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The development of an efficient neuromorphic computing system requires the use of nanodevices
that intrinsically emulate the biological behavior of neurons and synapses. While numerous artificial
synapses have been shown to store weights in a manner analogous to biological synapses, the chal-
lenge of developing an artificial neuron is impeded by the necessity to include leaking, integrating,
firing, and lateral inhibition features. In particular, previous proposals for artificial neurons have
required the use of external circuits to perform lateral inhibition, thereby decreasing the efficiency of
the resulting neuromorphic computing system. This work therefore proposes a leaky integrate-and-
fire neuron that intrinsically provides lateral inhibition, without requiring any additional circuitry.
The proposed neuron is based on the previously proposed domain-wall magnetic tunnel junction
devices, which have been proposed as artificial synapses and experimentally demonstrated for non-
volatile logic. Single-neuron micromagnetic simulations are provided that demonstrate the ability of
this neuron to implement the required leaking, integrating, and firing. These simulations are then
extended to pairs of adjacent neurons to demonstrate, for the first time, lateral inhibition between
neighboring artificial neurons. Finally, this intrinsic lateral inhibition is applied to a ten-neuron
crossbar structure and trained to identify handwritten digits and shown via direct large-scale micro-
magnetic simulation for 100 digits to correctly identify the proper signal for 94% of the
digits. Published by AIP Publishing. https://doi.org/10.1063/1.5042452

I. INTRODUCTION

Whereas conventional computing machines efficiently
solve staggeringly difficult deterministic problems, the
human brain is far superior for processing unstructured real-
world information. Furthermore, the accomplishment of
some tasks, such as those related to pattern recognition, can
be achieved by the human brain with orders-of-magnitude
less energy than with a computer.1–3 Though human under-
standing of our own mental processes is far from complete,
neuroscience researchers have identified neurons and syn-
apses as core elements of our neural information processing
systems: the neurons emit electrical signals based on input
electrical signals, while the synapses provide electrical con-
nectivity between the neurons. These electrical interactions
are generally responses to external stimuli and result in
changes to the physical state of a person through modifica-
tions of memory, hormonal changes, and physical actions
(e.g., talking, walking). It is generally believed that these
external stimuli cause short- and long-term changes to the
synapses, temporarily or permanently modifying the

connectivity between neurons.4 By modifying the connectiv-
ity between neurons, the brain responds to external stimuli by
altering the circuit through which external stimuli cause
changes in the human’s physical state. Simultaneously, the
brain also responds to these external stimuli by taking the
actions prescribed by the circuit.

In order to realize an efficient artificial neuromorphic
information processing system, the system should be
designed specifically to emulate the electrical interactions
present within a biological system. While much previous
work has involved software simulation of neurons and syn-
apses with general purpose computing hardware,5–7 the
energy consumed by these systems exceeds that of the brain
by orders of magnitude.8,9 Efforts are therefore underway to
develop a neuromorphic hardware system, with exciting
recent results achieved with silicon transistor circuits that
emulate the behavior of both neurons and synapses.10–12

However, as silicon transistors inherently provide volatile
binary switching that does not readily map to neuron and
synapse behavior, it is expected that the use of nanodevices
that emulate neuron and synapse behavior will drastically
increase the efficiency of neuromorphic computing systems.
The non-volatility provided by spintronic devices, as well as
memristors, is particularly promising for the development of
nanodevices that intrinsically emulate neurological behavior.
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While numerous two-terminal nanodevices13—particu-
larly memristors14,15—have been shown to modulate the
resistance in a non-volatile manner analogous to the behavior
of biological synapses, the relative complexity of neuron
functionality has impeded the identification of analogous
behavior in nanodevices.16–18 In particular, neuroscientific
studies suggest that biological neurons integrate input signals
over time and fire once a threshold value has been reached.19

In the absence of a strong input, the neurons leak over time
and eventually reset to a relaxed state. Furthermore, neighbor-
ing neurons interact in an inhibitory manner via a variety of
species of connected inhibitory interneurons.20 These interneu-
rons utilize neurotransmitter projections [i.e., γ‑aminobutyric
acid (GABA)] to continuously reduce the effectiveness of
neighbors by altering the synaptic efficiency of contributing
synapses or directly preventing depolarization.21,22

As the nature of firing requires the interaction of external
devices and therefore must be implemented in concert with
an external circuit, the ideal artificial neuron should inher-
ently perform leaking, integration, and lateral inhibition.
Several spintronic neurons have been proposed,23–28 includ-
ing spiking neurons23,29 that inherently perform integration.
However, these neurons require complementary hardware to
perform leaking and lateral inhibition. Furthermore, lateral
inhibition has been demonstrated in spintronic neurons
through the use of an additional crossbar row.29–31

This paper therefore proposes the first artificial neuron
that inherently performs integrating, leaking, and lateral inhi-
bition within a single nanodevice. This is achieved by adapt-
ing the experimentally-proven32 domain wall-magnetic tunnel
junction (DWMTJ) device,33 which has heretofore been
applied to Boolean logic,32–34 artificial synapses,25,26,35–37

and artificial neurons that intrinsically provide neither leaking
nor lateral inhibition.25,26,31 By adding a hard ferromagnet
below the DWMTJ track to cause behavior analogous to
leaking, a novel device is here demonstrated with micromag-
netic simulation to intrinsically perform the leaking, integra-
tion, and lateral inhibition required by an artificial neuron.
Similar to previous work,28,38 firing is achieved in concert
with an external circuit when the MTJ resistance is switched
by the propagation of a domain wall within the soft ferro-
magnetic track. The ferromagnetic tracks create stray fields
that inhibit the motion of domain walls within the ferromag-
netic tracks of adjacent neurons, thus inherently providing
lateral inhibition. The efficacy of this approach within a large
system is demonstrated with micromagnetic simulations of a
winner-take-all (WTA) output neuron layer that achieve an
accuracy of 94% for the well-known task of handwritten
digit recognition.

II. BACKGROUND

The development of a hardware neural network requires
artificial neurons and synapses that intrinsically function in a
manner analogous to their biological analogs. In order to
enable fabrication that is compatible with conventional pro-
cesses, a synapse crossbar array connects the neurons. In
order to emulate biological processes and implement the
winner-take-all schemes involved in many machine learning

techniques, these neurons must provide lateral inhibition,
which is achieved here by adapting the DW-MTJ device.

A. Leaky integrate-and-fire neuron

The leaky integrate-and-fire (LIF) neuron has been well-
established as a primary area of interest for the development
of an artificial neuron and is a modified version of the origi-
nal integrate-and-fire circuit.39 It is based on the biological
neuron, which operates in a network of other neurons, com-
municating via electrical spikes and chemical signals. In
order to emulate this method of communication, an electrical
LIF neuron sends spikes of voltage periodically, resulting
from input currents arriving through synapses connected to
other neurons in the network. In addition, there is also a
refractory period, in which a neuron cannot fire for a certain
amount of time after it has recently fired.

An LIF neuron continually integrates the energy pro-
vided by an input current until a threshold is reached and the
neuron fires, emitting this energy as a voltage spike that pro-
vides current to other neurons via synapse connections. By
emitting this energy, the neuron is returned to a low energy
state and continues to integrate input current until its next
firing. Throughout this process, the energy stored in the
neuron continually leaks such that if insufficient input
current is provided, the neuron gradually reverts to a low
energy state. This prevents the device from indefinitely
retaining energy, which would not match the behavior of bio-
logical neurons. The LIF behavior is illustrated in Fig. 1,
where an input current continually modulates the energy
(stored as voltage) within a LIF neuron. A large current is
continually applied during the initial stage, resulting in
repeated periods of integration interrupted by firing events.
When no current is applied, the neuron leaks energy by
decreasing the stored voltage.

FIG. 1. The leaking, integrating, and firing of a leaky integrate-and-fire
neuron. The input current shown in (a) causes leaking, integrating, and
firing, as noted in (b). (c) Shows the labels of the three phases that the leaky
integrate-and-fire can go through when excited by the input current.
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B. Synapse

In biological systems, the synapse is the gap between
two neurons and acts as a passageway of communication
between the two by sending and receiving information via
neurotransmitters on either end of each neuron. In neuromor-
phic computing architectures, synapses play a similar role,
where each synapse has a resistance that determines the
current provided to output neurons based on the voltage
applied to the input neurons. The connectivity is defined by
an internal weight that is refined while training to enable the
processing of particular types of data.

Artificial synapses are a key component of neuromorphic
computing systems, and the DW-MTJ has previously been
shown as an intriguing spintronic synapse.25,26,36 The non-
volatility of the DW-MTJ and other proposed synapses16–18

enables low energy consumption.40 Furthermore, the poten-
tial use of a single device type for both synapses and neurons
is highly advantageous for the development of an integrated
neuromorphic system.

C. Crossbar array

Crossbar arrays enable the area-efficient integration of
many devices that can be connected to vertical and horizontal
wires. Similar to those frequently used in memory, many
neuromorphic crossbar arrays incorporate memristors at each
intersection in the array. As can be seen from Fig. 2, a
synapse sits at each crosspoint of the array, determining the
strength of the connection between one input neuron and one
output neuron. Though Fig. 2 shows an 8 × 8 crossbar, it
should be noted that the size of a crossbar array can be
varied and that the structure need not be square.

D. Lateral inhibition and winner-take-all

Lateral inhibition is a process that allows an excited
neuron to inhibit, or reduce, the activity of other nearby or
connected neurons.41,42 One such neural computing system
that seeks to take advantage of this is the winner-take-all
system.43,44 As a form of competitive learning, artificial
neurons contend for activation, meaning that only one neuron
is chosen as the winner and allowed to fire, using lateral inhi-
bition to suppress the output of all other neurons. After the
winning neuron fires, the system is reset and the neurons
once again compete for activation. A winner-take-all system
is one of the many machine learning paradigms that take
advantage of the lateral inhibition phenomenon, which is
commonly used in recognition and modeling processes.

In Fig. 2, the output neurons are arranged in a
winner-take-all configuration. Depending on the input cur-
rents from the input neurons and the weights stored in the
crossbar synapses, one output neuron is chosen to fire. As all
output neurons are connected, the firing of the winning
neuron prevents the firing of the other neurons through lateral
inhibition. After the winning neuron fires, the external node
emits an inhibitory signal, resetting the whole system.

E. Domain wall-magnetic tunnel junction

The DW-MTJ device32,33 consists of a soft ferromag-
netic track within which a magnetic DW moves, antiferro-
magnets at both ends to contain the DW within the track, and
a MTJ that is in either a high or low resistance state depend-
ing on the position of the DW in relation to the MTJ. [This
device is similar to that of Fig. 3(a), though without the hard
ferromagnet beneath the soft ferromagnetic track.] When suf-
ficient current flows through the DW track, a torque is
induced on the DW that causes it to move in the direction of
electron motion. Alternatively, spin-orbit torque45,46 can be
used to provide increased efficiency; the general device
behavior would be unchanged.

The DW-MTJ has previously been demonstrated experi-
mentally and can be used to perform logical operations32–34

as well as to implement artificial synapses25,26,35–37 and
neurons.25,26,31 These functions are performed by selective
use of the three terminals of the device: writing is performed
by applying a voltage between the two antiferromagnets such
that the current flows through the track to move the DW;
reading is performed by applying voltage between the MTJ
and either side of the device such that the resulting current is
dependent on the position of the DW relative to the MTJ.

III. LEAKY INTEGRATE-AND-FIRE DOMAIN WALL
NEURON

By adding a hard ferromagnet below the DW-MTJ
described above, the DW-MTJ functions as a leaky
integrate-and-fire neuron. The application of current causes
the DW to shift within the track for integration, the nearby
hard ferromagnet causes the DW to shift in the opposite
direction for leaking, and firing occurs when the DW passes
beneath the MTJ. In addition, magnetostatic coupling
between adjacent neurons provides the lateral inhibitory

FIG. 2. Neuromorphic crossbar array. The output neurons are connected in a
winner-take-all (WTA) manner such that only one output neuron is able to
fire within a given time period.
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behavior which is critically important for the implementation
of neural networks. The intrinsic lateral inhibition—without
any peripheral overhead circuitry—enables the design of
compact and energy-efficient neurons.

A. Device structure

As shown in Fig. 3(a), the neuron consists of the
DW-MTJ32,33 with the addition of a hard ferromagnetic layer
beneath the neuron. A conductive ferromagnet or an insulat-
ing ferrimagnet can be used, which could be sputter depos-
ited in situ with the other thin film layers. The bottom
magnet stray field affects the DW through an insulating cou-
pling layer whose thickness can be chosen to optimize the
proximity field.

The DW track modeled for this device is 600 nm,
32 nm, and 1.5 nm in the x-, y-, and z-directions, respectively.
The track has perpendicular magnetic anisotropy: it is mag-
netized in the +z direction to the left of the DW and in the
−z direction to the right of the DW. The DW magnetization
itself rotates in the x-y plane. At either end of the track, the
antiferromagnets create regions of constant magnetization
through exchange bias that are modeled in micromagnetic
simulation by 30 nm-wide regions of frozen magnetic spins.
Therefore, the DW is capable of moving within a 540 nm
range in the track. The results described in the remainder of
this work are based on Mumax347 simulations with the fol-
lowing magnetic parameters: saturation field value of 1 T,
exchange stiffness of 13 × 10−12 J/m, perpendicular anisot-
ropy constant of 4 × 105 J/m3, polarization of spin transfer

torque of 1, non-adiabaticity factor of 0.9, Landau-Lifshitz
damping constant of 0.015, and discretization cell size of 1 ×
1 × 1 nm3.

B. Leaking

The leaking functionality is implemented by a 20 mT
magnetic field produced by a ferromagnet beneath the DW
track in the −z direction. This produces a constant force that
results in the DW shifting in the −x direction. In the absence
of current and under the sole influence of the magnetic field,
the DW shifts in the −x direction as can be seen from Fig. 4
and the accompanying multimedia view. This oscillatory DW
motion is a result of precession of the DW under the mag-
netic field. In the absence of an applied current, the DW tra-
verses the entire available track in around 220 ns, which
corresponds to an average velocity of 2.5 m/s.

A primary advantage of this leaking technique is that
no external excitations are required to drive the leaking
mechanism: the hard ferromagnet beneath the DW track
continuously provides the required magnetic field. Whereas
other proposed neuron leaking schemes require the use of a
small leaking current flowing through the neuron that
results in resistive power dissipation,29,30 our proposed
leaking scheme avoids this power dissipation by replacing
the leaking current with a constant magnetic field.
Furthermore, as no external excitations must be applied by
an external control circuit to perform leaking, the proposed
leaking scheme avoids the hardware costs associated with
overhead circuits.48

FIG. 3. (a) The DW-MTJ neuron is
composed of a ferromagnetic track
containing a DW. A fixed ferromagnet
provides a constant magnetic field to
cause leaking, while current between
the two electrical contacts causes inte-
gration. When the DW traverses the
MTJ, the resistance changes causing
the firing of an output spike. (b) For
multiple neighboring neurons, a shared
fixed ferromagnet provides an identical
leaking field to all neurons. In this
figure, the central neuron is firing.
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C. Integration

In order to integrate the input current and eventually
cause the neuron to fire, current applied to the DW track
above the ∼2 × 1012 A/m2 threshold current overcomes the
leaking field and causes the DW to shift in the +x direction.
Figure 4 therefore demonstrates the ability of the DW-MTJ
neuron to both integrate and leak without any external cir-
cuitry. As the integration is significantly faster than the
leaking, this artificial neuron can continually integrate infre-
quent input signals that push the DW further and further in
the +x direction. This can be seen further in the multimedia
view of Fig. 4.

D. Firing

In the firing operation, the neuron generates an output
spike while resetting all the neurons in the same layer to
enforce a refractory period during which these neurons
cannot fire. The DW-MTJ achieves this through use of the
MTJ formed by the track, tunnel barrier, and pinned ferro-
magnet above the track as shown in Fig. 3(a). When the DW
moves sufficiently in the +x direction such that the magneti-
zation direction of both the DW track and the pinned ferro-
magnet is in the +z-direction, the MTJ resistance is switched
from high to low. This resistance switching can generate an
output firing spike and be used as an output signal or

FIG. 4. Leaking and integration of the DW-MTJ neuron. (a) Time vs. DW position plot for three consecutive 2 ns long current pulses of magnitude 2.75, 2.3,
and 2.5 × 1012 A/m2, respectively, separated by 30 ns leaking periods. During the current pulse periods, integration functionality is taking place. The leaking
functionality resulting from the magnetic field created by the fixed ferromagnet causes precessional DW motion. (b) Current density vs. DW velocity.
(c) Mumax3 snapshots of the integration and leaking at the times noted by dashes in the plot of (a). (Multimedia view).
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propagate to cascaded synapses. In addition, the output firing
spike can also trigger a peripheral circuit that fires the neuron
by sending a current in the direction opposite to the integrat-
ing current. This firing current, in concert with the leaking
magnetic field, rapidly resets the neurons to prepare for the
next set of inputs from the synapses.

IV. LATERAL INHIBITION

In neuroscience, the relation between two neurons can
be such that the excitation of one neuron inhibits the other
neuron from firing41—the mechanism is referred to as lateral
inhibition. For neighboring ferromagnetic tracks above a
shared fixed ferromagnet as depicted in Fig. 3(b), the motion
of a DW can be inhibited by the stray fields from neighboring
neurons. In particular, each ferromagnetic track creates a
dipolar field that attempts to orient neighboring neurons
antiparallel (repulsive coupling). This pushes a slower
neighboring DW in the opposite direction and thus laterally
inhibits the slower neuron. To induce repulsive coupling,
the neighboring tracks should be polarized as shown in Fig. 5.

The DW-MTJs provide lateral inhibition with the DW
velocity of a particular ferromagnetic track dependent on the
current flowing through neighboring tracks. For two neigh-
boring ferromagnetic tracks, the track carrying a higher
current acts as the inhibiting neuron and the track with the
lesser current acts as the inhibited neuron. The relationship
between the DW velocity of a particular track with its neigh-
boring track current density is shown in Fig. 6. For this
example, neuron1 inhibits neuron2 when current through
neuron1 increases beyond 1.5 × 1012 A/m2.

To demonstrate this property, in Fig. 7, we have simu-
lated two ferromagnetic tracks separated by 6 nm along the y
direction, with two different sets of applied current densities.
For the first set of current densities (situation a), neuron1 is
inhibiting neuron2 by carrying a larger current. For the

second set (situation b), the inhibitory property of neuron1 is
diminished by applying no current through it. Thus, due to
the lack of inhibition in situation b, neuron2’s DW can reach
the right end point of the track earlier than in situation a. To
provide insight regarding the transient inhibitory properties,
the DW positions are plotted in Fig. 8(a). The relatively
slower motion of neuron2 in situation a as compared to situa-
tion b is a clear indication of lateral inhibition. This is the
first demonstration of intrinsic lateral inhibition between arti-
ficial neurons without external circuitry.

V. WINNER-TAKE-ALL HANDWRITTEN DIGIT
RECOGNITION

To verify the effectiveness of this system, the well-
known handwritten digit recognition test is run with micro-
magnetic simulation. 8 × 8 resolution handwritten digits are
sourced from the scikit-learn database and run through a
synapse crossbar, with the first neuron to fire determining the
classification of the digit. Overall, the system identifies the
digits with a 94% accuracy over 100 samples.

A. Handwritten digit recognition task

In order to evaluate the behavior of the proposed spin-
tronic neurons in a larger nanoelectronic environment, an
actual data science task was presented to a simulated memris-
tive crossbar of generic nanodevice synapses. The chosen
data science task was the digits database imported from the
Python library scikit-learn, which is a downsampled version
of the classic MNIST database (64 instead of 784 input fea-
tures). The database consists of 1797 total samples of hand-
written digits in 10 separated classes. Following the setup

FIG. 5. The stray magnetic field from neuron 1 pushes the DW of neuron 2
in the −x direction, impeding the +x-directed integration. Neuron 2 also pro-
duces stray magnetic fields that influence neuron 1, but are not shown in this
figure.

FIG. 6. Inhibitory relation between two neurons. A 1.5 × 1012 A/m2
fixed

current density is applied through ferromagnetic neuron2 while the current
density through neuron1 is varied between 0 and 3 × 1012 A/m2. When
neuron1’s current density increases beyond the neuron2’s current density,
neuron2’s DW velocity is significantly reduced.
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given in Ref. 49, the simulated crossbar learns using a binary
adaptation of the classic Widrow-Hoff learning algorithm;50

the analog input features are mapped to the voltage domain
and presented in a sign-symmetric fashion such that each
component of the input Xi feeds into a positive line Xi+ and a
negative line Xi−. Considering the bias lines and the ten dif-
ferent classes of outputs, the simulated crossbar has a dimen-
sionality of 130 input wires and ten output wires.

Before learning, the database is separated into a train-
ing set of 1300 samples and a testing set of 497 samples,
which are never mixed. During a separated training phase
consisting of ten epochs of shuffled presentation of the
training dataset, the conductance of all synapses in the
array is progressively adapted in order to minimize training
error. During the testing phase, the trained crossbar performs
inference. Electrically, the unknown digits are presented to

FIG. 7. Micromagnetic simulation snapshots of two z-axis-polarized ferromagnetic tracks separated by 6 nm along y-direction that provide lateral inhibition.
For situation (a), we apply 1.5 × 1012 and 2 × 1012 Am−2 along the top (neuron2) and bottom (neuron1) tracks, respectively. For situation (b), 1.5 × 1012 and 0
Am−2 current densities are applied, respectively. The snapshots are taken 7.3 ns after the application of current. In situation (a), the top track is inhibited by the
bottom track because of higher current through the bottom track. In this case, the bottom track DW pushes the top track DW in the −x direction. In situation
(b), the top track is not inhibited by bottom track due to the absence of current through bottom track, thus enabling the DW to reach the right end point earlier
than in situation (a).

FIG. 8. (a) Time vs. DW position of
laterally inhibited neurons, demonstrat-
ing the ability of neuron1 to inhibit the
motion of neuron2. (b) Snapshots of
the DW propagation at an interval of
1.5 ns for the two current density sets.
Each set of images corresponds to a
time marked by the dashed lines in (a).
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the input wires and ten output currents are automatically
obtained at the output.

B. Micromagnetic recognition results

Large-scale micromagnetic simulations of an array of ten
of these neurons are simulated to demonstrate the effective-
ness of this neuron for neuromorphic applications. Each of
the ten neurons represents the recognition of one digit, and
their 20 nm separation is close enough for lateral inhibition
to occur. While this 20 nm separation represents an aggres-
sive scaling target, it can be achieved using high-resolution
lithography processing;51,52 magnetic tunnel junctions have
been patterned down to 20 nm diameter with on/off ratios
greater than 100%,53 and block copolymer methods have
resulted in close-packed magnetic tunnel junction disks with
13 nm separation.

The lateral inhibition, in this system, implements a
“winner take all” functionality—if one of the neurons has a

higher input current than the others, the current flowing
through the other neurons is insufficient to shift the DW
against the spin transfer torque. This ensures that only one
neuron is able to fire at a time. To test the effectiveness of
this system, we apply the output currents attained from the
method described above. Before these current density values
are used, they are normalized to the acceptable neuron
current range of 1.5 × 1012 to 4 × 1012 A/m2. After normaliza-
tion, the currents can be applied to each of the ten devices as
the integrating input current. Once the DW has shifted along
95% of the track and across the MTJ, the MTJ resistance
switches and the neuron fires. The firing mechanism sends a
current to reset the neurons as soon as one DW position tra-
verses the MTJ. Finally, there is a leaking phase at the end of
the simulation, to demonstrate the leaking ability of the
device, which along with the reset current represents the
refractory period. The application of each input number lasts
a constant time of 30 ns, with the time of the leaking phase
varying depending on the time of the integrating phase.

FIG. 9. Simulation results of laterally-
inhibited ten-neuron winner-take-all
output layer. (a) Graph result of the
classification simulation. As each simu-
lation lasts for 30 ns, 100 cycles have
been plotted, with each spike represent-
ing one digit. Figs. S2–S5 in the
supplementary material provide a more
detailed picture of the behavior, includ-
ing an example of a neuron failure.
(b) Zoomed in representation of the sim-
ulation, portraying only three cycles.
The input image that was used for iden-
tification is shown beside their relative
cycle. (c) Mumax3 micromagnetic sim-
ulation snapshot of the simulation. The
8 × 8 input image is provided below, to
provide context on the handwritten digit
being identified by the system. In this
case, since neuron #2 fired, the system
correctly identified the image. (d) Plot
of expected results vs. output digit.
When the output matches the input,
they overlap. Every input digit data
point that is visible is therefore a failed
classification. In this case, there are six
failures out of one hundred, displaying
our 94% accuracy. [Ten-part multimedia
view for (c)].
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Figure 9(a) displays the results in graph form, after 100
cycles have run. The winner of each cycle can be seen by
which color reaches the end of the track (in this case, the
95% mark), with each color corresponding with a neuron.
For a clearer representation of three cycles, a zoomed-in
version is provided in Fig. 9(b) along with the original input
image in order to add context to what was being identified
(see Figs. S2–S5 in the supplementary material for additional
representations of these simulation results). Figure 9(c) pro-
vides a visualization of the graph data, showing a Mumax3
simulation snapshot; multimedia view is also included. This
figure only represents only one cycle of graph data, at the
climax of the firing phase, taken as a snapshot from video (d)
of the multimedia view. As can be seen from Fig. 9(d), this
system had a 94% accuracy in selecting the correct winning
neuron that corresponded with the currents provided by the
synapse array. Similar to other neuromorphic systems, this
neuron output layer is highly tolerant to fabrication impreci-
sion, as demonstrated through a Monte Carlo technique in
Fig. S1 in the supplementary material.

VI. CONCLUSIONS

Nanodevices that intrinsically emulate neurological
behaviors have the potential to enable highly efficient neuro-
morphic computing systems. This work therefore proposes a
leaky integrate-and-fire neuron that intrinsically provides
lateral inhibition. When integrated with a crossbar synapse
structure, a layer of ten DW-MTJ neurons classified over 100
8 × 8 handwritten digits with 94% integrity. With the poten-
tial to integrate the proposed DW-MTJ neurons with previ-
ously demonstrated DW-MTJ synapses, these leaky
integrate-and-fire neurons with intrinsic lateral inhibition
have the potential to enable highly effective neuromorphic
information processing systems. Eventually, the intrinsic
inhibition properties of our devices could be used not only
for efficient inference operations, but also to realize previ-
ously hardware-expensive operations such as local spike-
timing dependent plasticity (STDP) learning.

SUPPLEMENTARY MATERIAL

See supplementary material for additional figures and
videos of the micromagnetic simulation.
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