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Model uncertainty and reference value of the Planck constant
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Abstract

Statistical parametric models are proposed to explain the values of the Planck constant obtained by comparing elec-
trical and mechanical powers and by counting atoms in 28Si enriched crystals. They assume that uncertainty contribu-
tions – having heterogeneous, datum-specific, variances – might not be included in the error budgets of some of the
measured values. Model selection and model averaging are used to investigate data consistency, to identify a reference
value of the Planck constant, and to include the model uncertainty in the error budget.
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1. Introduction

The definition of a system of units on the basis of
conventional values of fundamental constant of physics
[1] is motivating efforts on determinations of the Planck
constant [2]. The most accurate data come from the
comparison of mechanical and electrical powers by
watt-balance experiments [3, 4] and the count of the
atoms in 28Si enriched silicon balls [5]. Four h determi-
nations comply with the accuracy required to make the
kilogram redefinition feasible [6, 7, 8, 9, 10]. A statis-
tical analysis of these results is necessary to check their
consistency and to chose a reference value of the Planck
constant.

Data analysis is usually carried out by selecting a
model and by processing the measurement results as if
they had generated by it. This approach ignores the
model uncertainty and can lead to underestimates of
the uncertainty, to overconfident inferences, and to de-
cisions that are more risky than one thinks they are.
Questions are: How accurately does a model explain
the data and what is the impact of the model uncertainty
on the measurand estimate and the inferences that we
draw from the measurement results? Given an uncer-
tain data model and a measurand estimate based on it,
how can the total uncertainty of the measurand value be
assessed?
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Probability calculus can select the model most sup-
ported by the data and include the uncertainty into the
analysis and uncertainty budget [11]; an example inves-
tigating the choice of the degree when fitting a polyno-
mial to noisy data is given in [12]. The choice of a mea-
surand value from inconsistent data-sets is investigated
in [13, 14, 15, 16].

This paper builds on these works and delivers some
additional results. Firstly, it considers models where
the standard deviations of a data subset – the empty set
and the whole data set included – might be larger than
the associated uncertainties; but, we do not know what
this subset is. Secondly, it chooses the uninformative
prior distribution of the unknown standard-deviations
by requiring that Gaussian sampling-distributions of the
measurement results are equiprobable. A novelty is
that, if these standard-deviations are not of interest,
marginalization allows an analytical expression of the
measurement-result distributions to be given, no matter
what the standards deviations – greater than or equal to
the associated uncertainties – may be. Eventually, since
one of the subset does apply, this paper tests the data
consistency by comparing the probability of each subset
is the right one given the data and suggests a reference
value of the Planck constant by averaging over all the
subsets. In this way, all the data determine the reference
value, no measurement result is excluded, and none is
considered fully reliable or suspicious.
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Table 1: Measured values of the Planck constant; f is the fraction of
the systematic contribution to the uncertainty budget.

Lab year reference label 1034h / Js f
IACa 2011 [6, 7] - 6.62606991(20)
IACa 2015 [7] - 6.62607016(13)
IACb 2015 [19] 1 6.62607009(12) 0.16
NIST 2015 [8] 2 6.62606936(37) 0.05
NRC 2014 [9, 10, 7] 3 6.62607011(12) 0.17

this paper - 6.626070073(94)

IAC – International Avogadro Coordination
NIST – National Institute of Standards and Technology (USA)
NRC – National Reasearch Council (Canada)
athese values’ correlation is 17% [19]
baverage of the 2011 and 2015 IAC’s correlated-values

2. Planck constant values

The starting point of the analysis is the list in table 1.
In 2014, the Bureau International des Poids et Mesures
(BIPM) carried out a campaign of mass calibration with
respect to the international prototype, in anticipation of
the redefinition of the kilogram [17]. This brought to
light an offset of the BIPM as-maintained mass unit,
which was traceable to the prototype in 1992. There-
fore, the mass values used in the watt-balance and atom
counting experiments, were suitably corrected.

The IAC’s NA values are converted into Planck con-
stant values via the molar Planck constant NAh =

3.9903127176(28) × 10−10 Js mol−1, which has a negli-
gible uncertainty [18]. The correlation of the NA values
reported in 2011 and 2015 by the IAC is investigated in
[19], which gives also the mean of the correlated values.
To avoid complications due to the correlation, the input
datum for this analysis is the mean of the 2011 and 2015
IAC’s values.

The values selected for this analysis are labelled from
1 to 3 in table 1; they are shown in Fig. 1. The BIPM
estimated the calibration uncertainty as 3 µg; this uncer-
tainty affects all the mass values in the watt-balance and
atom counting experiments. The table 1 gives the frac-
tions of this systematic component of the uncertainty
budget; the correlation of any pair of h values can be
obtained by multiplying the pair’s systematic fractions.

In 2012, the consultative committee for mass and
related quantities of the International Committee for
Weights and Measures recommended that ”... the val-
ues provided by the different experiments be consistent
at the 95% level of confidence” [20]. Since the con-
fidence level is a concept associated to the Neyman’s
confidence interval [21, 22], the meaning of this recom-
mendation is not very clear.

A way to examine the data consistency might be the
significance test of Fisher [11]. Assuming that the data

Figure 1: Measured values of the Planck constant; h0 = 6.62606957×
10−34 J s is the value recommended by the Committee on Data for
Science and Technology.

are independent normal-variables having the same mean
h and standard deviations σi equal to the associated un-
certainties, ui – which is the consistent-data or null hy-
pothesis, a test statistic is the Pearson χ2 variable [23].
By choosing a 5% significance level, the expected 95%
quantile is χ2

0.95 = 6.0. For this data set, the observed
value is χ2 = 3.8; since this value is less than the
χ2

0.95 rejection level, the consistent-data hypothesis is
accepted. The test ensures that the probability of re-
jecting the consistent-data model when it is true is 5%,
but to accept the consistent-data hypothesis as correct is
an argumentum ad ignorantiam fallacy.

In order to assess the data consistency, we must calcu-
late the probability of the null hypothesis; this requires
to include it into a wider hypothesis space. To this end,
we consider underestimations of the data uncertainties.
Accordingly, each datum xi is thought to be a random
variable having mean h and variance σ2

i = u2
i + λ2

i ,
where, when reporting the measurement uncertainty,
a datum-specific contribution to the variance, λ2

i , was
omitted. It is also possible that some measurement un-
certainty was correctly evaluated – that is, for these
measurements, σi = ui. Of course, all the measurement
uncertainty might be correctly evaluated.

Our assumption is that there exists a subset of good
data – which might be empty set or the full data list –
having correct uncertainty assessments; its elements xi

are independent realizations of random variables having
variances u2

i . For the remaining data, the uncertainties
ui are only lower bounds to the standard deviations, that
are additional model parameters. The good data can not
be predetermined; instead, all the subsets will be taken
in turn as the sought good-data subset. The final h es-
timate will be obtained by model averaging using the
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probability of the each subset being the good one.

3. Theoretical framework

Before going into the specific application to the data
in the table 1, this section outlines the theoretical frame-
work of the analysis.

3.1. Model selection
In order to explain the measurement results, we con-

sider a number of parametric statistical models – say,
MA,MB, ... – where each model is parameterized by the
measurand h and, possibly, a set of nuisance parameters
σ. We assume that the set’s models are mutually ex-
clusive and complete, that is,

∨̇
nMn = True. Given the

measurement results x = [x1, x2, x3]T and the data like-
lihood L(x|h,σ,M), one proceeds by assigning a prior
probability distribution π(h,σ|M) to the model parame-
ters and a prior probability Π(M) to each model. Next,
by using the product rule of the probabilities, the joint
distribution of the data, parameters, and models is

P(x, h,σ,M) = L(x|h,σ,M)π(h,σ|M)Π(M). (1)

According this hierarchical model, firstly, M is sam-
pled from Π(M); then, the model parameters h and σ
are sampled from π(h,σ|M); eventually, the data x are
sampled from L(x|h,σ,M).

Through conditioning and marginalization,
P(x, h,σ,M) can be used to obtain the post-data
distributions of interest. By conditioning (1) on x and
M, one gets the post-data probability distribution of the
parameters given the model and data,

P(h,σ|x,M) =
L(x|h,σ,M)π(h,σ|M)

Z(x|M)
, (2)

where the normalizing factor

Z(x|M) =

∫ +∞

−∞

dh
∫

Σ

L(x|h,σ,M)π(h,σ|M) dσ (3)

is the data evidence and the integration is carried out
over the parameter space.

The marginalization of (1) over the model parameter
and the conditioning on the data yields the model prob-
ability given the data,

Prob(M|x) =
Z(x|M)Π(M)∑
M Z(x|M)Π(M)

. (4)

Within this framework, Prob(M|x) is the updated prob-
ability that M is the model sampled in the first step
of (1). The pre-data distributions π(h,σ|M) and Π(M)

synthesize the uncertainty before the measurements
are carried out; subsequently, the updated distributions
P(h,σ|x,M) and Prob(M|x) synthesize the uncertainty
after the data x have been observed.

3.2. Model averaging
The simplest way to select a model is to choose the

most probable. When no single model stands out, the
expression of the uncertainty may require to report a set
of models along with their probabilities. Model averag-
ing is an alternative that incorporates model uncertainty.
After marginalization of (1) over the models and nui-
sance parameters σ and conditioning on the data, the
distribution of the h values is

P(h|x) =
∑

M

P(h|x,M)Prob(M|x), (5)

where

P(h|x,M) =

∫
Σ

P(h,σ|x,M) dσ

=

∫
Σ

L(x|h,σ,M)π(h,σ|M) dσ

Z(x|M)
. (6)

By averaging over the models, (5) incorporates the
model uncertainty embedded in Π(M). A point estimate
of h is the mean of (5). Hence,

E(h|x) =
∑

M

E(h|x,M)Prob(M|x), (7)

where E(h|x,M) is the mean of (6).

4. Random effect model

To explain the data, our hypothesis is as follows: the
measured values xi of the Planck constant are inde-
pendently sampled from distributions having the same
mean h and different variances. By maximizing the
Shannon entropy, this information is synthesised by
Gaussian sampling distributions, that is, xi ∼ N(x|h, σi).
Both h and σi are unknown, but the uncertainties ui as-
sociated to the data are lower bounds for σi, that is,
σi ≥ ui. In this way, we allow for unknown errors
that are datum-specific and have not been included in
the uncertainty budgets of the measured values. We do
not assume the existence of these errors: For some da-
tum – may be none, may be all – the σi = ui identity
might hold. Therefore, our hypothesis space contains
as many models as the number of subsets of the mea-
sured values – the empty set and the input data included,
where each subset identifies the measurements whose
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associated uncertainty is the standard deviation, that is,
σi = ui.

The measurements are assumed uncorrelated, which
is not exactly true. Though it is possible to include cor-
relations [24], this is beyond the scope of this analysis.

4.1. Data likelihood
Let us consider any measured value. If the associated

uncertainty u is the standard deviation, its sampling dis-
tribution is N(x|h, u). Contrary, if the associated uncer-
tainty is a lower bound for the standard deviation, the
sampling distribution is N(x|h, σ), where σ ≥ u; in both
cases, we omitted the i subscript. In the latter case, the
unknown variance σ2 is a nuisance parameter that will
be eliminated by the marginalization (6). The data like-
lihood is

L(x|h,σ,MA) =
∏

i∈A, j∈Ā

N(xi|h, ui)N(x j|h, σ j), (8)

where A is a subset of good data {xi|xi ∼ N(x|h, ui)}, Ā
is the complement of A in the hypothesis space, that is,
Ā = {x j|x j ∼ N(x|h, σ j)}, and σ = [σ j| j ∈ Ā]T.

4.2. Prior distributions
From a theoretical viewpoint, when assigning prob-

abilities to the values of h, it is impossible to get
rid of the prior distribution π(h,σ). This distribution
must synthesize the pre-data knowledge about h and
σ. Ignorance means that the sampling distributions
L(x|h,σ,MA) must be equiprobable. Since they form
a Riemannian manifold – whose natural metric is the
Fisher information J(h,σ) [11, 25, 26], the distribution
of the (h,σ) coordinates is proportional to the volume
element

√
det(J) dh dσ. After normalisation, one gets

the Jeffreys prior

π(h,σ) =
1

V0

∏
j∈Ā

u j

σ2
j

, (9)

where V0 is the volume of the h subspace and σ j > u j.
The relevance of (9) resides in making (2) consistent

vs. the transformations of the h and σ variables. In fact,
if we transform h and σ, the left-hand side of (2) trans-
forms according to the usual change-of-variable rule.
What happens to the right-hand side is that the trans-
formation Jacobian combines with J(h,σ) to give the
Fisher information about the new variables.

For example, if we consider a single datum and
reparameterise the sampling distribution by (h, σ2)
– which corresponds to a coordinate change in the
N(x|h, σ) manifold – the volume element changes from

√
2 dh dσ/σ2 to dh dσ2/(

√
2σ3). As regards the pre-

data distribution, by applying the distribution transfor-
mation rule, it changes from u/(V0σ

2) to u/(2V0σ
3),

which are both consistent with π(h, σ) ∝
√

det(J).

4.3. Marginalisation
The integral (6) reduces to the calculation of the sam-

pling distribution of the measurement result x, given the
Planck constant and the variance lower bound u2,

G(x|h, u) =

∫ +∞

u

uN(x|h, σ)
σ2 dσ =

[
1 − e−

(h−x)2

2u2

]
u

√
2π(h − x)2

.

(10)
It is worth noting that, after the marginalization elim-
inates the unknown standard deviation from N(x|h, σ),
this same result is obtained by assuming the generalised
Birge-ratio model σi = λ1ui, where the scale parameters
λi ≥ 1 are datum-specific and take the uncertainty un-
derestimations into account. As expected being known
only its lower bound, the variance of (10) is infinite.

Eventually, by taking (10) into account, the data like-
lihood (8) can be rewritten as

L(x|h,MA) =
∏

i∈A, j∈Ā

N(xi|h, ui)G(x j|h, u j), (11)

which is parameterised only by h, to which the pre-data
distribution π(h) = 1/V0 corresponds.

4.4. Results
The three Planck constant values are grouped into

eight {A, Ā} subset-pairs, where the A subsets collect the
σi = ui good data and the Ās the σi ≥ ui ones. The sub-
set pairs are sorted according increasing cardinality of
A, with A = ∅ first and later elements in table 1 omitted
first. The A’s probabilities are given by (4), where we
assumed Π(MA) = const., the data evidence is

Z(x|MA) =
1

V0

∫ +∞

−∞

L(x|h,MA) dh, (12)

and L(x|h,MA) is given by (11). The integration in (12)
must be carried out numerically; the results are given in
Fig. 2.

All the subsets are roughly equally probable; none
stands clearly out. The probability that at least one of
the uncertainty values was underestimated is 85%; con-
versely, the probability of a purely statistical origin of
the data scatter is 15%. The probabilities of the good-
data subsets including the NIST value – the second in
the data list – are local minima. Additionally, the most
probable good-data set excludes it; this might suggest
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Figure 2: Probabilities of the subsets of good data. The bar labels
signify the good-data subset.

that the uncertainty associated to the NIST value is un-
derestimated.

The mean values and standard deviations of the post-
data probability distributions of the possible values of h
for any subset of good data are shown in Fig. 3. None
value differs significantly from the others. It is also
worth noting that the scale factor between the minimum
standard deviation – corresponding to the set including
where all the data – and maximum one – corresponding
to the empty set – is 1.5.

5. Fixed effect model

In order to check the data consistency, we can also
compare the assumption that the data are sampled or
not sampled from distributions having the same mean.
In this case, the hypotheses are as follows: The mea-
sured values are independently sampled from distribu-
tions having the same mean (H0, null hypothesis) or
different means (H1, alternative hypothesis). In both
cases, the standard deviations are equal to the associ-
ated uncertainties.

As before, this information is synthesised by Gaus-
sian sampling distributions; the data likelihoods are

L(x|h,H0) =
∏

i

N(xi|h, ui), (13a)

which is parameterized by the one-dimensional coordi-
nate h, and

L(x|h,H1) =
∏

i

N(xi|hi, ui), (13b)

which is parameterized by the three-dimensional coor-
dinate h = [h1, h2, h3]T.

Figure 3: Mean values and standard deviations of the post-data prob-
ability distribution of the possible values of h given the values la-
belled 1 – 3 in Table 1 and the indicated subsets of good data.
h0 = 6.62606957 × 10−34 J s is the value recommended by the Com-
mittee on Data for Science and Technology.

With uniform probability densities in the H0 and
H1 hypothesis-spaces, the pre-data distributions of the
space coordinates are π(h) = 1/V0 (H0 hypothesis) and
π(h) = 1/V3

0 (H1 hypothesis), where the volumes V0
and V3

0 of the h and h spaces are large enough to allow
the limits of the evidence integrals to be extended up to
the infinity.

Eventually, the data evidences are given by

Z0 =
1

V ′0

∫
V ′0

L(x′|h′,H0) dh′ =
1.6 × 10−3

V ′0
, (14a)

and

Z1 =
1

V ′3
0

∫
V ′30

L(x′|h′,H1) dh′1dh′2dh′3 =

(
1

V ′0

)3

, (14b)

where the dimensionless variables x′ = 108x/h0, h′ =

108h/h0, u′ = 108u/h0, and V ′0 = 108V0/h0 were used.
The inverse proportionality of (14a-b) to the volumes

of the hypothesis-spaces is known as Ockham’s razor
and penalizes the model having the greater adaptability
to the data. Consequently, in the case of a large pre-data
range of the h values, that is, when V ′0 → ∞, the data
support always the consistent-data hypothesis. Since –
in order to extend the limits of the (14a-b) integrals to
the infinity – we assumed that V0 � max(u1, u2, u3),
V ′0 must be at least 10. In this case, Z0 = 1.6 × 10−4,
Z1 = 10−3, and the probability of consistent data is
about 16%; not far from the value found in the previ-
ous analysis.
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Figure 4: Probability density of the possible values of the Planck con-
stant given the values labelled 1 – 3 in table 1 whatever the subset of
good data may be. h0 = 6.62606957 × 10−34 J s is the value recom-
mended by the Committee on Data for Science and Technology.

6. Conclusions

To implement a kilogram definition based on the
Planck constant they are necessary at least three mea-
sured values having uncertainties less than 5 × 10−8h,
with at least a value having an uncertainty less than
2 × 10−8h. These values must be consistent at the 95%
level of confidence. In addition, the Task Group on
Fundamental Constants of the Committee on Data for
Science and Technology must provide a value that min-
imises discontinuities.

This paper investigated the data consistency by ex-
plaining the measurement results by random effect –
which allow, but not assume, missing contributions to
the error budgets – and fixed effect – which allow, but
not assume, different means of the sampling distribu-
tions – models. In both cases, the data look inconsistent.

In the first case, after averaging over all the subsets of
good data, the probability density of the possible values
of h is shown in Fig. 4. The mean value is

h = 6.626070073(94) × 10−34 Js. (15)

The standard deviation, 1.4 × 10−8h, can be compared
with the weighed-mean uncertainty, 1.3 × 10−8h. The
quadratic difference, 0.5 × 10−8h, is the contribution to
the error budget of the uncertainty about the actual sub-
set of good data.
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