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1. Introduction

In length metrology by optical interferometry, the wave-
front errors affect the period of the interference signal. The 
calibration of lasers against frequency standards achieves 
relative uncertainties smaller than 10−10, but it is not pos-
sible to trace back the wavelength to the frequency via the 
plane-wave dispersion equation. The relevant corrections have 
been extensively investigated in the literature [1–14]. When 
the interfering wavefronts differ only by the propagation dis-
tances through the interferometer arms, the fractional wave-
length difference—which, typically, ranges from parts in 10−7 
to parts in 10−9—is proportional to the square of the beam 
divergence which, for arbitrary paraxial beams, is propor-
tional to the trace of the second central-moment of the angular 
power-spectrum [15, 16].

Characterizations of the laser beams leaving a combined 
x-ray and optical interferometer brought into light wavefront 
and wavelength ripples having a spatial bandwidth of a few 
mm−1 and amplitudes as large as  ±20 nm [17] and  ±10−8λ 
[18], respectively, which might have a detrimental effect 
on the accuracy of the measurements. Since the differential 
wavefront-errors—i.e. a non-uniform phase profile of the 
interference pattern—cannot be explained by aberrations of 
beam feeding the interferometer, we carried out an analysis of 

the effect of wavefront aberrations due to the interferometer 
optics.

In section  2, we outline the mathematical framework 
needed to model two-beam interferometry and paraxial propa-
gation and show a 1D analytical calculation of the difference 
of the fringe period from the plane-wave wavelength. To con-
clude, we report on a Monte Carlo 2D calculation of the fringe 
period in the presence of wavefront errors caused by the inter-
ferometer optics.

2. Mathematical model

2.1. Phase of the interference signal

The interferometer slides two beams, u0(r; z + s) exp[−ik(z + s)] 
and u1(r; z) exp(−ikz), one with respect to the other by a 
distance s while keeping them coaxial. By leaving out the 
exp(−ikz) and exp[−ik(z + s)] terms of the optical fields—
where k = 2π/λ is the plane-wave wave number and z the 
propagation distance—and assuming and infinite detector, the 
integrated interference signal is

S(s) =
∫ +∞

−∞

∫ +∞

−∞
|u0(r; s) + u1(r; 0)|2 dr

=

∫ +∞

−∞

∫ +∞

−∞
|ũ0(p; s) + ũ1(p; 0)|2 dp,

 
(1)

where we reset the origin of the z axis, r is a position vector 
in the detector plane (orthogonal to the z axis), ũ0(p; s) and 
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ũ1(p; 0) are the angular spectra of the interfering beams 
[19], and p is the wavevector of the angular spectra basis, 
exp(−ipr).

The phase of the integrated interference pattern in excess 
(or defect) with respect to  −ks is [15]

Φ(s) = arg
[
Ξ(s)

]
, (2)

where

Ξ(s) =
∫ +∞

−∞
ũ∗1(p; 0)U(p; s)ũ0(p; 0) dp (3)

is the interference term of the integrated intensity. In (3), we 
used ũ0(p; s) = U(p; s)ũ0(p; 0), where

U(p; s) = exp

(
ip2s
2k

)
, (4)

is the reciprocal space representations of the paraxial approx-
imation of the free-space propagator and p2 = |p|2. The fringe 
period is

λe = λ

(
1 +

1
k

dΦ
ds

∣∣∣∣
s=0

)
, (5)

where the sign of the derivative is dictated by the negative sign 
chosen for the plane-wave propagation. It must be noted that, 
since U∗(p; z)U(p; z + s) = U(p; s), the interfering beams 
can be propagated by the same distance z without changing 
(3) and, consequently, λe. Therefore, (5) depends only on the 
length difference of the interferometer arms, not on the detec-
tion-plane distance from, for instance, the beam waist.

The interferometer recombines the light beams after deliv-
ering it through arms of different optical lengths. We consider 
the case when the interferometer arms have the same length; 
an analysis of the fringe phase and period as a function of 
the arm difference is given in [6]. However, we want to allow 
the interferometer arms to deviate from perfection. Therefore, 
ũ1(p; 0) and ũ0(p; 0) are intrinsically different, meaning that 
they cannot be made equal by freely propagating one of the 
two, and, as implicitly assumed in (3), the aberrations occur 
after the beam splitting but before the interferometer mirrors.

2.2. Propagation of the wavefront errors

To give an analytical 1D example, let the complex amplitudes 
of the direct space representation of the interfering beams 
differ by a small wavefront error ϕ(x), that is,

u1(x) = u0(x)eiϕ(x) ≈ u0(x)
[
1 + iϕ(x)− ϕ2(x)/2

]
, (6)

where we omitted the z  =  0 specification, and let

u0(x) =
(

2
πw2

0

)1/4

e−x2/w2
0 (7)

be a normalized Gaussian beam. Since we are interested in the 
small sliding distance with respect to the Rayleigh length—
that is, ksθ2/2 � 1, where θ is the beam divergence—it is 
convenient to use a finite difference approximation of the z 
derivative in the paraxial wave equation  and the first-order 
approximation,

U(x; s) ≈ 1 − is∂2
x

2k
, (8)

of the direct-space representation of the free-space propa-
gator. Hence,

Ξ(s) =
∫ +∞

−∞
u∗1(x)

(
1 − is∂2

x

2k

)
u0(x) dx. (9)

It is worth noting that, since the −∂2
x  operator is self-adjoint, 

it does not matter what of the interfering beams is slid. 
Therefore, for the convenience of the Ξ(s)’s computation, we 
choose to propagate u0(x). By using (6) and carrying out the 
integrations in (9), we obtain [20]

Re[Ξ(s)] =
√
π − s

kw2
0

∫ +∞

−∞
e−ξ2

(1 − ξ2)ϕ(ξ) dξ

− 1
2

∫ +∞

−∞
e−ξ2

ϕ2(ξ) dξ

 

(10a)

and

Im[Ξ(s)] =
√
πs

2kw2
0
− s

2kw2
0

∫ +∞

−∞
e−ξ2

(1 − ξ2)ϕ2(ξ) dξ

+

∫ +∞

−∞
e−ξ2

ϕ(ξ) dξ,

 

(10b)

where ξ =
√

2x/w0.

2.3. Fractional error

The plane-wave wavelength is shorter than the fringe period 
λe as defined in (5); the fractional difference is [20]

∆λ

λ
≈θ2

8

[
1 +

1
π

∫ +∞

−∞
e−ξ2

(1 − 2ξ2)ϕ(ξ) dξ
∫ +∞

−∞
e−ξ2

ϕ(ξ) dξ

− 1
2
√
π

∫ +∞

−∞
e−ξ2

(1 − 2ξ2)ϕ2(ξ) dξ
]

,

 

(11)

where the calculation was carried out up to the second per-
turbative order, ∆λ = λe − λ, θ = 2/(kw0) is the u0’s diver-
gence, and ξ =

√
2x/w0.

The simplest way to investigate the effect of the wavefront 
ripple is to consider the phase grating

ϕ(ξ) = ε sin(aξ + α), (12)

where a = 2πw0/(
√

2Λ), Λ is the grating pitch, and ε � 1 
rad. Hence, by carrying out the integrations in (11), we obtain 
[20]

∆λ

λ
≈ θ2

8

[
1 +

a2e−a2
cos(2α) + (2 + a2)e−a2/2 sin2(α)

2
ε2

]
.

 (13)
The θ2/8 term is proportional to the variance of the u0(x) 

angular spectrum. It is the 1D equivalent of half the trace of 
the second central-moment of the angular spectrum [15, 16], 
which is the standard ingredient to calculate the needed cor-
rection and takes the diffraction of arbitrary paraxial beams 
into account.
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To quantify the impact of the wavefront error, we com-
pare the fractional difference (13) to the approximations 
∆λ/λ ≈ Tr(Γi)/2, where Γi is the second central-moment of 
the angular spectrum of: (i) the unperturbed beam u0 illumi-
nating the interferometer, (ii) the aberrated, u1, and (iii) super-
imposed, u0 + u1, beams exiting the interferometer. In the first 
case we have

Tr(Γ0)/2 = θ2/8, (14a)

in the second

Tr(Γ1)/2 =
θ2

8

[
1 + a2(1 + e−a2

− 2e−a2/2)ε2
]

, (14b)

and, in the third,

Tr(Γ01)/2 =
θ2

8

[
1 +

1
4

a2(1 + 2e−a2
− 2e−a2/2)ε2

]
. (14c)

In (14b) and (14c), we used the approximation (6) and, 
for the sake of simplicity, set α = 0. It is worth noting that, 
as shown in figure 1 (left), the propagation directions of the 
aberrated and superimposed beams, u1 and u0 + u1, deviate 

from that of the unperturbed beam u0 by θ1 = −ae−a2/4ε/k 
and θ01 = −ae−a2/4ε/(2k), respectively. The misalignment 

occurring when Λ/w0 ≈ 3 mirrors the beam’s perception of 
a wavefront tilt.

The fractional delta values of (14a)–(14c),

δi =
Tr(Γi)/2 −∆λ/λ

∆λ/λ
, (15)

relative to the fractional difference (13) evaluated with α = 0,

Figure 1. Left: propagation directions of the aberrated and the superimposed beams (u1 and u0 + u1, respectively) exiting the 
interferometer. Right: delta values of the approximate wavelength differences (14a)–(14c) relative to the average difference (16) versus the 
fractional spatial frequency w0/Λ of the wavefront error (12). The root-mean-square amplitude of the wavefront error is 10 nm.

Figure 2. Left: simulated wavefront error; the colour scale spans  ±30 nm. Right: residuals from a Gaussian of the simulated intensity 
profile; the colour scale spans  ±2% of the maximum beam intensity. The standard deviations of the wavefront errors and intensity profile 
are σϕ = 10 nm and σA = 0.025, respectively.

Figure 3. Orange: y  =  0 section of the differential wavefront 
error shown in figure 2. The blue line is the same section of the 
(aberrated) intensity profile.
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∆λ/λ =
θ2

8

(
1 +

a2e−a2
ε2

2

)
, (16)

are shown in figure 1 (right). In the case of a phase-grating 
pitch equal or shorter than the beam diameter, the increased 
angular spread of the aberrated beam does not affect the fringe 
period. We do not have an explanation of this.

3. Numerical analysis

The analytical treatment of section 2.3 suggests that the actual 
fringe period might be different from the estimate based on the 
second central moment of the angular spectrum. Since the over-
simplified analysis can hardly quantify this difference and the 
associated uncertainty, we resorted to a Monte Carlo estimate.

In the simulation, the two interfering beams,

ui(x, y) =
[
1 + Ai(x, y)/2

]
g(x, y)eiϕi(x,y),

 (17)
were independently generated 103 times. In (17), Ai(x,y) and 
ϕi(x, y) are the intensity and phase noises and

g(x, y) = e−(x2+y2)/w2
0 (18)

is the Gaussian beam feeding the interferometer, where 
w0 =

√
2  mm. In the Monte Carlo simulation, we consid-

ered collinear beams and Ai(x,y) and ϕi(x, y) were collections 
of Gaussian, independent, and zero-mean random variables 
indexed by the observation-plane coordinates. As shown in fig-
ures 2 and 3, they have σϕ = 10 nm and σA = 0.025 standard 
deviations and were filtered so has to have the same correla-
tion length of about 0.5 mm observed experimentally [17, 18].  

We did not consider the wavefront curvature and imperfect 
recombinations of the interfering beams, which might be 
modelled by amplitude and phase perturbations [6].

The Monte Carlo simulation proceeded by Fourier trans-
forming u0(x,y) and u1(x,y) and by calculating their inter-
ference and excess phase according to (3) and (2). Figure 4 
shows the angular spectrum of the aberrated beam. The pla-
teau at 10−4 mrad−2, which extends up to about 1 mrad, origi-
nates from the A(x, y) and ϕ(x, y) noises. According to (5), the 
Monte Carlo values of the fractional difference between the 
fringe period and λ,

∆λ

λ

∣∣∣∣
MC

=
∆Φ

2πs/λ
, (19)

where ∆λ = (λe − λ)/λ, are obtained by propagating the 
fields back and forward by s/2 = ±50λ and by calculating 
the phase difference

∆Φ = arg[Ξ(s/2)]− arg[Ξ(−s/2)], (20)

which is null when the fringe period is equal to the plane-wave 
wavelength λ.

To check the numerical calculations, we considered some 
1D cases, where the analytical expressions of the difference 
between the fringe period and the plane-wave wavelength are 
available, and compared the numerical calculations against 
the values predicted by (11). The results are summarized in 
table 1.

To quantify the effect of 2D wavefront errors, the frac-
tional differences numerically calculated were compared to 
the approximations,

Figure 4. Left: residuals of the angular power spectrum after subtracting the best-fit spectrum of a Gaussian beam; the colours indicate 
the normalized density. Right: averaged radial plot of the angular power spectrum (orange dots); the blue dots are the angular spectrum 
of the Gaussian beam feeding the interferometer. The standard deviations of the wavefront error and intensity profile are σϕ = 10 nm and 
σA = 0.025, respectively. The dashed line indicates the instrumental background of the angular-spectrum measurements [16].

Table 1. Comparison of analytical, equation (11), and numerical, equation (19), calculations of the fractional difference (expressed in nm 
m−1) between the fringe period and the plane-wave wavelength in some 1D cases.

Case σA1 σA2 σφ1/nm σφ2/nm Equation (11) Numerics

A1 = A0 = 0,ϕ1 = ϕ0 = 0 — — — — 1.792 1.792

A1 = A0 �= 0,ϕ1 = ϕ0 �= 0 0.025 0.025 50 50 4.762 4.762
A0 �= 0, A1 = 0,ϕ0 �= 0,ϕ1 = 0 0.025 — 10 — 2.163 2.152
A0 = 0, A1 �= 0,ϕ0 = 0,ϕ1 �= 0 — 0.025 — 10 1.719 1.724
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∆λ

λ

∣∣∣∣
i
=

1
2

Tr(Γi), (21)

which holds when the interferometer does not aberrate the 
interfering beams [15, 16], used to correct the interferometric 
measurements in [21, 23]. In (21), Γi is the second central-
moment of the angular spectrum of: (1) the Gaussian beam 
feeding the interferometer, |g̃(p)|2, (2) the interfering beams 
leaving the interferometer, |ũ0(p)|2 and |ũ1(p)|2, and (3) the 
interfering-beam superposition, |ũ0(p) + ũ1(p)|2. The frac-
tional delta values of the approximate differences (21) relative 
to the numerical one (19),

δi =
Tr(Γi)/2 − (∆λ/λ)MC

(∆λ/λ)MC
, (22)

are shown in figure 5.
The difference estimated from the angular spectrum of the 

beam entering the interferometer is equal to the mean of the 
actual (numerically calculated) values, which are scattered 
by about 12%. Contrary, the differences estimated from the 
angular spectra of the beams leaving the interferometer, super-
posed or not, are significantly larger than truth. It is worth 
noting that the period values separately calculated from the 
angular spectra of each of the two beams leaving the interfer-
ometer are statistically identical. This agrees with the obser-
vation that the Monte Carlo simulation does not distinguish 
between the interfering beams.

4. Conclusions

We observed that the laser beams leaving the combined 
x-ray and optical interferometer used to measure the lattice 
param eter of silicon display wavelength and phase imprints 
having a spatial bandwidth of a few mm−1 and local wave-
front errors and wavelength variations as large as  ±20 nm 
and  ±10−8λ [18]. These aberrations are likely due to the 
interferometer optics. Besides, the observed imprints corre-
spond to a root-mean-square deviation from flatness of each 
of the optics’ surfaces of less than 3 nm for scale lengths 
from 0.1 mm to 2 mm.

Since our measurements, which were corrected on the 
basis of the angular spectra of the laser beam, aimed at 10−9 
fractional accuracy, questions arise about the impact of these 
errors. The Monte Carlo simulation of the interferometer oper-
ation indicates that the corrections made depend on the angular 
spectra having been measured before or after the interferom-
eter. The correction is faithfully evaluated when the spectrum 
is measured before the interferometer.

Unfortunately, not being aware of the problem, we meas-
ured the angular spectra after the interferometer [16, 23, 24]. 
However, we note that the excess of correction is due to the 
angular-spectrum plateau that increases the central second-
moment of the incoming beam. Since, as shown in figure 4 
(right), this plateau is indistinguishable from the instrumental 
background of the spectrum measurement, it was subtracted 
from the data and excluded from consideration. Therefore, 

Figure 5. Distributions of the delta values of the approximate wavelength differences (21)—obtained from the angular spectra of: the 
Gaussian beam feeding the interferometer, |g̃(p)|2 (case 1, top left); the interfering-beam superposition, |ũ0(p) + ũ1(p)|2, (case 3, top right); 
the beams leaving the interferometer, |ũ0(p)|2 and |ũ1(p)|2, (case 2, bottom left and right)—relative to the numerical difference (19). The 
standard deviations of the wavefront errors and intensity profile are σϕ = 10 nm and σA = 0.025. The blue line are the normal distributions 
best fitting the histograms.
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the plateau and, consequently, the wavefront errors did not 
bias the corrections made. By using the typical aberrations 
observed in our set-up, the correction uncertainty is 12%, 
which is within the 15% cautiously associated with them 
[16].

Nevertheless this reassuring conclusion, our work evi-
denced unexpected critical issues, which deserve further 
investigations and on-line determinations of the needed cor-
rection, e.g. by reconstructing its value from the (measur-
able) dependence on the detector area. These results have a 
value also in other experiments, such as those determining 
the Planck constant and the local acceleration due to gravity, 
where precision length-measurements by optical interferom-
etry play a critical role.
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