 

var_name Char string Name of the quantity to plot. The name must exist in the results file. 
plot_cfg Structure plot_cfg.xlog = Non-zero to enable x-axis log scale. 

Plot_cfg.ylog = Non-zero to enable y-axis log scale. 
Plot_cfg.box = Show plot box (see Matlab “plot” doc). 
Plot_cfg.grid = Show plot grid (see Matlab “plot” doc). 
Plot_cfg.legend = Legend display position. (see Matlab 

“plot” doc for position names). Leave 
empty to disable plot. 

 
Returns values: 
None. 
 
Errors: 
The function should throw an error only if the results data is inconsistent, which should not happen. 
 



1.6.2.5 qwtb_load_algorithms.m 
This function is used by the TWM to get list of available QWTB algorithms compatible with TWM. The 
list is created from the “qwtb_list.info” file. The function is intended for the linking to the TWM via 
the GOLPI, so the returned arrays of strings were converted to the CSV strings, which are easier to 
handle. E.g. the Matlab 2D cell-array “A = {‘code’,’55’;’msg’,’Hallo’}” will be returned as a string: 
“code\t55\nmsg\tHallo”. Details on the function are shown in Table 0-5. 

Table 0-5: Processing module m-function “qwtb_load_algorithms.m” – obtains list of the available TWM algorithms. 

Function prototype: 
[ids, names] = qwtb_load_algorithms(list_file) 
 
Parameters: 
Name Data type Description 
list_file Char string Path to the INFO-strings [2] file “qwtb_list.info” with the list of 

supported TWM algorithms and their configuration. 
 
Returns values: 
Name Data type Description 
ids Char string CSV string of the QWTB algorithm ID strings. The list is separated by 

the ‘\t’. 
names Char string CSV string of the QWTB algorithm names. The list is separated by 

the ‘\t’. 
 
Errors: 
The function may throw an error if inconsistent data are in the “qwtb_list.info” or in the QWTB 
algorithm wrappers. 
 

1.6.2.6 qwtb_load_algorithm.m 
This function is used by TWM to obtain information about the selected algorithm. It is intended for 
the linking to the TWM via the GOLPI, so the returned arrays of strings were converted to the CSV 
strings, which are easier to handle. E.g. the Matlab 2D cell-array “A = {‘code’,’55’;’msg’,’Hallo’}” will 
be returned as a string: “code\t55\nmsg\tHallo”. Details are shown in Table 0-6. 

Table 0-6: Processing module m-function “qwtb_load_algorithm.m” – obtains algorithm parameters. 

Function prototype: 
[alginfo, ptab, input_params, is_multi_inp, is_diff, has_ui, 
unc_guf, unc_mcm] = qwtb_load_algorithm(alg_id) 
 
Parameters: 
Name Data type Description 
alg_id Char string QWTB algorithm ID [3] of the algorithm to select. 
 
Returns values: 
Name Data type Description 
alginfo Char string QWTB algorithm info as returned by QWTB [3]. 
Ptab Char string CSV string with the 1D matrix of algorithm parameters. Rows are 

separated by the ‘\n’.  
input_params Char string CSV string with the 1D matrix of algorithm’s parameter names. 



Rows are separated by the ‘\n’. 
is_multi_inp Bool Flag that indicates the algorithm accepts multiple records at once. 
Is_diff Bool Flag indicates the algorithm supports differential inputs. 
has_ui Bool Flag that indicates the algorithm requires two inputs (voltage and 

current). 
unc_guf Bool Flag that indicates the algorithm supports GUF uncertainty 

calculation. 
unc_mcm Bool Flag that indicates the algorithm supports Monte Carlo 

uncertainty. 
 
Errors: 
The function may throw an error if inconsistent data in the QWTB algorithm wrappers. 
 

1.6.2.7 tpq_load_record.m 
This function is main loader function for the TWM measurement. It performs following steps: 

(i) Loads common information from the measurement session INFO file [7]. 
(ii) Loads the selected records of from the measurement folder. 
(iii) Loads transducer corrections by function “correction_load_transducer.m”. 
(iv) Loads digitizer corrections by function “correction_load_digitizer.m”. 

The function is capable to load one or more records from given measurement group. It returns one 
data structure with all data and parsed corrections. The details on the function call are shown in 
Table 0-7. 

Table 0-7: Processing module m-function “tpq_load_record.m” – load TWM measurement. 

Function prototype: 
function [data] = tpq_load_record(header, group_id, repetition_id, 
data_ofs, data_lim) 
 
Parameters: 
Name Data type Description 
header Char string Path to the measurement session file “./session.info” [7]. 
group_id Integer Default value -1 will select last available group. Value >0 will 

select particular measurement group. 
repetition_id Integer Index of the repetition cycle (record) to load. Value -1 will load 

the last record, value 0 will load all records, value >0 will load 
particular record. 

data_ofs Integer Optional sample-offset of the loader. Non-zero value means the 
loader will skip “data_ofs” samples of the record(s). Note it will 
adapt the timestamp value(s) accordingly, so the timestamp(s) 
still applies to the first sample. 

data_lim Integer Non-zero value limits the amount of loaded samples per channel 
to “data_lim” samples. 

 
Returns values: 
Name Data type Description 
data Structure Structure containing the loaded sample data and corrections, see 

Table 0-8 for details. 



 
Errors: 
The function will throw an error if the record selection is invalid, or if there are inconsistent data 
anywhere in the measurement session or the correction data.  

 

Table 0-8: Processing module m-function “tpq_load_record.m” – output structure data. 

Name Data type Description 
group_count Integer Total measurement groups count in the measurement 

session. 
repetitions_count Integer Total repetition cycles (records) in the selected group. 
channels_count Integer Digitizer channels in the measurement session. 
is_temperature Bool Temperature measurement available. 
sample_count Integer Samples count per channel in the loaded record(s). 
y Double Sample data, one row per channel. If multiple records are 

loaded, the records are merged horizontally: 
chn1,chn2, chn1,chn2, … 

timestamp Double Relative timestamp(s) in seconds for the first sample(s) of 
each record in the “y”.  

Ts Double Sampling period in seconds. 
corr Structure Data structure containing the loaded corrections: 

corr.phase_idx = phase index for each digitizer 
channel which is used to define 
which channels belongs 
together for multi-input 
algorithms 

corr.dig = digitizer corrections structure 
corr.tran{} = cell array of the transducer 

corrections, one for each 
transducer 
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Report describing the open 
software tool TPQA developed in 
LabWindows/CVI environment  

 

A2.4.5 - TPQA structure 
 

 

This report also covers the following activities: 

A2.1.1 – Flow chart of TPQA tool 

A2.1.2 – Extension for a multiple digitizers 

A2.1.4 – Concept of the LV to Octave/Matlab interface 

A2.2.2 – Integration of the drivers to the virtual driver 

A2.4.2 – TPQA tool structure 

A2.4.3 – Acquisition and control module description 

A2.4.4 – Processing module description 

A3.3.3 – Guidance on integration of new HW  

  



15RPT04 TracePQM  Page 2 of 34 

CONTENTS  
A2.4.5 - TPQA structure ........................................................................................................... 1 

1.1 References ................................................................................................................. 3 

1.2 Overview .................................................................................................................... 4 

1.3 TPQA Flow Chart ....................................................................................................... 5 

1.4 TPQA structure in LabWindows/CVI Environment ..................................................... 5 

1.5 Control and data acquisition module .......................................................................... 7 

1.5.1 Control module ................................................................................................... 8 

1.5.2 Acquisition module .............................................................................................. 9 

1.5.2.1 Function prototype for LF DMMs ............................................................... 10 

1.5.2.2 Acquisition module for wideband  digitizers ............................................... 15 

1.5.2.3 Modular driver design ................................................................................ 15 

1.5.2.4 Virtual driver functions structure ................................................................ 16 

1.5.2.4.1 ADC configuration and selection ............................................................ 17 

1.5.2.5 Virtual driver function reference manual .................................................... 18 

1.5.2.5.1 Sessions Configuration .......................................................................... 19 

1.5.2.5.2 Sessions Initialization ............................................................................. 20 

1.5.2.5.3 Trigger Configuration .............................................................................. 21 

1.5.2.5.4 Synchronization session ......................................................................... 22 

1.5.2.5.5 Initiate sampling ..................................................................................... 22 

1.5.2.5.6 Fetch and store matrix sampled data ..................................................... 23 

1.5.2.5.7 Function’s list .......................................................................................... 24 

1.5.2.5.8 Abort Digitizing Process ......................................................................... 26 

1.5.2.5.9 Clean-up sessions .................................................................................. 27 

1.6 Processing module .................................................................................................. 27 

1.6.1 Processing module – LabWindows/CVI environment ....................................... 27 

1.6.2 Post - processing module – Matlab environment .............................................. 32 

1.6.2.1 Post - processing module in TPQA ........................................................... 32 

 

  



15RPT04 TracePQM Page 3 of 34 

1.1 References 
[1] TPQA tool, url: https://github.com/btrinchera/TPQA 

[2] TracePQM, url: https://www.euramet.org/research-innovation/search-research-
projects/details/?page%5BeurametCtcp_project_listResearch%5D=2&eurametCtcp_project_sho
w%5Bproject%5D=1407&eurametCtcp_project%5Bback%5D=450&cHash=69ff67e07cffde667e3
4af3a7ef39df3 

[3] TWM tool, url: https://github.com/smaslan/TWM 

[4] INFO-STRINGS, url: https://github.com/KaeroDot/info-strings 

[5] QWTB toolbox, url: https://qwtb.github.io/qwtb/ 

[6] GOLPI interface, url: https://github.com/KaeroDot/GOLPI 

[7] A232 Algorithms exchange format, url: 

https://github.com/smaslan/TWM/tree/master/doc/A232 Algorithm Exchange Format.docx 

[8] A231 Correction Files Reference Manual, url: 

https://github.com/smaslan/TWM/tree/master/doc/A231 Correction Files Reference 
Manual.docx 

[9] A231 Data Exchange Format, url: 

https://github.com/smaslan/TWM/tree/master/doc/A231 Data exchange format and file 
formats.docx 

[10] A331 Installation and Guide_TPQA, url: 

https://github.com/btrinchera/TPQA/blob/master/doc/A331%20Installation%20and%20Guide_
TPQA.docx 

[11] A245 TWM structure, url: 
https://github.com/smaslan/TWM/blob/master/doc/A245%20TWM%20structure.docx 

[12] A214 Interfacing LabWindows/CVI to Matlab, url: 
https://github.com/btrinchera/TPQA/blob/master/doc/A214-
%20LabWidowsCVI_to_Matlab_Interface.docx 

https://github.com/btrinchera/TPQA
https://www.euramet.org/research-innovation/search-research-projects/details/?page%5BeurametCtcp_project_listResearch%5D=2&eurametCtcp_project_show%5Bproject%5D=1407&eurametCtcp_project%5Bback%5D=450&cHash=69ff67e07cffde667e34af3a7ef39df3
https://www.euramet.org/research-innovation/search-research-projects/details/?page%5BeurametCtcp_project_listResearch%5D=2&eurametCtcp_project_show%5Bproject%5D=1407&eurametCtcp_project%5Bback%5D=450&cHash=69ff67e07cffde667e34af3a7ef39df3
https://www.euramet.org/research-innovation/search-research-projects/details/?page%5BeurametCtcp_project_listResearch%5D=2&eurametCtcp_project_show%5Bproject%5D=1407&eurametCtcp_project%5Bback%5D=450&cHash=69ff67e07cffde667e34af3a7ef39df3
https://www.euramet.org/research-innovation/search-research-projects/details/?page%5BeurametCtcp_project_listResearch%5D=2&eurametCtcp_project_show%5Bproject%5D=1407&eurametCtcp_project%5Bback%5D=450&cHash=69ff67e07cffde667e34af3a7ef39df3
https://github.com/smaslan/TWM
https://github.com/KaeroDot/info-strings
https://qwtb.github.io/qwtb/
https://github.com/KaeroDot/GOLPI
https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithm%20Exchange%20Format.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Correction%20Files%20Reference%20Manual.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Data%20exchange%20format%20and%20file%20formats.docx
https://github.com/smaslan/TWM/tree/master/doc/A231%20Data%20exchange%20format%20and%20file%20formats.docx
https://github.com/btrinchera/TPQA/blob/master/doc/A331%20Installation%20and%20Guide_TPQA.docx
https://github.com/btrinchera/TPQA/blob/master/doc/A331%20Installation%20and%20Guide_TPQA.docx
https://github.com/smaslan/TWM/blob/master/doc/A245%20TWM%20structure.docx
https://github.com/btrinchera/TPQA/blob/master/doc/A214-%20LabWidowsCVI_to_Matlab_Interface.docx
https://github.com/btrinchera/TPQA/blob/master/doc/A214-%20LabWidowsCVI_to_Matlab_Interface.docx


15RPT04 TracePQM  Page 4 of 34 

1.2 Overview 

TPQA [1] is an open source project that is being developed in scope of EMPIR project 

TracePQM [2] using the Labwindows/CVI environment. Together with TWM [3] open source 

project, developed in LabVIEW environment, furnish an open platform to help unexperienced 

NMIs to speed up in the developing of state-of-the-art standards suitable to perform traceable 

measurements of electric power and power quality parameters using the concept of waveform 

digitizing. It is not restricted to power and PQ area but it allows recording and processing of 

pure and complex voltage and current waveforms.  

The TPQA is organized according to the flow chart diagram shown in Figure 0-1. The whole 

TPQA application consists of two parts: 

(i) LabWindows modules (Control and Processing) that controls the instruments, initiates 

processing and serves as a user interface implemented into a suitable User Interface 

Guide (GUI). 

 

(ii) Calculation or Processing module based on the Matlab which performs the processing of 

post-processing and formatting the data for displaying and generation of the measurement 

report (summary of the results formatted in compact form), as well as a second processing 

module based on CVI algorithms for quasi real-time data processing. Note that CVI 

algorithms are not validated yet and serve only to establish a first processing approach on 

sampled data. 

Further characteristic of the post-processing module can be found in [4] and [7].  

The control module consists in several separated processes. Main functions are inserted in 

TPQA.C source file and declared in TPQA.h file. 
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1.3 TPQA Flow Chart 
 

The flow chart of TPQA is shown in Figure 0-1. The meaning of main blocks is reported below. 
 

  

Figure 0.1: TPQA flow chart structure. The coloured frames are used to distinguish the process in which 
the tasks run.  

 

- Configuration and ADCs setup: main process for the configuration of digitizers using 
specific drivers:  
- NI PXI 5922 digitizers using niScope and niTLCK drivers provided by National 

Instruments. All drivers must be installed on the PC. 
- DMMs HP 3458 configured as sampling multimeters (NI-GPIB driver must be 

installed). 
- New GUI Parameters: allows to set new digitizing parameters during the sampling 

process. 
- Acquisition and storage: enables the possibility of storing sampled and/or 

processed data through  a mechanism based on multiple flags. 
- CVI quasi real time-processing: CVI algorithms for data processing during the 

acquisition process.      
- Writing QWTB proc.: creates measurement process, based on TWM concept of post-

processing data [1], and does following: loads correction files; builds measurement 
sequence; stores acquired data and generates suitable files for further processing. 

- TPQA (QWTB batch processing): enables GUI panel for post-processing of data and 
does following: loads selected algorithm’s configuration from QWTB alg. database file. 

- QWTB execution: when requested by user, initiates processing of all acquired data 
stored in the folder. 

- Results available and Results viewer process: initiates refresh of the results view 
according to the current setup and algorithm selection.  
   

1.4 TPQA structure in LabWindows/CVI Environment 

There are two possibilities to test the functionality of TPQA open source project: 
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i) Developer mode: first the user launches the LabWindows/CVI environment and then opens 
the file  TPQA.CWS. The user can run the project and interact with it through the user 
interface guide that appears. This mode is useful for expert users, which intend to modify 
or add new functionality or routines into the project. 

ii) User mode: After compiling the entire project the executable file TPQA_32bit.exe will be 
generated.  The user could compile the project also for 64-bit distribution. In this case the 
environment must be switched to 64 bit distribution and libgen.lib (64-bit ) and libmx64.lib 
(64-bit) matlab *.dll files  must be inserted into the Libraries folder of the project. 

 
Note that, since the project includes a communication with the Matlab engine the necessary 
*.dlls cannot be freely distributed. However the user must install Matlab distribution on local 
PC and must check careful the path of octprog folder within the config.ini file. By default the 
path is: twm_octave_folder = C:\TPQA\TPQA_1.1.0\octprog. 
The internal hierarchy structure of the TPQA in NI-LabWindows\CVI environment is shown in 
Figure 0.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.2: Internal TPQA structure shown in Labwindows/CVI. 

 
The project files are arranged as follows: 
 
a) Source Files, containing: 
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- TPQA.c contains the main and auxiliary functions which allow the various parts of the 
software to communicate together. Within the same function it was inserted also the 
communication routine for DMMs LF digitizing multimeters. 

- GenericMultiDevice……. .c contains specific sub-routines to communicate with single or 
multiple NI-5922 digitizers based on the use of NI-Digitizers and NI-TCLK synchronization 
driver. That is a single file that implement everything we need to communicate with 
wideband digitizers.   

- Matlab Module folder, (developed by CMI) composed by several additional files suitable 
to establish a communication protocol with the Matlab engine for data processing using 
QWTB toolbox: Matlab Module.c, Mlink.c, qwtb_alg_select.c, Processing_panel.c, 
Twm_matlab.c and Utils.c 
 

b) User Interface Files:  containing all the GUI developed to communicate with the macro 
setups.   

- TPQA.uir which contains the main panel and additional GUIs for control and data 
acquisition modules. 

- Matlab Module Folder, (developed by CMI) composed by several GUI, as: Matlab 
Module.uir, processing_panel.uir and qwtb_alg_select.uir. 
 

c)  Instrument Files, containing:  
- niScope.fp to communicate with wideband NI 5922 digitizers. For further information about 

the installation instructions and features please NI-SCOPE Readme guide provided by NI.  
- niModInstCustCtrl.fp to search for already connected instruments. 

 
d) Include Files: (*.h files contains the prototype of *.c functions and variables definition as 

well as CVI callback function used by GUIs) 
- TPQA.h  
- GenericMultiDeviceConfiguredAcquisitionTClk.h 
- Tpqa_globals.h 
- Matlab Mudule directory, which containd the following files: engine.h, Matlab Module.h, 

matlab_globals.h, matrix.h, mlink.h, processing_panel.h, qwtb_alg_select.h, tmwtypes.h, 
twm_matlab.h and utils.h.   

 
   

1.5 Control and data acquisition module 

This module consists of two sub-modules: (i) Control (user interface GUI), (ii) Acquisition. It is 
invoked starting from the main routine, where the basic prototype is shown in Figure 0.3. 
Consequently an unified control and data acquisition GUI appears.    
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Figure 0.3: Main routine on TPQA 

 

1.5.1 Control module 

The control module is inserted within the main GUI and handles the macro setups developed 
for traceable power and PQ parameter measurements.  It handles four main functions. 
Figure 0.3 shows the control module on TPQA developed in LabWindows/CVI.  

 

 

Each button is linked to specific callback functions, generated automatically by the software 
environment,  as follows: 

- Main four control button for specific routines entitled LF-Setup DMMs, QWTB Processing, 
CVI Data Processing and HW Corrections . The callback function for each button are 
shown in Figure 0.5.  
 

Figure 0.4: Control module of TPQA open source 
project. 
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Figure 0.5: Callback functions for each command button. 

 

1.5.2 Acquisition module 

Acquisition module runs in a separate process (see Figure 0-1). It is composed of two 
separated GUIs developed for handling of wideband digitizers as PXI-5922 and low speed but 
high precision DMMs such as HP3458A. Each GUI controls the acquisition parameters of the 
digitizers. The instrument driver is integrated into the upper level software to create a virtual 
generic digitizer by means of two control modules.  
Figure 0.6 shows the control modules for wideband and LF digitizers. A detailed description of 
all TPQA control buttons and parameters are given in A331 [8]. 
 
 

  
 

Figure 0.6: Control module for wideband and DMMs  digitizers.  
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1.5.2.1 Function prototype for LF DMMs 

The Figure 0.7 shows the function prototype for handling DMMs connected via GPIB IEEE4882 
using VISA drivers. To allow the acquisition of sampled data with DMMs digitizers, in the *.c 
file of TPQA there are several functions, some of these are CVICALLBACK functions. These 
are functions that start to run when their correspondent button is pressed (see [8]). In Figure 
0.8 is possible to see a prototype of the functions set to acquire with DMMs digitizers.  

 

 

 

 

Figure 0.8: Set of Callback functions developed for handling DMMs HP3458A. 

 
To understand better the task that each function does, below will be given a detailed 
description of them:  

Figure 0.7: Function prototype for handling HP3458A configured as high-precision 
digitizers. 
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- CfgChannelDMM: is a function that is callback when the user presses the button to configure 
the channels for the acquisition, in fact this function allows to configure the digitizer 
channels; 

 

Figure 0.9: Function used to configure the acquisition channels 

 

- CVICALLBACK Sampling_DMMs: is a function that is callback when the user presses 
the button to start the sampling of data. Within it is employed the function that processes 
the sampling data ( SamplingDMM function). 
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                 Figure 0.10: CVICALLBACK Sampling_DMMs function.   

- Sampling function:  is the function that deals with to implement the sampling routine, 
it is shown in the Figure 0.11.  

 

Figure 0.11: SamplingDMM function.  
 

- CVICALLBACK CLOSE_DP: is a function that is callback when the user presses the 
button to close the sampled data processing session. Using this function, how is possible 
to see in Figure 0.12, the panel where are processed the sampled data and any of its child 
panels are removed from memory and them off to the screen.  



15RPT04 TracePQM  Page 13 of 34 

 

Figure 0.12: CVICALLBACK CLOSE_DP function.  

- CVICALLBACK TEST_DMMs: is a function that is callback when the user presses the 
button to Test DMMs digitizers. This function is mainly constituted to three steps: 
 
• Open Visa session: used to establish a communication session with a device and 

creates an Instrument Handle that is used by all other VISA operations to perform 
operations on that session. 

• Call device clear: used to send a command to clear the device. For GPIB devices, this 
operation sends a GPIB clear.  

• Set Visa: used to set a specified attribute for the given object. 

The function is shown in Figure 0.13.  
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Figure 0.13: CVICALLBACK TEST_DMMs function.  

 

- CVICALLBACK Quit_DMM: is a function that is callback when the user presses the 
button to close the LF DMMs digitizers session. Using this function, how is possible to 
see in Figure 0.14, the LF DMMs digitizers panel and any of its child panels are removed 
from memory and them off to the screen. 
 

 
Figure 0.14: CVICALLBACK Quit_DMM function. 

 

 



15RPT04 TracePQM  Page 15 of 34 

1.5.2.2 Acquisition module for wideband  digitizers 
 
The acquisition module for WB digitizers starts with the  following callback ,which implements 
the Continuous Acquisition button, as shown in Figure 0.15 

  

 
 
 
 
int CVICALLBACK Acquisition (int panel, int control, int event, void *callbackData, 
int eventData1, int eventData2)  
 

Within this callbak  a generic function suitable to perform an acquisition is called:                 
niScope_GenericMultiDeviceConfiguredAcquisitionTClk(meas_fld); 

Its description is done as part of the virtual driver functions structure given in 1.5.2.4 and in 
the following sections. 

 

1.5.2.3 Modular driver design 

The concept of the modular driver design has been extensively described in TWM. The key 
idea is the Acquisition module that does not access the drivers of the particular instruments 
directly, because each digitizer requires completely different approach. So it was decided to 
insert a command translation layer between the acquisition module and the drivers of 
physical instruments. This layer was called Virtual digitizer. All HW specific function calls of 
each digitizer are translated to a universal format and merged into a few basic VI functions 
which are, for the acquisition module, identic for any digitizer no matter how different is the 
HW control implementation inside. The basic block diagram of the TPQA in current version is 
shown in Figure 0.16. 

Figure 0.15: GUI for acquisition module for WB digitizers. 
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Figure 0.16: Virtual digitizer driver structure and data flow for TPQA open software tool project. 

1.5.2.4 Virtual driver functions structure 

The concept of the virtual driver has been developed in order to avoid the direct access directly 
the drivers of particular instruments.  
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It was verified that accessing directly of instrument drivers requires a different approach for 
each particular ADC board. It was substituted such an approach with a different mechanism 
which uses a *.c function translator able to interact as an interface layer between the data 
acquisition module and the physical instrument drivers. These *.c functions represent the 
virtual driver. 

In TPQA open software project such an interface is composed for a specific board, e.g. PXI- 
NI-5922 digitizer, by two files a (*.c file and a header (*.h)) file: 
 
- GenericMultiDeviceConfiguredAcquisitionTClk.c; 

- GenericMultiDeviceConfiguredAcquisitionTClk.h. 

Only some remarks to take into account regard to the data storing of sampled data when the 
digitizer runs continually. The solution adopted aims to collect the sampled data and then 
stored them directly on hard drive while the ADCs runs continually. Furthermore, the TPQA 
program allows to the user to change the parameters in real time. For this reason the 
developed TPQA code has some difference with the TWM structure.  

In Figure 0.17 is shown the *.h file (header file) employed as translator for the virtual driver 
used with ni.Scope driver.  
 

 

 

1.5.2.4.1 ADC configuration and selection 

ADC configuration and selection is handled by two separated process: i) for wideband and 

future digitizers; ii) for LF DMMs digitizers. This option i) is governed by a switch/case 

statement, which is inserted into the following function:  

int CVICALLBACK Acquisition (int panel, int control, int event, void *callbackData, 

int eventData1, int eventData2)  

Figure 0.17 Header structure of the translator used with ni.scope driver. 
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Figure 0.17 shows an implementation of the ADC selection by the switch/case process for WB 

digitizers. 

 
Figure 0.18: Routine for WB digitizers selection 

Instead, the process for LF DMMs digitizer selection is the same of that described in 1.5.2.1. 

 

1.5.2.5 Virtual driver function reference manual 

Within a virtual driver are employed several functions. An example of virtual driver developed 
for use with ni.Scope driver is shown in Figure 0.17.  
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Figure 0.19 Prototype of *.c translator developed for LabWindows/CVI to be used with niscope driver.  

 

The virtual driver namely Vi_Status _Vi_FUNC ni 
Scope_GenericMultiDeviceConfiguredAcquisitionTClk (char*meas_folder) is mainly 
composed by functions that deal with of: 

• Session configuration; 

• Sessions initialization; 

• Synchronization of session; 

• Trigger configuration; 

• Initiate sampling; 

• Fetch and store matrix sampled data; 

• Abort digitizing process; 

• Clean-up sessions. 

 In the following sessions will be explain the tasks of these several functions. 

 

1.5.2.5.1 Sessions Configuration 

 The session configuration is mainly composed by these functions:  

• GetParametersFromGUI (): a prototype is shown in Figure 0.18 and the function has 
as input variables all parameters shown in TPQA panel. Through this function the 
algorithm read  all parameters insert by user;  
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Figure 0.20: GetParametersFromGUI function.  

 

• GetCorrectionsFromGUI(), this function is shown in Figure 0.19 and through it away 
the algorithm read the hardware corrections uploaded by user; 

 
Figure 0.21: GetCorrectionsFromGUI function. 

 

• twm_write_session (), for the generation of measurement session for use with QWTB 
post-processing tool.  

 

1.5.2.5.2 Sessions Initialization 

It is first function called by TPQA before new measurement when NI-PXI5922 digitizers are 

used. Its purpose is to initialize and identify all HW components related to WB digitizer. The 

functions performs the following steps: 

- gets comma-separated list of resource names from GUI, 

- parses the list 

- initializes resources and 

- reports initialized sessions and the number of sessions. 

Figure 0.22 shows the implementation of the function 
 
ViStatus _initSessions(ViUInt32* numberOfSessions, ViSession sessions[])  
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Figure 0.22: Implementation of the_initSessions in TPQA. 

 

1.5.2.5.3 Trigger Configuration 

To configure common properties of trigger are employed the following functions, where all 

the properties are set by means of control parameters inserted by the user.  

- handleNIScopeErr(niScope_ConfigureTriggerEdge(vi, triggerSource, triggerLevel,                                                          

triggerSlope, triggerCoupling, triggerHoldoff, triggerDelay))); 

- handleNIScopeErr(niScope_ConfigureTriggerHysteresis(vi, triggerSource, 

triggerLevel, hysteresis, triggerSlope, triggerCoupling, triggerHoldoff,triggerDelay)); 

- handleNIScopeErr(niScope_ConfigureTriggerDigital (vi, triggerSource, triggerSlope,                                                  

triggerHoldoff, triggerDelay)); 

- handleNIScopeErr(niScope_ConfigureTriggerWindow (vi, triggerSource, 

lowWindowLevel, highWindowLevel, windowMode,triggerCoupling, 

triggerHoldoff,triggerDelay)); 

- handleNIScopeErr(niScope_ConfigureTriggerImmediate (vi)). 

The first four functions listed above are used to configure common properties for analog 

triggering, while the last one is used when the user insert an immediate trigger. In Figure 0.20 

is shown the mode to configure the trigger type using a switch/case statement.  
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Figure 0.23: Trigger configuration code. 

 

1.5.2.5.4 Synchronization session 

The functions used to synchronize the devices are (see Figure 0.21):  

(i) handleNITClkErr(niTClk_ConfigureForHomogeneousTriggers(numberOfSessions, 
sessions)), this function is used to configure the attributes for the reference clocks, start 
triggers, reference triggers, script triggers, and pause triggers.  

(ii) handleNITClkErr(niTClk_Synchronize(numberOfSessions, sessions, 0.0)), this function 
synchronizes the TClk signals on the given sessions.  

 

Figure 0.24: Synchronization session code.   

 

1.5.2.5.5 Initiate sampling 

The function used to initiate sampling is called 

handleNITClkErr(niTClk_Initiate(numberOfSessions, sessions)) and it is the function that 

initiates the acquisition or generation session. An implementation of this function is shown in 

Figure 0.25.  
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Figure 0.25: Initiate sampling function. 

 

1.5.2.5.6 Fetch and store matrix sampled data 

HandleNIScopeErr(_fetchAndPlotData(sessions[i], channelName, timeout)) is function used 
to fetch the acquisition data and then plot them. In the code this function has been used as 
shown in the figure below.         

 

Figure 0.26: Fetch and store sampled data.  

The final aim of this function is to plot the sampled data (waveforms acquired). To reach this 
goal there is a function recalled in the fetchAndPlotData() function, that allows to have an 
interface between the virtual digitizers (GenericMultiDeviceConfiguredAcquisitionTClk() 
function) and main callback function (CVICALLBACK Acquisition(int panel, int control, int 
event, void *callbackData, int eventData1, int eventData2)). This function just described is 
PlotWfms (ViInt32 numWaveforms,ViReal64 *waveformPtr,struct niScope_wfmInfo 
*wfmInfoPtr,ViReal64 actualSampleRate,ViInt32 actualRecordLength,ViReal64 
**SaveWavPtr, ViInt32 Size, ViInt32 Sessions){) function and it is employed within the primary 
TPQA software open tool, that is TPQA.c file.  

In this file the virtual drive goes in action when the CVICALLBACK Acquisition() function is 
recalled. This happens when the user through the TPQA main panel presses the CONTINOUS 
ACQUISITION button.  

After that the acquisition session is concluded, all the sampled data and main ADC acquisition 
parameters are passed as arguments to PlotWfms () function, where its implementation  is 
shown in Figure 0.26. 
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Figure 0.27 PlotWfms function. 

 

The PlotWfms function is constituted from different input variables that will be described in the 
following: 

- ViInt32 numWaveforms: is the number of waveforms recorded by acquisition units. In 
particular the number is two if there is just one single board, instead the number becomes 
four when there are two boards and so on;  

- ViReal64 *waveformPtr:: variable used to allocated the information of the waveforms, for 
example the number of waveforms;  

- struct niScope_wfmInfo *wfmInfoPtr:: matrix (struct) that contains all values of waveforms 
recorded; 

- ViReal64 actualSampleRate: sample rate returned from the digitizer, i.e. the digitizer returns 
a value of sample rate that is closer to that to which it can work; 

- ViInt32 actualRecordLength: array returned from the digitizers that contains the length of 
recorded data;  

- ViReal64 **SaveWavPtr: mxn matrix containing the sampled data coming from all ADCs; 

- ViInt32 Size: number of ADC channels; 

- ViInt32 Sessions: number of ADC boards.  

 

With all information on virtual drive given in the Flow chart LabWindowsTM/CVI environment 
section, the users can to start to acquaint themselves with TPQA software open tool and, if 
they want, start to integrate new digitizers. 

 

1.5.2.5.7 Function’s list  
 
In the following section will be given a list of prototype functions explain in the chapters above. 
This list could be useful to user to better understand the LabWindows/CVI algorithms.  

GetParametersFromGUI: 

Class="Function" 
Prototype="int GetParametersFromGUI(char *channel, long 
*acquisitionType, double *verticalRange, double *verticalOffset, long 
*verticalCoupling, double *probeAttenuation, double *inputImpedance, 
double *maxInputFrequency, double *minSampleRate, long *minRecordLength, 
double *timeout, long *numRecords, double *refPos, long *triggerType, 
char *triggerSource, long *triggerCoupling, long *triggerSlope, double 
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*triggerLevel, double *triggerHoldoff, double *triggerDelay, long 
*windowMode, double *lowWindowLevel, double *highWindowLevel, double 
*hysteresis, long *fileFlag);" 
 

Acquisition: 
Class="Function" 
Prototype="int Acquisition(int panel, int control, int event, void 
*callbackData, int eventData1, int eventData2);" 
 
Quit_DMM: 
Class="Function" 
Prototype="int Quit_DMM(int panel, int control, int event, void 
*callbackData, int eventData1, int eventData2);" 
 

AUTOCAL_DMMs: 
Class="Function" 
Prototype="int AUTOCAL_DMMs(int panel, int control, int event, void 
*callbackData, int eventData1, int eventData2);" 
 
[TEST_DMMs] 
Class="Function" 
Prototype="int TEST_DMMs(int panel, int control, int event, void 
*callbackData, int eventData1, int eventData2);" 
 
[Sampling_DMMs] 
Class="Function" 
Prototype="int Sampling_DMMs(int panel, int control, int event, void 
*callbackData, int eventData1, int eventData2);" 
 
[CfgChannelDMM] 
Class="Function" 
Prototype="int CfgChannelDMM(unsigned long Inst_Handle, char 
*Master_Slave);" 
 
[SamplingDMM] 
Class="Function" 
Prototype="int SamplingDMM(unsigned long Inst_Handle, char 
*Master_Slave);" 
 
[CLOSE_DP] 
Class="Function" 
Prototype="int CLOSE_DP(int panel, int control, int event, void 
*callbackData, int eventData1, int eventData2);" 
 

[PlotWfms] 
Class="Function" 
Prototype="int PlotWfms(long numWaveforms, double *waveformPtr, struct 
niScope_wfmInfo *wfmInfoPtr, double actualSampleRate, long 
actualRecordLength, double **SaveWavPtr, long Size, long Sessions);" 
 
[_fetchAndPlotData] 
Class="Function" 
Prototype="long _fetchAndPlotData(unsigned long vi, char *channelName, 
double timeout);" 
 
[GetCorrectionsFromGUI] 
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Class="Function" 
Prototype="int GetCorrectionsFromGUI(int panel, TTWMssnInf *info);" 
 
[niScope_GenericMultiDeviceConfiguredAcquisitionTClk] 
Class="Function" 
Prototype="long niScope_GenericMultiDeviceConfiguredAcquisitionTClk(char 
*meas_folder);" 
 

 

1.5.2.5.8 Abort Digitizing Process 

The digitizing process is aborted by pressing the STOP button, which is linked to the following 

callback function, shown in Figure 0.27. 

 

 

This function changes the state of the variable stop from NISCOPE_VAL_FALSE to 

NISCOPE_VAL_TRUE. The state is processed by a second function, which process the 

events of the system or when the user presses the buttons. The state of the stop variable is 

passed to the while loop control flow, which executes repeatability the acquisition process,  

until its state doesn’t change.  

// Find out wether to stop or not 
int ProcessEvent (int *stopPtr) 
{ 
   *stopPtr = stop; 
   // Take care of any pending operations, like pressing the stop button 
   return ProcessSystemEvents(); 
} 

After pressing the STOP button the user can perform a new acquisition by pressing the 

Acquisition button.   

 

Figure 0.28: Stop function to abort the acquisition process. 
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1.5.2.5.9 Clean-up sessions 

The clean-up of all acquisition sessions is performed at the end of the entire acquisition 

process. This function terminates everything that may have left in the memory/system after the 

“Initiate sampling” function. This is called by TPQA every time to cleanup sessions when all 

data are fetched and memorized. An implementation prototype is shown in Figure 0.29.   

 

Figure 0.29: Clean-up of acquired sessions performed within the error handling routine. 

 

      

 

1.6 Processing module 

The processing module implemented within the TPQA open software project consists of two 
modules: (i) LabWindowsTM/CVI for quasi real-time elaboration of sampled data; (ii) QWTB 
and Matlab engine for post-processing of the sampled data. In [10] it is reported the description 
of the GUI interface that users can used to exploit both mechanisms employed for quasi real-
time approach or post processing and formatting of sampled data. The following paragraphs 
contain a description of the routines employed within the TPQA’s data processing modules. 

1.6.1 Processing module – LabWindows/CVI environment 

This processing module uses LabWindows/CVI native functions for on-line and fast data 

processing of sampled date. The GUI linked with this module is called by pressing CVI Data 
Processing from the main Acquisition and data Processing control panel.  Figure 0.30  reports 

the prototype of the callback function “Data_Processing()” and Figure 0.31 shows its relative 

user interface (GUI). 
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Figure 0.30: Callback function for CVI Data processing. 

 

 
Figure 0.31: GUI related ti CVI DataProcessing Callback 

 

The function related to the data elaboration is called every time by flagging on the check box 

“flag_DataProcess” positioned in the main control panel. An implementation of the callback 

process using DMMs or NI PXI5922 is shown in Figure 0.31.  

 
Figure 0.32: Example of DataElaboration callback for DMMs digitizers.   
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The declaration of the function DataElaboration() is as follows:   

int DataElaboration(double *diff_ADC1, double *diff_ADC2, ViReal64 actualSampleRate, 

ViInt32 actualRecordLength); 

where: *diff_ADC1, double *diff_ADC2 are pointer to arrays containing the sampled data; 

ViReal64 actualSampleRate reports the sampled rate of the digitizers and ViInt32 

actualRecordLength contains the length of the array returned by the digitizer. 

The implementation or its interface is reported in Figure 0.32. 
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Figure 0.33: Example of DataElaboration function 
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The native LabWindows/CVI functions implemented, belong to the class Measurements, which 

contains functions that perform the spectral measurements for a given signal. The functions 

prototype are: 

- AnalysisLibErrType SingleToneInfo (double Waveform[], ssize_t Waveform_Size, 
double Sample_Period_in_Seconds, SearchType *Search_Type, double *Frequency, 
double *Amplitude, double *Phase); which takes a real signal, finds the single tone with 

the highest amplitude or searches a specified frequency range, and returns the single tone 

frequency, amplitude, and phase. This function performs an analysis of a single tone signals 

expressed as shown in the following equation , where A, f, and φ are the 

amplitude, frequency, and phase of the tone signal, respectively, and Fs is the sample rate 

in samples per second of the input waveform signal. 

- AnalysisLibErrType RMS (double Input_Array[], ssize_t Number_of_Elements, 

double *Root_Mean_Squared); which computes the root-mean-square (rms) value of the 

input array, using the formula  . 

The prototype of the functions employed for direct analysing of harmonics presented in the 

voltage and current inputs are as follows: 

- AnalysisLibErrType AutoPowerSpectrum (double Input_Array[], 

ssize_t Number_of_Elements, double dt, double Auto_Spectrum[], double *df);, which 

calculates the single-sided, scaled auto power spectrum of a time-domain signal. The auto 

power spectrum is defined as shown in the following equation,  , where 

Number_of_Elements is the number of points in the signal array X, * denotes a complex 

coniugate. This function converts the auto power spectrum to a single-side form. 

- AnalysisLibErrType HarmonicAnalyzer (double Auto_Power_Spectrum[], ssize_t 
Auto_Power_Spectrum_Size, ssize_t Frame_Size, int Number_of_Harmonics, int 
Window_Type, double Sampling_Rate, double Fundamental_Frequency, double 
Harmonic_Amplitude[], double Harmonic_Frequency[], double *Percent_THD, 
double *Percent_THDNoise);, finds the amplitude and frequency of the fundamental and 

harmonic components present in autoPowerSpectrum.  Furthermore, this function also 

calculates the percent of total harmonic distortion and the total harmonic distortion plus 

noise. If the sampling rate is 1,000 Hz and the fundamental frequency is 250 Hz, the number 
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of harmonics is limited by samplingRate/(2 × fundamentalFrequency) = 2. If you set 

numberOfHarmonics equal to 4, HarmonicAnalyzer sets the third and the fourth element 

of the harmonicAmplitude and harmonicFrequency array equal to 0.0. 

 

1.6.2 Post - processing module – Matlab environment 

The Matlab component of the processing module is standalone set of m-functions. They are 

executed from TWM via the GOLPI interface [6]. From typical user point of view the only four 

functions are to be called directly: 

1) “qwtb_exec_algorithm.m” for execution of the processing on the measurement session. 

2) “qwtb_get_results_info.m” to get information about available results in the session. 

3) “qwtb_get_results.m” to load and format results for displaying in matrix form. 

4) “qwtb_plot_result.m” to load and display results as a graph. 

The rest of the m-functions are either sub-functions of abovementioned or special functions 

that are rarely used directly. The top level functions and the interaction mechanism are 

described in the Batch processing GUI paragraph of the TWM open tool project [11]. The 

implementation of  the generic concept of interfacing LabWindows/CVI to Matlab is decribed 

in [12].  

1.6.2.1 Post - processing module in TPQA  

Here is reported the implementation of QWTB processing approach into TPQA open software 

tool. The user can interact with the post-processing GUIs, once all the measurement 

parameters have been set, and in particular those related to the measurement setup using HW 

Corrections GUI.  

The source and header ( *.c  and *.h) files included in the project are shown in Figure 0.34.  

 

  
Figure 0.34: Source and Include files of TPQA environment developed for Matlab engine interfacing. 

By pressing QWTB Processing button from the main GUI a second GUI is invoked. The 

callback function for matlab engine launching is reported in Figure 0.34.  
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Figure 0.35: Function callback for Matlab engine launching. 

The processing_panel.uir shown Figure 0.35 is called form the *.c source 

processing_panel.c, where its implementation and function’s prototype developed are shown 

in Figure 0.37. Each function performs specific callback. 

 

 

Figure 0.36: GUI of the post-processing module. 
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Figure 0.37: Implementation of the processing_panel.c function. 
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Appendix #11  

 

Here appear the outcomes of the activity A2.3.4, and in particular: 

 

• Assessing the performance of algorithms using real data 

acquired from existing setups based on 5922 digitizer. 

• Assessing the performance of harmonics and flicker 

algorithms using 3458A setup. 

• Algorithm test of power quality related algorithms 

 

 

 



TracePQM activity A2.3.4 
Algorithm testing with 5922 digitizer data 
We tested a number of algorithms using single tone signals. The main signal (A) was generated by a 
Fluke 5700 calibrator with very stable amplitude. The second signal (B) was generated by an Agilent 
33500 dual waveform generator. The waveform generator was locked to an external 10 MHz clock, 
and the two channels were phase locked to each other. The second channel provided phase lock to 
the calibrator. The 10 MHz clock also provided the reference clock signal for the digitizer. 

The calibrator amplitude (signal A) was 1 V peak and the signal B amplitude was 1 V rms (1.414 V 
peak). The phase shift between A and B was 1 rad. The harmonics from the calibrator (or digitizer?) 
were -80 dB or lower, and there were also some 50 Hz harmonics below -100 dB. Noise level was 
around -120 dB. 

In addition to the TWM algorithms we also measured with the existing power reference system at 
RISE for comparison. This system uses two different algorithms for calculating signal amplitude. One 
is the “Extract Single Tone Information.vi” (ESTI) provided with the LabVIEW programming 
environment. It is based on an interpolated Fourier transform algorithm. The second algorithm is a 
lock-in algorithm where the signal is multiplied with a sine and cosine calculated waveform. 
Frequency is calculated using ESTI and the phase is calculated by normalising the two signals to 1, 
subtracting the two signals and calculating the amplitude of the difference signal using the lock-in 
algorithm. 

Sampling time was 2 s for all tests, except for the FPNLSF algorithm which was 0.2 s (because it would 
fail for longer signals). 

Test 1 – 1 kHz signal with 100 kHz sampling rate 
Synchronized sampling with 100 times oversampling and integer number of periods. 

Algorithm Frequency 
Hz 

Amp. A 
V peak 

Phase A-B 
rad 

Ratio A/B 

TWM-FPNLSF 1 000.0000 1.000 005 1.000 008  
TWM-MFSF 1 000.000 000 0.999 985 1.000 019  
TWM-PSFE 1 000.0000 0.999 987 0.999 998  
TWM-WFFT 
(no window) 1 000.000 000  1.000 030 0.708 132 

TWM-WFFT 
(hanning) 1 000.000 000  1.000 030 0.708 107 

RISE ESTI 1 000.000 001 1.000 006 1.000 031  
RISE lock-in  1.000 006  0.708 144 

 

  



Test 2 – 1000.3 Hz signal with 100 kHz sampling rate 
Asynchronous sampling with 100 times oversampling. 

Algorithm Frequency 
Hz 

Amp. A 
V peak 

Phase A-B 
rad 

Ratio A/B 

TWM-FPNLSF 1 000.3001 0.999 988 0.999 933  
TWM-MFSF 1 000.300 002 0.999 991 0.999 986  
TWM-PSFE 1 000.3000 0.999 986 1.000 001  
TWM-WFFT 
(hanning) 1 000.500 000  1.000 016 0.708 116 

RISE ESTI 1 000.299 998 1.000 004 1.000 011  
RISE lock-in  1.000 006  0.708 157 

 

Test 3 – 20 kHz signal with 100 kHz sampling rate 
Synchronized sampling with 5 times oversampling and integer number of periods. 

Algorithm Frequency 
Hz 

Amp. A 
V peak 

Phase A-B 
rad 

Ratio A/B 

TWM-FPNLSF 20 000.000 0.999 989 1.000 055  
TWM-MFSF 20 000.000 00 0.999 995 1.000 002  
TWM-PSFE 20 000.000 0.999 983 1.000 013  
TWM-WFFT 
(no window) 20 000.000 00  1.000 001 0.708 128 

TWM-WFFT 
(hanning) 20 000.000 00  1.000 008 0.708 127 

RISE ESTI 20 000.000 01 1.000 008 1.000 004  
RISE lock-in  1.000 009  0.708 164 

 
Test 4 – 20.0003 kHz signal with 100 kHz sampling rate 
Asynchronous sampling with 5 times oversampling. 

Algorithm Frequency 
Hz 

Amp. A 
V peak 

Phase A-B 
rad 

Ratio A/B 

TWM-FPNLSF 20 000.301 0.999 801 0.999 818  
TWM-MFSF 20 000.300 00 0.999 984 1.000 007  
TWM-PSFE 20 000.300 0.999 988 1.000 015  
TWM-WFFT 
(hanning) 20 000.500 00  1.000 022 0.708 140 

RISE ESTI 20 000.300 00 1.000 013 1.000 012  
RISE lock-in  1.000 005  0.708 151 

Specifying frequency estimate as 20.0000 kHz (15 ppm error) 
TWM-FPNLSF 20 000.000 0.988 592 1.003 519  
TWM-MFSF 20 000.000 00 0.51 0.999 994  
TWM-WFFT 
(hanning) 20 000.000 00  0.57 0.708 134 

 



Summary 5922 data tests 
All the tested algorithms performed well in this test with a clean single tone signal, with a few 
exceptions. The WFFT frequency resolution is limited to the Fourier spectrum resolution, but all the 
other algorithms perform well for frequency. 

The amplitude and phase calculations worked well for all algorithms, but the FPNLSF was 200 ppm 
off at 20.0003 kHz with asynchronous sampling. This is not surprising since the fitting algorithm 
should have a much higher oversampling ratio than 5 for optimum performance. 

A special test was also performed for FPNLSF, MFSF and WFFT algorithms, where a frequency 
estimate which was 15 ppm wrong was specified as input to the algorithms. In these cases, all three 
algorithms fail to various degrees. This demonstrates that the frequency estimate needs to be 
accurate for good results. 

Test with 3458A system 
Three test signals were used, a sinusoidal 50 Hz signal a 50 Hz square wave, and a 2,72 % square 
wave modulated sinusoidal signal equal to flicker severity PST=1.00.  

Two triggering set-ups were tested. Most test were made with both metres triggered by a common 
AWG, a few with the master/slave set-up. . The results were compared with the RISE DSWM 
reference wattmeter system. 

Result for sinusoidal signals 

Algorithm Coherent  
Fs=50*1024/7 

Vpeak 

Coherent 
Stdev 
Vpeak 

Noncoherent  
Fs=10 050  

Vpeak 

Noncoherent  
Stddev 
Vpeak 

TWM-WFFT 1,131590 0,000010 1,0167 0,003000 
TWM-MFSF 1,131601 0,000010 1,131596 0,000005 
TWM-PWRTDI 1,131606* 0,000500* 1,131600* 0,000500* 
RISE DSWM 1,131605* 0,000010*   

* Result multiplied by √2 to get from RMS V to Vpeak 

As can be seen in the table above, the results were very similar for coherent sampling, even though 
the standard deviation were somewhat higher for PWRTDI. As expected, only PWRTDI gave good 
results also for non-coherent sampling.  

Additionally a functional test were done for TWM-PWRTDI measurements with a master/slave  setup 
(Fs=10kS/s, N= 3000 samples). This set-up worked as expected. 

Result for square-wave signals 
Only WFFT were tested for square-wave. The results were compared with the RISE DSWM reference 
wattmeter system. 

Algorithm WFFT,  
Coherent  

50*1024/7 
(mVpeak) 

WFFT 
Coherent 

Stdev 
(mVpeak) 

RISE 
DSWM 

 
(mVpeak) 

Coherent  
10.000 kS/s 

 
(mVpeak) 

Coherent  
10.000 kS/s 

Stddev  
mVpeak 

1 509.8283 0,0025 509.8230 509.7991 0.0500 
3 169,9381 0,0025 169,9326 169.8516 0.0500 
5 101,9577 0,0025 101.9549 101.8182 0,0500 
11 46,3420 0,0025 43.3356 46.0327 0,0500 

 



Compared to RISE DSWM, the result agree quite well when the same sampling rate is used while it 
does not agree well when another, more straightforward, cohering sampling rate is used. This is as 
expected because there is aliasing and both settings are affected by aliasing but the second to a 
much higher degree. It shows that it is not only the algorithms that is of importance but also the 
choice of sampling rate. 

TWM Flicker 
The flicker algorithm, with one 3458A and using TWM bitstream mode facilitating long measurement 
times, was tested with a 230 V ac signal with 2.72 %, one change per minute, square wave 
modulation from an equipment normally used for flicker calibration at RISE. The algorithm needs at 
least one-minute pre-test time to establish the correct rms value, and three ten minute PST values 
were taken. This results in 670 seconds of measurement times three. With the minimum sampling 
rate 7 kS/s for this algorithm, this means close to 15 Msamples, which is the limit for un-interrupted 
bitstream mode.   

The flicker result is shown in the table below.  

Nbr of PST 
values 

Flicker 
Nominal PST value 

TWM Flicker 
Mean PST  value 

TWM Flicker 
Stdev 

3 1.0000 0,99957 0,00095 
 

This might seem not so very precise, but it means that the underlaying modulation (mean 
measurement) was within about 0,0013 % of the nominal value, which is quite good. 

Summary 3458A test data 
Three test signals were used, a sinusoidal 50 Hz signal a 50 Hz square wave, and a 2,72 % square 
wave modulated sinusoidal signal equal to flicker severity PST=1.00. Both actual values and standard 
deviations were recorded. Two triggering set-ups were tested. Most test were made with both 
metres triggered by a common AWG, a few with the master/slave set-up. The results were compared 
with the RISE DSWM reference wattmeter system. 

All three tested algorithms TWM-WFFT, TWM-MFSF TWM-PWRTDI worked well for sinusoidal signals 
and coherent sampling. As expected only TWM-PWRTDI gave acceptable results for non-coherent 
samples. 

TWM-WFFT worked for square-wave signals but were affected by alias, different for different setting, 
as expected 

TWM-flicker results agreed well with expected values. 
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Algorithm test of power quality related algorithms 
 

The following algorithms was tested in this section of algorithm tests: 

• TWM-MODTDPS   
• TWM-THDWFFT    
• TWM-HCRMS        
• TWM-InDiSwell     

 

TWM-MODTDPS 
 

This algorithm perform an amplitude modulation analysis. During the test, a base frequency of 50 Hz 
is applied, modulated with a combination of low/high frequency and with Sine/Square modulation 
signal.  

[Hz] Sine-wave modulation Square-wave modulation 
5 

  
 Modulation:20%, 5Hz, Sine-wave Modulation:20%, 5Hz, Square-wave 
0.5 

  
 Modulation:5%, 0.5Hz, Sine-wave Modulation:5%, 0.5Hz, Square-wave 

  

Error calculation: The output parameters evaluated are the f_mod (modulation-frequency) and the 
mod (modulation-depth). We compare these with the signal generator parameters (modulation-
frequency and depth), to calculate the error.  Any discrepancy between source-settings and the 
actual signal produced by the source will be an additional contributor to the error found. We had no 
way of compensate for this at the time of test. 

Average estimation error for F_MOD  : 



 Hz , 
depth 

Sine-wave modulation Square-wave modulation 

5, 20% -0,0576%, 0,0000% (-576ppm, 0,1ppm) -0,0484%, 0,0011% (-484ppm, 11ppm) 
 Modulation:20%, 5Hz, Sine-wave Modulation:20%, 5Hz, Square-wave 
0.5, 5% -0,4503%, 0,0001% (-4503ppm, 1ppm) -0,7802%, 0,0028% (-7802ppm, 28ppm) 
 Modulation:5%, 0.5Hz, Sine-wave Modulation:5%, 0.5Hz, Square-wave 

 

Average estimation error for MOD  : 

[Hz] Sine-wave modulation Square-wave modulation 

5, 20% -0,4931%,  0,0003% (-4931ppm, 3ppm) 0,1329%, 0,0003% 1329ppm, 3ppm) 
 Modulation:20%, 10Hz, Sine-wave Modulation:20%, 10Hz, Square-wave 
0.5, 5% 0,3498%,  0,0687% (-3498ppm, 687ppm) -0,0328%, 0,0006% (-328ppm, 6ppm) 
 Modulation:5%, 0.5Hz, Sine-wave Modulation:5%, 0.5Hz, Square-wave 

  

Observation: The algorithm do not auto-detect which modulation type it is exposed to (sinusoidal or 
rectangular). The algorithm require the user to set modulation type (Default is sinusoidal).   If it is a 
mismatching modulation type, the output of the algorithm can have large errors. 

Example of result when modulation-type is not matching: 

Actual modulation Correct mod. setting None-matching mod. setting 
Sinusoidal, 20% -0,4931%,      ±0,0003% -6,4298%,  ±0,0002% 
Rectangular, 20% 0,1329%,       ±0,0003% 34,3069%, ±0,0531% 
Sinusoidal, 5% 0,3498%,       ±0,0687% -6,9100%,    ±0,0011% 
Rectangular, 5% -0,0328%,     ±0,0006% 26,7344%, ±0,0095% 

    

Conclusion: The MODTDPS algorithm performs well. The algorithm is better at finding the 
modulation frequency with higher modulation depth. Higher modulation depth give a better signal to 
noise ratio, which can explain the observation. The algorithm show slightly better ability to find the 
modulation depth for square-wave modulation then sinusoidal modulation.   

  



TWM-THDWFFT 
The algorithm perform Harmonic distortion analysis, and calculate the THD. 

The reported THD-values returned from the algorithm where compared with the calculated values.  
The Reference values are calculated based on the settings of the generated signal: 

Error calculation: The test signal is defined by the parameters controlling the signal generator, which 
are the relative amplitudes of each harmonics and their phase. Calculation of the corresponding THD-
value are based these source settings. The returned output parameters value from the TWM-
algorithms are compare to the calculated values to calculate the error. Any discrepancy between 
source-settings and the actual signal produced by the source will be an additional contributor to the 
error found. We had no way of compensate for this at the time of test. 

Testsignals: The following tree signals where used for testing.  

Source setting:1     
Harm.[#] 3 5 7 41 

 

Rel.amp.[%] 50 0 0 10 
Phi[deg] 34 0 0 0 

THD: Rel.amp. THD: 

(calculated) 0,51 50,99 [%] 
 

Source setting:2     
Harm.[#] 3 5 7 41 

 

Rel.amp.[%] 3 3 3 1 
Phi[deg] 34 0 0 0 

THD: Rel.amp. THD: 

(calculated) 0,05 5,29 [%] 
 

Source setting:3    Pure sinusoidal signal for reference 
Harm.[#] 3 5 7 41 

 

Rel.amp.[%] 0 0 0 0 
Phi[deg] 0 0 0 0 

THD: Rel.amp. THD: 

(calculated) 0,00 0,00 [%] 
 

Measurements: 

Source setting:      
Setting: 

Harm.[#] 
1 

Rel.amp.[%] 
2 

Rel.amp.[%] 
3 

Rel.amp.[%] 
 
 

3 50 3 0  
5 0 3 0  
7 0 3 0  

41 10 1 0  
THD[%] 50,99 5,29 0,00  



Results:        
(Algorithm calc.) Reps: Error[%] Error[%] Error[%] Std.dev[%] 

thd[] -0,89 1,28 0,2016 0,0001 
thd2[] -6,17 1,27 0,2016 0,0001 

thd_raw[] -0,89 1,28 0,2016 0,0001 
thd2_raw[] -6,17 1,27 0,2016 0,0001 

noise[] 0,08 1,67 0,0002 0,00001 
 

Conclusion: The algorithm performed as expected. The THD-values found by the algorithm matched 
the signal parameters. Source of uncertainty and error here can be noise and the sources ability to 
accurately produce a signal that is fateful to the settings. 

 
TWM-HCRMS 
 

This algorithm perform an RMS-estimation for half-waves. This test where performed by applying a 
sinusoidal AC-voltage with constant amplitude and constant frequency during the sampling.  Fluke 
5790 where used as reference. The input voltage where connected in parallel into both channels of 
the TWM and the Fluke in parallel.  

The algorithm where tested at 3 different voltages and for each, with 3 repetitions. 

Results:  

Fluke 5790 TWM-HCRMS error[ppm] std.dev[ppm] 
Ref. [V] mean[V] [ppm] [ppm] 

0,5990382 0,5990441 9,9 7,8 
0,5990398 0,5990579 30,1 6,8 
0,5990402 0,5990499 16,2 10,7 

        
Fluke5790 mean[V] error[ppm] std.dev[ppm] 
1,0982062 1,0982328 24,2 29,1 
1,0982058 1,0982162 9,5 8,4 
1,0982048 1,0982295 22,5 19,7 

        
Fluke5790 mean[V] error[ppm] std.dev[ppm] 
2,2908860 2,2909354 21,6 7,4 
2,2908760 2,2909029 11,8 6,7 
2,2908720 2,2909064 15,0 7,5 

Input: sin. wave at 52.43Hz 

Comment: The algorithm performs very well.  The source used during the test was not as stable as 
we would like, and this probably contributed to some uncertainty and accuracy loss. It should be 
possible to improve performance by better setup. 

 



 

TWM-InDiSwell 
 

This algorithm perform Sag, Swell and Interruption analysis. The algorithm quantize the following 
attributes of the event: 

• Time of event(time-stamp[sek]) 
• Duration(time[sek]) 
• Depth/height of sag/swell/interruption in [%] 

 

The type of event it recognize is  

• Sag 
• Swell 
• Interruption(int) 

 

Generation of testsignals: This algorithm where tested by applying a known test signal that was 
controlled by four parameters: 

1. Fade-in time 
2. Hold time 
3. Fade out-time, and 
4. Depth/Height of Sag/Swell (nominal=100%, Swell >100%, Dip <100%) 

 

 

 

Duration-analysis: 

The algorithm will identify a Sag, Swell and Interruption-event based on the limit set by the 
sag_thresh, swell_threash and the int_threash.  The algorithm estimates the duration where the 
amplitude is above or below the set limit.   

Error calculation: For reference, we calculate the ideal duration for sag and int. based on the “Fade-
in”, “Hold-time” and the “fade-out” time parameters used by the generator, and the sag_thresh and 
int_threash threasholds. Measurement error where found by comparing the result from the TWM-
algorithm with the calculated ideal value. 

 

Depth-analysis: 



For an InDiSwell-event, the algorithm will determine the relative residual signal level, as the sag_res, 
swell_res or int_res. The value is expressed in persent[%] of the moninal signal level, and 
corresponds to the signal level at the plateau of max. or min. during the event.   

Since it is the same algorithm and the same input, we expect the value to be the same for Int and Sag 
for the same event. The only difference between Sag-event and an interruption-event is the trigger-
value set for the two.  

 

Test 1: Short Sag 

Source setting: Unit nom. 

 

100%Vrms [volt] 1,00 
Base Frequency [Hz] 53 
Dip/Swell-depth % of nom. 50 

Fade-in time [sek] 0,02 
Hold-time [sek] 0,03 

Fade-out-time [sek] 0,02 
Dip-Threashold 90% [sek] 0,062  

 

sag_dur[u1] 0,06603373 0,06603374 0,06603375  0,06603374 Mean[%] 
sag_dur[u2] 0,06603373 0,06603374 0,06603375  9,261E-09 Stddev[%] 

For the Sag duration, the average estimation error is 6,996%, with std.dev 0% (0,14ppm). 

sag_res[u1] 49,873991 49,873427 49,872223  49,8733485 Mean[%] 
sag_res[u2] 49,874187 49,87345 49,872813  0,00073292 Stddev[%] 

For the Dip-depth, the average estimation error is -0,1266%, or 1266[ppm], with std.dev 7,3ppm.  

 

Test 2: Short Swell 

Source setting: Unit nom. 

 

100%Vrms [volt] 1,00 
Base Frequency [Hz] 53 
Dip/Swell-depth % of nom. 149,5 

Fade-in time [sek] 0,02 
Hold-time [sek] 0,03 

Fade-out-time [sek] 0,02 
Swell-Threash. 110% [sek] 0,062  

 

swell_dur[u1] 0,05660054 0,05660053 0,06603395  0,05974501 mean 
swell_dur[u2] 0,05660055 0,05660053 0,06603396  0,0048714 stddev 

For the Swell duration, the average estimation error is -3,637%, with std.dev 7,8%. 

swell_res[u1] 149,04951 149,05214 149,04986  149,050348 mean 
swell_res[u2] 149,04913 149,05226 149,04919  0,00145821 stddev 



For the swell-height, the average estimation error is -0,4497%, or 4497[ppm], with std.dev 14,5ppm.  

Comment: For these short sag and swells, it is expected that quantization errors occurs, due to how 
few periods of the fundamental that is involved, and this is what we observe for the swell_dur.  

 

 

Test 3: Medium length Sag 

Source setting: Unit nom. 

 

100%Vrms [volt] 1,00 
Base Frequency [Hz] 53 
Dip/Swell-depth % of nom. 50 

Fade-in time [sek] 0,20 
Hold-time [sek] 0,50 

Fade-out-time [sek] 0,70 
Dip-Threash. 85% [sek] 1,066  

 

sag_dur[u1] 1,0754 1,0754 1,0848  1,07853418 mean 
sag_dur[u2] 1,0754 1,0754 1,0848  0,004873 stddev 

For the Sag duration, the average estimation error is 1,1718%, with std.dev 0,45%. 

sag_res[u1] 49,872392 49,872647 49,872282  49,8724665 mean 
sag_res[u2] 49,872288 49,872776 49,872414  0,00020129 stddev 

For the Sag-depth, the average estimation error is -0,1275%, or -1275[ppm], with std.dev 2ppm. 

 

 

Test 4: Short interruption with increasing length 

For the interruption-detection, the algorithm will identify a Sag-event as well, since an interruption is 
in fact a very deep sag, per definition.  Both interruption and sag-results are presented here. 

 

Interruption depth is down to 5%: 

Settings [sek] [sek] [sek] 
Fade-in 0,02 0,02 0,02 
Hold 0,03 0,05 0,10 
Fade-out 0,02 0,02 0,02 
Sag-dur 90% 0,0558 0,0858 0,1358 
Intr-dur 10% 0,0221 0,0521 0,1021 



 

   
Comment: For these short Sag and Swells, it is expected that quantization errors occurs, due to how 
few periods of the fundamental that is involved, and this is what we observe.  

 

 

 

Result for sag duration measurement: 

 [sek] [sek] [sek] 
fase-in time 0,02 0,02 0,02 

Hold-time 0,03 0,05 0,10 
Fade-out-time 0,02 0,02 0,02 

Calculated Sag_dur 0,0658 0,0858 0,1358 
Measurement 0,0660 0,0849 0,1321 

Error % 0,3719 -1,0487 -2,7499 
 

Result for interrupt duration Measurement:  

 [sek] [sek] [sek] 
fase-in time 0,02 0,02 0,02 

Hold-time 0,03 0,05 0,10 
Fade-out-time 0,02 0,02 0,02 

Calculated Int_dur 0,0321 0,0521 0,1021 
Measurement 0,0189 0,0377 0,0943 

Error % -41,2342 -27,5749 -7,6074 
*) With these short interruptions, the algorithm is experiencing the effects of quantization due to the 
small numbers of periods in the flanks of the interruption.  

 

The interruption depth is set to 5%: 

Result: 

sag_res[u1] 4,9719243 4,9756273 4,9690333  4,97219722 mean 
sag_res[u2] 4,9718203 4,975304 4,9694741  0,00279499 stddev 

For the Sag-depth, the average estimation error is -0,0278%, or -278[ppm], with std.dev 28ppm.  

 

int_res[u1] 4,9719243 4,9756273 4,9690333  4,97219722 mean 



int_res[u2] 4,9718203 4,975304 4,9694741  0,00279499 stddev 
For the Int-depth, the average estimation error is -0,0278%, or -278[ppm], with std.dev 28ppm. 

 

Note: Since it is the same algorithm and the same input, not unexpectedly it has identical result. The 
only difference between Sag-event and an interruption-event is the trigger-value set for the two.  

 

 

Test 4: Long interruption with increasing length 

 

The duration of the Sag and Interruption  

Duration-estimation: 
[settings] [sek] [sek] [sek] 
Sag-depth[%] 0 0 0 
Fade-in 0,20 0,20 0,20 
Hold 0,10 0,20 0,50 
Fade-out 0,40 0,40 0,40 
sag_dur* 0,64 0,74 1,04 
int_dur* 0,16 0,26 0,56 
Interrupt. 
depth: 0% 

   
*) Values calculated based on settings 

 

Result for sag duration measurement: 

 [sek] [sek] [sek] 
fase-in time 0,20 0,20 0,20 

Hold-time 0,10 0,20 0,50 
Fade-out-time 0,40 0,40 0,40 

Calculated Sag_dur 0,6400 0,7400 1,0400 
Measurement 0,6414 0,7451 1,0470 

Error % 0,2174 0,6933 0,6729 
 

 

Result for interrupt duration Measurement:  

 [sek] [sek] [sek] 



fase-in time 0,2 0,2 0,2 
Hold-time 0,1 0,2 0,5 

Fade-out-time 0,4 0,4 0,4 
Calculated Int_dur 0,1600 0,2600 0,5600 

Measurement 0,1603 0,2641 0,5660 
Error % 0,2157 1,5820 1,0683 

 

 

The depth of the interruption is set to 0%: 

Result: 

int_res[u1] 0,024055 0,0143529 0,0047963  0,01441405 mean 
int_res[u2] 0,023249 0,0152541 0,0047771  0,00845084 stddev 

For the Sag-depth, the average estimation error is 0,0144%, or 144[ppm], with std.dev 84ppm.  

 

sag_res[u1] 0,024055 0,0143529 0,0047963  0,01441405 mean 
sag_res[u2] 0,023249 0,0152541 0,0047771  0,00845084 stddev 

For the Int-depth, the average estimation error is 0,0144%, or 144[ppm], with std.dev 84ppm.  

Conclusion: The InDiSwell performs well. The algorithm face challenges when the slopes of the event 
are short in time and maybe includes or happen over very few periods of the base signal. This make it 
difficult to determine within one period the exact start or end-time of the event. From the results 
presented above, we see that for the short events, the error is higher than for long duration events. 
The residual analysis performed overall quite comparable for all tests. Duration length did not 
influence noticeably. However, any noise in the signal will make the signal amplitude to be slightly 
overestimated, and thus the estimate of the depth of the event is slightly underestimated. 
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Report describing the open software tool developed for handling high performance ADCs identified 
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