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Fake tilts in differential wavefront sensing

ENRICO MASSA, CARLO PAOLO SASSO,* AND GIOVANNI
MANA

INRIM – Istituto Nazionale di Ricerca Metrologica, Str. delle cacce 91, 10135 Torino, Italy
*c.sasso@inrim.it

Abstract: Two-beam interferometry is a tool of high-precision length-metrology, where dis-
placements are measured to within sub-nanometer resolution and accuracy. Differential wavefront
sensing – via phase detection by segmented photodiodes – adds the capability of simultaneously
measuring the target translation and rotation. This paper gives an analytical model explaining the
observation of fake tilts by a combined x-ray and optical interferometer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Two-waves laser interferometry is an essential tool in length metrology because of dynamic range,
low noise, and traceability to primary realizations of the metre. Displacement measurements with
picometer resolution and uncertainty are achievable by using frequency-stabilized laser sources
and controlled interferometer operations. Differential wavefront sensing – where the angle
between the interfering wavefronts is measured via the phase difference between the travelling
fringes detected by segmented photodiodes – makes it possible to simultaneously measure both
the target translation and tilts with a single laser beam [1–4]. The working principles, operation,
measurement equation, and effect of mismatches and aberrations are reported in [5–7].

This technology is used to align terrestrial gravitational-wave detectors, as VIRGO and LIGO,
[8–10] and the Gravity Recovery and Climate Experiment follow-on (GRACE-FO) – a space
mission monitoring the Earth gravity field – tests differential wavefront sensing applied to
inter-satellite pointing [11]. Also, the Laser Interferometer Space Antenna (LISA) – a foreseen
mission designed to detect gravitational waves in space – will use it to monitor the tilt of
free-falling masses [3].
The Istituto di Metrologia "G. Colonnetti" (now Istituto Nazionale di Ricerca Metrologica)

developed differential sensings in 1993 to cope with Abbe errors in the measurement of the
silicon lattice parameter using combined x-ray and optical interferometry [1]. In this experiment,
a silicon crystal, which is the movable part of both interferometers, is moved and positioned at
successive (integer) optical orders and over displacements up to 5 cm with picometre accuracy
and without tilts exceeding 1 nrad [12].
The comparison of simultaneous differential sensing of both the optical and x-ray fringes

evidenced disagreements and shear strains in at least one of the gratings (the diffracting planes
or optical wavefronts). A cause was traced back to the coupling of transverse displacement
and curvature of the optical wavefronts [12,13], but further measurements brought into light
additional effects. Obviously, it was impossible to associate the observed strain with certainty to
aberrations of the crystal lattice or optical wavefronts. Therefore, additional tests were carried
out, which suggested that the problem was the aberration of the optical wavefronts. However, we
never investigated mathematically the matter.
Since an imperfect crystal lattice undermines the lattice-parameter measurement, to exclude

false observations or guilt assignments, we report a calculation of the phase difference between
the travelling fringes produced by aberrated and mismatched beams and detected by a segmented
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photo-diode. Contrary to [5–7], which focus on the alignment signals, calibration, and non-
linearity, we investigate if the free-of-tilts propagation of slightly mismatched and aberrated – but
otherwise parallel – wavefronts originates a differential signal, which is read as a misalignment.

Consistently with our experimental set-up, we assumed the interference pattern much smaller
than the detector area and the gaps between the detector elements negligible. In section 2, we
summarize the operation of an x-ray/optical interferometer and report about its operation and the
observed signals. Next, in section 3, we give first-order models of the propagation of slightly
aberrated beams and differential sensing of nearly perfectly aligned wavefronts, e.g., actively
controlled it via the feedback of the differential signal. Eventually, we prove that the free-space
propagation of mismatched beams and aberrated wavefronts mimic non-existent misalignments.

2. Combined x-ray and optical interferometry

As shown in Fig. 1 (left), a crystal x-ray interferometer consists of three Si blades, 1.2 mm thick,
where the {220} planes are orthogonal to the surfaces. X rays (17 keV, Mo Kα line) are split and
recombined by multiple Laue diffractions, to obtain coaxial interfering beams of (1 × 12) mm2

footprint on the interferometer blades [12].

Fig. 1. Left: combined x-ray and optical interferometer. The fixed crystal and optical
interferometer rest on a Si plate. Piezoelectric elements under the optics (not shown in
the figure) and inertial drivers (red Cu blocks) allow fine alignments to within some tens
of µrad. Right: tilt of the laser-beam wavefront inferred by differential wavefront sensing
when the analyzer is displaced while keeping the diffracting planes vertical. The red line
is a polynomial fit through the measurement data (blue dots). The ±4 nrad error bars
correspond to 10% of an x-ray fringe (i.e., about 20 pm) over a 10 mm lever-arm (the
analyzer displacement and tilt are half those of the wavefronts).

The analyzer crystal rests on a six degree-of-freedom platform, capable of axial displacements
up to 5 cm. The interference signal (having a periodicity equal to the spacing of the diffracting
planes, about 0.192 nm) is detected by moving the analyzer orthogonally to the {220} planes (see
Fig. 1). The analyzer requires alignment and positioning at the nanoradian and picometre levels.
Therefore, its displacement and rotation are measured by optical interferometry; picometre and
nanoradian resolutions (in a frequency band up to 10 Hz) are achieved by polarization encoding
and phase modulation [14]. Next, positioning at integer fringe orders and alignment are made
possible by feedback loops driving piezoelectric elements. To eliminate the adverse influence
of the refractive index of air and to ensure millikelvin temperature uniformity and stability, the
experiment is carried out in a thermo-vacuum chamber.

The analyzer pitch angle is detected simultaneously by the optical and x-ray interferometers to
within nanoradian resolutions.
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The optical measurement of the pitch angle is made (at the integer orders) by fringe detection
in the four slices of a quadrant diode. Angles are given by the differential displacements in the
vertical and horizontal slice pairs, while the displacement is obtained by averaging the signals.
In spite of the limited lever arm, about 1.5 mm, the resolution of the differential measurement is
better than 1 nrad.

The x-ray measurement of the pitch angle is made by imaging the interference pattern onto a
multianode photomultiplier through a 16 mm pile of eight NaI(Tl) scintillator crystals, with a
pixel size of (1 × 2) mm2. Owing to the vertical divergence of x-rays, the effective pile height on
the analyzer crystal is only 10 mm. Picometer resolution in the subdivision of the x-ray fringes is
obtained by the least-squares fit of the interference signals [15]. Therefore, the resolution of the
x-ray differential-measurement is better than 1 nrad.

2.1. Measurement procedure

When operating the optical interferometer the interfering beams are set parallel to within 1
µrad by nulling the differential phase readout, the measurement beam is set orthogonal to the
analyzer front-mirror to within 10 µrad, the interferometer works with nearly balanced arms (the
maximum unbalance is some centimetres), the segment gaps of the photodiode are 10 µm and it
is centred with µm resolution [12]. The deviation from flatness of the super-polished analyzer
mirror is less than λ/10 (peak to peak) over 1 cm2 area; the curvature radius is more than 1 km.
The analyzer is moved – up to 5 cm in 1 mm steps – along a straight line, parallel to the laser
beam to within 50 µrad uncertainty and with deviations from straightness less than 1 nm. To
enhance the stability of the combined interferometer, the fixed crystal and optical set-up rest on a
Si plate (see, Fig. 1), without any adjustment devices. Piezoelectric elements placed under the
optics and inertial drivers allow fine alignments to within a some tens of microradians.
During each 1 mm step, we drove the analyzer to nullify the phase differences between the

x-ray fringes detected by the multianode photomultiplier. In this way, the analyzer keeps its {220}
lattice planes parallel to those of the fixed crystal, to within a couple of nano radians. To measure
optically the tilt associated to the analyzer displacement and coping with the residual drift
between the two interferometers, about 100 nrad/day, we used a modulation technique. Actually,
we moved back and forth the analyzer and demodulated the differential signal. Eventually, we
accumulated the demodulated results for each 1 mm step to obtain the wavefront tilts over the
full 50 mm displacement.

Figure 1 (right) shows that the tilt of the optical wavefronts due to the analyzer displacement,
inferred from the demodulated signal of the quadrant photodiode, is not null, as it should have
been. The tilt gradient – typically, ±1 nrad/mm – discloses a shear strain of the {220} planes
and/or optical wavefronts. But, the data do not allow us to uniquely separate them. Also, we note
that the crystal-lattice displacement and shear-strain are half those of the optical wavefronts. The
differential signal appeared to depend on the optical interferometer configuration, but not on the
x-ray one. On this basis, we excluded crystal strains.

If the laser beam is not orthogonal to the analyzer mirror, the analyzer displacement causes a
lateral shift of the measurement beam, and the interferometer senses the wavefront deviations
from flatness, smoothed by about 1 mm2 integration area. In particular, the wavefront curvature
originates a differential signal and a seemingly parasitic wavefront-tilt [13]. Also, the beam
displacement over the insensitive gap between the photodiode segments, 10 µm, might affect
the differential signal. Eventually, a differential signal might originate from the coupling of the
lateral shift of the analyzer (due to a displacement non-coaxial to the laser beam) to the roughness
of its front mirror, smoothed again by the 1 mm2 integration area.
The disagreement between the x- and optical-measurement of the wavefront tilt did not

evidence dependences on the photodiode alignment nor the same randomness of the orthogonal
alignment (to within 10 µrad) of the laser beam and coaxial (to within 50 µrad) movement of the



Research Article Vol. 27, No. 24 / 25 November 2019 / Optics Express 34508

analyzer. Therefore, in the next sections, we focus on more subtle effects due to aberrations of
the optical wavefronts.

3. Differential wavefront sensing

A free-of-tilts propagation of mismatched and aberrated wavefronts might originate a differential
signal. To investigate this problem, and to exclude or quantify it, this section gives a propagation
model and the measurement equation of the wavefront tilt.

3.1. Hermite-Gauss modes

Following [2], to describe slightly contaminated, but otherwise identical and coaxial, TEM00
interfering beams, it is convenient to introduce an orthogonal set of modes that can be used to
expand the optical fields.
The Hermite-Gauss beams,

ulm(ξ1, ξ2; ζ) = ul(ξ1; ζ)um(ξ2; ζ), (1)

form a complete orthogonal base for the separable solutions of the paraxial approximation
of the scalar wave equation [16]. Since u00 – the fundamental TEM00 mode – is an ideal
diffraction-limited Gaussian beam, their amplitudes are a natural description of the interfering
beams.
Omitting the plane wave e−ikz+iωt term (where k = ω/c is the wave-number, ω is the angular

frequency, z is the propagation distance, and t is time) the (not normalized) base functions are
[17]

un(ξ; ζ) = Hn

(√
2ξ
|q|

)
|q|n

qn
e−iξ2/q
√
−iq

, (2)

where Hn(.) is the Hermite polynomial of degree n. Also, q = i + ζ is the complex propagation
parameter and we used the dimensionless coordinates ξ1,2 = x1,2/w0 and ζ = z/zR, where x1,2
are the transverse coordinates, w0 is the 1/e2 radius of the u0 waist (which occurs at ζ = 0), and
zR = kw2

0/2 is the Rayleigh distance.

3.2. Interferometer operation

To model the two-beam interference, we consider slightly contaminated, but otherwise identical
and coaxial, TEM00 beams. Next, the measurement beam ψm (which travels through the variable
arm) is propagated (with respect the ψr reference) by a distance s along its axis.
Hence, by using the scalar and paraxial approximations, we describe each factor of the

(separable) interfering fields by the complex amplitudes

ψr,m(ξ; ζ) = u0(ξ; ζ)eSr,m(ξ ;ζ ) ≈
e−iξ2/q
√
−iq

[
1 + Sr,m(ξ; ζ)

]
, (3)

where u0 is the TEM00 ξ-component and the real and imaginary parts of Sr,m(ξ) describe small,
zero mean, amplitude and wavefront errors. We set ζ = 0 at the detector plane, restricted to a
single (either ξ1 or ξ2) transverse dimension, and, taking advantage of the Sr,m smallness and
limiting the investigation to the leading terms, expanded exp(Sr,m) in series up to the first order.
A way to express Sr,m(ξ, ζ = 0) is by series expansions in terms of Hermite polynomials.

Hence,
Sr(ξ; 0) = −(ξ0 + ia)H1(

√
2ξ) − (iκr/8 + η)H2 + iγrH3(

√
2ξ), (4)

Sm(ξ; 0) = ξ0H1(
√
2ξ) + ηH2(

√
2ξ) + iγmH3(

√
2ξ), (5)

where ξ0, ia, iκr, η, and iγr,m are small parameters describing the offset, misalignment, wavefront
curvature, radius difference, and wavefront undulation, respectively, of the interfering beams.
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The real coefficients describe aberrations of the intensity profile; the imaginary ones, wavefront
aberrations [2,18]. The null imaginary part of the H1 coefficient in Eq. (5) ensures that ψm
propagates parallel to its axis. We stopped the Sr,m(ξ, ζ = 0) expansions at H3 because this is the
lowest-order term changing the Gaussian nature of the interfering beams.

In Eq. (3), the u0 axis, waist, and waist location are arbitrary. We set the z axis collinear to the
ψm axis and crossing the ζ = 0 plane midway between the beam axes. Also, we located the u0
waist at ζ = 0 and set its radius as

w2
0 =

2w2
rw2

m

w2
r + w2

m
, (6)

where wr,m ≈ (1 ± η/4)w0 are the ζ = 0 radii of ψr,m and η accounts for their difference. In
Eqs. (4) and (5) a, κr, and γr,m are expressed in radians, 2

√
2a = kw0α takes the tilt α of the

reference wavefront into account, ±x0 = ±
√
2ξ0w0 are the offsets of the beam axes, κr = zR/Rr

is the dimensionless curvature of the ψr wavefront that adds on the curvature of u0, and γr and
γm take the H3 contaminations to the ψr and ψm wavefronts into account. The small difference
between the ψr,m(ξ; 0) radius implies that the initial unbalance of the interferometer is significantly
smaller than zR. Eventually, we took the initial curvature of the ψm wavefront as null; therefore,
the ψm waist is at ζ = 0.

Expanding Sr,m(ξ, 0) in terms of Hermite polynomials corresponds to represent ψr,m in terms
of Hermite-Gauss modes. Hence, by using Eq. (2) and propagating ψm by ς = s/zR, the ζ = 0
interfering fields are

ψr(ξ; 0) = e−ξ
2
[
1 + (a − iξ0)u1(ξ, 0) + (η + iκr/8)u2(ξ, 0) + γru3(ξ, 0)

]
, (7)

ψm(ξ; ς) = e−ξ
2
[
1 + iξ0u1(ξ, ς) − ηu2(ξ, ς) + γmu3(ξ, ς)

]
. (8)

It is worth noting that the u1 and u2 contaminations describe Gaussian beams expressed in an
Hermite-Gauss base whose TEM00 mode is different from the beams at hand. Only the u3
contamination inherently changes the nature of ψr and ψm.
The interference signals, integrated over a segmented detector, are

I±(ς) =
∫ b±

a±
|ψr(ξ; 0) + ψm(ξ; ς)|2 dξ, (9)

where the ± subscripts indicate the lower (a− = −∞ and b− = 0) and upper (a+ = 0 and b+ = +∞)
areas and we considered one dimension only. The differential phase is

∆φ(ς) = arg(Ξ+) − arg(Ξ−) = arg(Q) ≈ Im(Q), (10)

where Q = Ξ+/Ξ−,

Ξ±(ς) =

∫ b±

a±
ψ∗r (ξ; 0)ψm(ξ; ς) dξ, (11)

the star is the complex conjugation, |Q− 1| � 1, and we limited ourselves to the first-order terms.
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Next, by using Eq. (3) in Eq. (11) and expanding Ξ+/Ξ− up to the first order of Sr,m via the
approximation (1 + B+)/(1 + B−) ≈ 1 + B+ − B−, we obtain

Q ≈ 1 +
2
√
π

∫ ∞

0
w(q)

[
S∗r (ξ; 0) + Sm(ξ; ς)

]
dξ −

2
√
π

∫ 0

−∞

w(q)
[
S∗r (ξ; 0) + Sm(ξ; ς)

]
dξ (12)

where the reference and measurement wavefronts are weighed by

w(q) =

√
i + q
q

e−(i+q)ξ
2/q =

√
2i + ς
i + ς

e−2ξ
2/υ2e−iκmξ

2
, (13)

κm = ς/(1 + ς2) is the dimensionless curvature of the u0(ξ; ς) and ψm(ξ; ς) wavefronts, and

υ2 =
2(1 + ς2)
2 + ς2

(14)

is the harmonic mean of the (dimensionless) u0 squared-radii evaluated at ζ = 0 and ζ = ς,
which are equal to 1 and 1 + ς2. The square root indicates the principal value, and the imaginary
part of the complex square root has a branch cut along the negative real axis.
By carrying out the integrations in Eq. (12), where Sr,m(ξ) are made explicit by comparing

Eq. (3) to Eqs. (7) and (8), we obtain an expression for the differential phase that turns out to be a
linear combination of terms proportional to the coefficients introduced in Eqs. (4) and (5) [19]

∆φ(ς) = 4
√
2/π Im

(√
q

i + q
A1

)
+ 32

√
2/π Im ©«

√
q3

(i + q)3
A3

ª®¬
= cαa + c0ξ0 + crγr + cmγm,

(15)

where
A1 = ia +

i − q
q

ξ0 + 6iγr −
6|q|2

q3
γm, (16)

A3 =
1
q3
γm − iγr, (17)

and the cα, c0, cr, cm coefficients will be made explicit in the following sections. In addition
to the tilt, ∆φ(ς) depends on the beam-axis offset and TEM30 contaminations, but not on the
wavefront curvature and beam-radius difference. In fact, at the first-order approximation, the
radius and wavefront curvature differences only describe a Gaussian beam having waist radius
and location different from those of u0 and, therefore, traceable to the freedom of the u0 choice.

3.3. Measurement equation

Differential sensing delivers information on the wavefront misalignment in a way similar to a sine
bar [1]. Hence, to determine the measurement equation, we set the ξ0 = γr,m = 0 and consider
the interference of two tilted Gaussian beams. From Eq. (15), the result is

∆φ(ς) = cαa = 4
√

2
π
Re

[√
q

i + q

]
a, (18)

where 2
√
2a = kw0α and α is the misalignment. The differential phase is shown in Fig. 2 (left)

together with the

∆φ(ς) ≈
4υa
√
π
=

2kwα
√
2π

(19)

approximation, where 1 ≤ υ(ς)<
√
2 and w(ς) = υw0 take the effective radius of the interference

pattern after the ψm propagation into account.
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Fig. 2. Left: Differential phase Eq. (18) expected when the reference wavefront is tilted by
2
√
2a/(kw0) (solid line). The dashed line is the approximation Eq. (19). Right: differential

phase Eq. (20) expected when the offset between the axes of the interfering beams is 2
√
2ξ0

(solid line). The dashed line is the approximation Eq. (21). The horizontal lines are the
asymptotes for the far-field propagation of the measurement beam.

The calibration factor in Eqs. (18) and (19) depends on the propagation distance. Therefore,
as the beam propagates and unless α = 0, the gradient of the ψm radius makes a non-existent
misalignment to appear. As Fig. 2 (left) shows, near- and far-field detections are not affected by
this problem. Equations (18) and (19) generalize the results given in [13].

4. Aberrated beams

Equation (18) relates the wavefront misalignment to the differential phase at fixed propagation
distances. In the presence of aberrations, Eq. (15) includes propagation-dependent offsets that
will be now investigated.

4.1. Axis offsets

The axis separation is the only mismatch offsetting the differential phase. From Eq. (15), a
2x0 = 2

√
2w0ξ0 separation offsets it by

∆φ(ς) = c0ξ0 = 4
√

2
π
Im

[
i − q√
(i + q)q

]
ξ0, (20)

which is shown in Fig. 2 (right) together with the

∆φ(ς) ≈ 4κmξ0/
√
π, (21)

approximation, where κm(ς) = ς/(1+ ς2). Because of the κm gradient, Eqs. (20) and (21) mimic
a parasitic tilt associated with the ψm propagation.
To explain and check heuristically Eq. (20), we consider the interference of two spherical

wavefronts, k(x ± x0)/(2Rr,m), having radii Rr,m and spaced by 2x0. By linearization of their
phase difference φ(ξ) in their x/w0 = 0 intersection point, we obtain

φ(ξ) =
k(κr + κm)x0x

zR
= 4
√
2 κξ0ξ, (22)

where κ = (κr + κm)/2 is the mean (dimensionless) curvature, κr,m = zR/Rr,m, x = w0ξ,
x0 =

√
2w0ξ0, and kw2

0 = 2zR. After equating Eq. (22) to the phase difference kαw0ξ of two
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plane wavefronts, where α is the tilt inferred from the differential sensing of φ(ξ),

kw0α = 4
√
2 κξ0 (23)

follows. Contrary, by equaling Eq. (19) and Eq. (21), we obtain

kwα = 2
√
2 κmξ0, (24)

where α is the tilt inferred from Eq. (21). In Eq. (24), w2 – the harmonic mean of w2
r and w2

m –
takes the increase of the lever arm into account, which increase is not considered in Eq. (23).
The difference between Eqs. (23) and (24) is due to having neglected the second order term

κrξ0 in Eq. (21), which term accounts for the curvature of the reference wavefront. To take this
curvature into account, though this does not affect the ∂ζ∆φ derivative of our interest, we can
upgrade Eq. (21) by empirically substituting κm + κr for κm. With this upgrade, the near-field
value of the differential-phase offset is

lim
ς→0
∆φ = 4(ς + κr)ξ0/

√
π, (25)

where we used κm = ς/(1 + ς2) ≈ ς.

4.2. TEM30 contaminations

The TEM30 contamination changes the Gaussian nature of the interfering beam. By setting
α = κm = 0 in Eq. (15), we find that it offsets the differential phase by

∆φ(ς) = crγr + cmγm = 8
√

2
π
Im

[
i(q − 3i)q1/2

(i + q)3/2

]
γr + 8

√
2
π
Im

[
[4q − 3(i + q)|q|2]
q5/2(i + q)3/2

]
γm, (26)

whose two contributions are shown in Fig. 3. To check the analytical derivation, we examine the
meaningfulness of the near- and far-field limits. In the near-field case, the

∆φ|ς=0 =
8(γr − γm)
√
π

(27)

offset is duly proportional to the difference of the wavefront gradients at the beam axes. Also,
Fig. 4 shows that, as ψm propagates, its the weighed wavefront aberration reverses. Eventually, it
flattens, while the weighed wavefront error of ψr inflates. As Fig. 4 suggests,

lim
ς→±∞

∆φ = −
8
√
2γr
√
π

, (28)

depends only on the ψr wavefront.

4.3. Wavefront ripples

By comparing the laser-beam wavefront against the diffracting planes, our x-ray/optical interfer-
ometer highlighted λ/10 (peak-to-valley) errors having a periodicity equal to about the beam
radius [20,21]. These observation suggests that the interfering beams might be contaminated by
high-frequency modes, e.g., due to the imprinting of imperfections by the surfaces hit or crossed
in the beam ways through the interferometer.
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Fig. 3. H3 contributions – reference (left) and measurement (right) beams – to ∆φ, see
Eq. (26). The horizontal lines are the asymptotes for the far-field propagation of the
measurement beam.

Fig. 4. Weighed (detector-plane) H3 contributions to the ψr,r wavefronts, see Eq. (12),
at different interferometer unbalance. Left: reference wavefront. Right: measurement
wavefront.

To examine the impact of these high-frequency modes, we considered sinusoidal ripples.
Hence, the interfering beams are

ψr(ξ; 0) = e−ξ
2
[
1 − iγr sin(ωrξ + βr)

]
, (29)

ψm(ξ; 0) = e−ξ
2
[
1 − iγm sin(ωmξ + βm)

]
, (30)

where ωr,m and βr,m are the angular frequency and phase (relative to the beam axis). The minus
γr,m sign makes the signs of −γ sin(ωξ + β) and γH3(

√
2ξ) derivatives (evaluated in ξ = 0) equal.

The paraxial propagation of ψm in free space is given by the Rayleigh-Sommerfeld propagator.
Therefore [19],

ψm(ξ; ς) =
e iπ

4
∫ +∞
−∞

e
−i(ξ−τ)2

ς ψm(τ; 0) dτ
√
πζ

=
e−iξ2/q
√
−iq

[
1 − iγme−

(q−i)ω2
m

4q sin
(
iωmξ

q
+ βm

) ]
, (31)

where q = i+ ς and we left out the exp(−iks) term. Up to the first order of γr,m, by using Eq. (29)
and Eq. (31) in Eq. (11), we obtain [19]

∆φ(ς) =
4
π
Re

[
F

( √qωr

2
√
i + q

)]
γ′r + 2Im

[
e−

qωm
4(i+q) erf

(
ωm

2√q
√
i + q

)]
γ′m, (32)
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where γ′r,m = γr,m cos(βr,m), F(.) is the Dawson’s integral [22, Eq. 7.2.5], and erf(.) is the error
function. The phase βr,m gauges the ripple impact on ∆φ; when βr,m = 0 is maximum, when
βr,m = π/2 is null.
Figure 5 shows the γ′r,m contributions to ∆φ when βr,m = 0 rad. The impact depends on the

dimensionless frequency ωr,m; both low and high frequencies make it irrelevant. In the first (long
period) case, there is no ripple. In the second (short period) case, the ripple is washed out by
integration and propagation. When ς ≈ 0, the ψm ripple makes ∆φ swing.

Fig. 5. Ripple contributions – reference (left) and measurement (right) wavefronts – to ∆φ,
see Eq. (32), when βr,m = 0 rad.

To check the meaningfulness of Eq. (32), we examine if the near- and far-field limits of Eq. (32)
make sense and compare them to the same limits already studied in section 4.2. Figure 6, where
we set ωr,m = 2π rad, shows how the (weighed) wavefront ripples change with the interferometer
unbalance – from the ς = 0 near-field to the ς →∞ far-field.

Fig. 6. Weighed (detector-plane) interfering wavefronts, see Eq. (12), at different inter-
ferometer unbalance. Left: reference wavefront. Right: measurement wavefront. We set
ωr,m = 2π rad.

As ψm propagates, the ψr wavefront-aberration inflates and flattens, but does not change very
much. As expected, its contribution to Eq. (32) (see, Fig. 5 left, contour line ωr = 6 rad) is
maximum when ς = 0, but almost constant.
Also, the near field offset, consistently with Eq. (27),

lim
ς→0
∆φ =

4F
(
ωr
2
√
2

)
√
π

γ′r −
4F

(
ωm
2
√
2

)
√
π

γ′m (33)

is duly proportional to the difference of the wavefront gradients at the beam axes and tends to
zero for both low and high frequencies.
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Eventually, Fig. 6 shows that, as ψm propagates, its wavefront reverses and, eventually, flattens.
Consequently, as this figure and Eq. (28) suggest, the far field offset,

lim
ς→±∞

∆φ = 2e−ω
2
r /4erfi(ωr/2)γ′r −

2ωme−ω
2
m/4

√
π (1 + ς2)

γ′m, (34)

where erfi(.) is the imaginary error function and the γ′m coefficient vanishes, depends only on γ′r .

5. Comparison with the experimental data

As shown in Fig. 7, the laser beam is set orthogonal to the analyzer front-mirror by looking
at the maximum value of the measured displacement to within 10 µrad uncertainty [12]. The
gradient of the wavefront tilt, inferred from the differential signal (green line), is due to the
coupling of transverse displacement and curvature of the interfering wavefront. However, when
the measured displacement is maximum – that is, when the laser beam is orthogonal and no
transverse displacement occurs – the gradient is not null.

Fig. 7. Blue: fractional changes of the measured displacement of the x-ray/optical
interferometer vs the deviation δ from a normal incidence of the laser beam on the analyzer
front-mirror. Green: gradient of the wavefront tilt inferred from differential sensing when
the analyzer is displaced, but driven so as to nullify the pitch rotation. The slope of the
best-fit line is 1/R = 0.035 m−1, the gradient at normal incidence is 1.3 nrad/mm.

The interferometer operated with arms of equal length. The interfering-beam parameters were
[23]: wavelength 532 nm; divergence 0.15 mrad, beam-waist radii w0r = w0m = 1.13 mm; beam
radii at the detection plane wr = wm = 1.17 mm; wavefront curvature-radii at the detection plane
Rr = Rm = R = 28.6 m; Rayleigh distance zRr = zRm = 7.53 m, distance of the detection plane
from the beam waists zD = 2.14 m; all estimated to within a 10% uncertainty. The parameters of
the TEM00 mode in the Eqs. (7) and (8) decompositions are w0 = 1.15 mm and zR = 7.82 m.

If the orthogonality error is equal to δ, a beam propagation by s – which means that the analyzer
moves by s/2 – shears the interfering beams by 2ξ0 = sδ/(

√
2w0). We differentiated Eq. (23),

where κm + s/zR substitutes for κm, to compare the pointing error explaining the 1.3 nrad/mm
intercept of Fig. 7 with the 10 µrad uncertainty of the maximum-displacement abscissa. Hence,

∂sα |s/zR=0 ≈ δ/R, (35)

which equation, as shown in Fig. 7, also allowed us determining the wavefront curvature. The
δ = 37 µrad pointing error that explains ∂sα = 1.3 nrad/mm is larger that the estimated 10 µrad
pointing uncertainty.
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To explain the intercept by a fixed offset 2ξ0 between the axes of the interfering beams, we
equated and differentiated Eqs. (19) and (25). Hence,

2kw
√
2π
∂sα |s=zD =

4
√
2 ξ0
zR

, (36)

where ∂s = ∂ς/zR. Since the interfering beams are made collinear to better than 20 µrad and the
distance of the detection plane from the interferometer mirrors is less than 1 m, the 0.14w0 ≈ 160
µm offset explaining the 1.3 nrad/mm gradient is more than the maximum 20 µm expected.
The deviation from flatness of the interferogram – λ/10 peak-to-peak, see [20,21] – implies

that |γr,m |<35 mrad. By equating and differentiating Eqs. (19) and (26), we obtain

2kw
√
2π
∂sα |s=zD = ∂s∆φ|s=zD = (1.09 m−1)γm, (37)

where the contribution of the reference wavefront is irrelevant. The H3 contamination explaining
∂sα = 1.3 nrad/mm, γm = 13 mrad, is within the stated maximum.
As regards as the wavefront ripple, by equating and differentiating Eqs. (19) and (32), we

obtain
2kw
√
2π
∂sα |s=zD = ∂s∆φ|s=zD = (0.19 m−1)γ′m, (38)

where the contribution of the reference wavefront is irrelevant and we used ωm = 2π, consistently
with the observation of a periodicity similar to the radius of the beam spot. The ripple explaining
∂sα = 1.3 nrad/mm is γ′m = 76 mrad, a value that is compatible with the observed aberrations. In
fact, the λ/10 interferogram deviation from flatness implies |γ′m |<140 mrad, where we used the
0.64 mean of | cos(βm)| over a uniform phase βm.
It is worth noting that a waving wavefront does not propagate along the z axis. Therefore,

the propagation direction of ψm – which is identified by the maximum value of the measured
displacement (see Fig. 7) – deviates from the orthogonality by δ0 = p0/(kw0), where

p0 = γmωme−ω
2
m/8 cos(βm) (39)

is the (dimensionless and first order) center-of-mass of the power spectrum of the wave-vector
transverse-components. By using ωm = 2π and γm cos(βm)<140 mrad, we obtain δ0<0.7 µrad.
Therefore, the off-axis propagation is irrelevant.

6. Conclusion

We realized an optical interferometer which uses a single laser beam to measure displacements
and tilts of an x-ray interferometer simultaneously and with picometer and nanoradian resolutions.
It applies differential wavefront sensing to decouple and measure three degrees of freedom via
the local phases of the interference pattern inferred by the signals of a quadrant photodiode. We
noted that the optical and x-ray measurements of the parasitic pitch-rotation associated to the
displacement of the movable crystal disagree. In this paper, we developed an analytical model of
the interferometer operation and investigated how the tilt-free propagation of mismatched and
aberrated wavefronts, otherwise parallel, affects the differential phase.
We proved that mismatches and aberrations couple to the propagation and explain the

disagreement observed. The false inference of tilted beams is due to the offset of the differential-
phase readout. It originates from the offset between the beam axes and the contaminations by the
TEM30 mode. Furthermore, since the readout offset depends on the propagation distance, we
also infer a (non-existent) parasitic tilt associated with the propagation of the measurement beam.
This result strengthens the confidence in the measurement of the silicon lattice parameter,

which was essential to determine the Avogadro and Planck constants and will be still necessary
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to realize the kilogram following the redefinition of the International System of Units based
on defining constants. Our formalism may also help to investigate the operation the LISA
interferometer when measuring the tilt of the received wavefront and test mass.
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