
24 November 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering
wavefronts / Sasso, C; Mana, G; Mottini, S. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. -
35:24(2018), p. 245002. [10.1088/1361-6382/aaea0f]

Original

Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of
the interfering wavefronts

Institute of Physics Publishing Ltd (IOP)

Publisher:

Published
DOI:10.1088/1361-6382/aaea0f

Terms of use:

Publisher copyright

IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any
version derived from it.  The Version of Record is available online at DOI indicated above

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/59829 since: 2019-02-14T11:06:23Z

IOP

This is the author's submitted version of the contribution published as:



Coupling of wavefront errors and pointing jitter in
the LISA interferometer: misalignments of the
interfering wavefronts
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Abstract. The Laser Interferometer Space Antenna is a foreseen space-based
gravitational wave detector, which aims to detect 10−20 strains in the frequency
range from 0.1 mHz to 1 Hz. It is a triangular constellation of three spacecraft,
with equal sides of 2.5× 109 m, where every spacecraft hosts a pair of telescopes
that simultaneously transmit and receive laser beams measuring the constellation
arms by heterodyning the received wavefronts with local references. Due to
the spacecraft and constellation jitters, the interfering (received and local)
wavefronts become misaligned. We investigate analytically the coupling between
misalignments and aberrations of the interfering wavefronts and estimate the
relevant contribution to the noise of the heterodyne signal.

Submitted to: Classical and Quantum Gravity

PACS numbers: 42.15.Dp, 07.60.Ly, 04.80.Nn, 95.55.Ym

1. Introduction

The spacecraft of the Laser Interferometer Space Antenna (LISA) are at the vertices
of an equilateral triangle, which is in a plane inclined 60◦ with respect to the ecliptic
and which trails behind the Earth by 20◦ [1–3]. Each spacecraft is equipped with two
telescopes that simultaneously transmit and receive 1064 nm laser beams linking the
constellation by heterodyning the received wavefronts with local references. With a
135× magnification and a diameter of the primary mirror of 300 mm, the received
beam to the heterodyne detection has a diameter of 2.2 mm [4]. A critical aspect
of LISA is the sensitivity required in the measurement of the spacecraft separations,
2.5× 109 m: the measurement noise must approach 1 pm/

√
Hz in the frequency band

from 0.1 mHz to 1 Hz [5]. This requires that the noise of the interferometric phase
measurement is near to 1 µrad/

√
Hz, and imposes tight requirements on the stability

of the interfering beams.
Aberrations and jitter of the wavefront sent by a spacecraft to the next cause

a measurement noise. In a previous paper, we investigated the propagation of the
wavefront aberrations and the noise of the measured distance originated by the
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coupling of the aberrations with the transmitter jitter [6]. We found that the sensitivity
to the jitter increases from 0.02 pm/nrad to 0.28 pm/nrad when the optical quality
of the transmitted wavefront decreases from λ/40 to λ/10. In this paper, to complete
the noise assessment, we investigate the phase noise originated by the coupling of an
aberrated reception with the receiver jitter.

Owing to the spacecraft jitter and the breathing of the constellation, the received
wavefront – demagnified, truncated, and aberrated – is misaligned with respect to the
local reference and – in the presence of a non-uniform phase profile of the interference
pattern – this causes the measurement of an apparent distance in excess (or defect)
to the actual one. The requirement is that the coupling between tilt and measured
distance is less than 25 pm/µrad for misalignments of the interfering beams to within
±300 µrad [7]

Experimental investigations of the tilt to length coupling were carried by using
imaging systems and test beds representative of the LISA’s operation [7, 8]. Our
paper analytically describes and predicts the combined effect of misalignments and
aberrations of the interfering wavefronts – expressed in terms of the Zernike modal
amplitudes – on the phase of the heterodyne signal. It gives the phase in excess (or
defect) for the interference of beams having truncated Gaussian profile. Eventually,
it takes advantage of this result to carry out a Monte Carlo simulation of the
interferometer operation and to develop criteria for the assessment of the phase noise.

2. Heterodyne interferometry

We describe the local reference, E1(r; t) = u1(r), and received, E2(r; t) = u2(r)eiΩt,
optical fields on the detector plane by the complex amplitudes

u1(r) = e−r
2/w2

1e−iw1(r), (1a)

end

u2(r) = e−r
2/w2

2e−iw2(r), (1b)

where w1(r) and w2(r) are small, zero mean, deviations from flat wavefronts, r =
(x, y)T is a position vector in the detector plane, and Ω is the heterodyne angular
frequency. We did not consider more realistic intensity profiles of the received beam,
assuming Gaussian profiles, having 1/e2 radii equal to w1 and w2.

In (1b), we omitted the unessential phase retardation related to the spacecraft
separation, −ikz, where k = 2π/λ is the wave vector, and z is the spacecraft distance,
and the common term eiωt. Furthermore, for the sake of simplicity, we assume an
imaging system fixing any wandering of the received beam across the detector [8]. By
setting to zero the piston terms of w1(r) and w2(r), we do not consider the phase
retardation related to the optical lengths of the beam paths through the telescope and
optical bench.

The heterodyne signal is given by alternating part of

S =

∫
D
|E1(r) + E2(r)|2 dr = G [1 + Γ cos(Ωt+ φ)] , (2a)

where

G =

∫
D

(
|u1(r)|2 + |u2(r)|2

)
dr (2b)
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is the direct signal,

Γ =
2|Ξ|
G

(2c)

is the signal visibility,

φ = arg(Ξ) (2d)

is the phase of the heterodyne signal in excess (or in defect) to the −kz retardation,

Ξ =

∫
D
u∗1(r)u2(r) dr, (2e)

is the complex amplitude of the alternating signal, and D is the detector area – a disk
having r0 ≈ 2.5 mm radius. Therefore, the extra phase is

φ = arg

[∫ r0

0

re−2r2/w2

(∫ 2π

0

eiw(r) dθ

)
dr

]
, (3)

where the w2 = 2w2
1w

2
2/(w

2
1 + w2

2) is the harmonic mean of w2
1 and w2

2, w(r) =
w2(r) − w1(r) is the deviation from flatness of the interference-pattern phase, and
r and θ are the radial and azimuthal coordinates. It is worth noting that only the
differential error contributes to the error budget, not the common-mode errors of each
wavefront. In the case of identical and perfectly overlapped wavefronts, that is, if
w(r) = 0, the detection of the received-wavefront phase is free of errors.

3. Tilt to aberrations coupling

3.1. Wavefront misalignment.

A misalignment between the interfering wavefronts transforms the phase profile of the
interference pattern as

w(r)→ w(r) + kr ·α = w(r, θ) + krα cos(θ − β), (4)

where α = [αx, αy]T = α[cos(β), sin(β)]T is a small rotation about an axis lying in the
detector plane and having azimuth β, r = [x, y]T = r[cos(θ), sin(θ)]T , the pivot – the
piston term being omitted – is in the origin of the reference frame, and we considered
only the first order term.

If the only aberration of the interference pattern is a tilt, that is, if the errors
otherwise the misalignment of the interfering wavefronts match perfectly, by using (4)
in (2e), we obtain

Ξ =

∫ r0

0

r e−2r2/w2

dr

∫ 2π

0

eikrα cos(θ−β)) dθ = 2π

∫ r0

0

r e−2r2/w2

J0(krα) dr, (5)

where J0(�) is the Bessel function of the first kind of order zero, and, consequently,
φ = 0. Therefore, as noted in [9], apart from a contrast loss, the interference of
identical wavefronts is insensitive to misalignments. It is worth noting that this is true
also when the intensity radial-profiles deviate from Gaussian ones and the detector
radius is finite.
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3.2. Zernike modal amplitudes.

In the following, we will use the approximation

eiw(r) ≈ 1 + iw(r)− 1

2
w2(r)− i

6
w3(r) + ... (6)

and express the phase profile of the interference pattern in terms of the Zernike modal
amplitudes. Therefore,

w(r) =

∞∑
n=1

n∑
m=−n

zmn R
|m|
n (ρ)eimθ, (7)

where R
|m|
n (ρ) = 0 for all n− |m| odd or negative, ρ = |r|/r0 is the normalized radial

coordinate, θ is the azimuth, and the radial polynomials satisfy the orthogonality
relation ∫ 1

0

R|m|n (ρ)R
|m|
n′ (ρ)ρdρ =

δn,n′R
|m|
n (1)

2(n+ 1)
. (8)

It must be noted that, following (1a-b), the Zernike modal amplitudes zmn are expressed
in radians.

The relationship z−mn = zm∗n ensures that (7) is real. Hence, z0
n is real and, if

m 6= 0,

z±mn = |zmn |e±iθmn (9)

Eventually, the n = 1 term of (7),

z−1
1 ρe−iθ + z1

1ρeiθ = 2|z1
1 |ρ cos(θ + θ1

1), (10)

takes the misalignment of the interfering wavefronts,

α =
2

kr0
|z1

1 |, (11)

into account.

3.3. Phase of the heterodyne signal.

The lowest order coupling between wavefront misalignments and aberrations entails
products of three Zernike modal amplitudes. Therefore, by using the series expansion
(6) up to the third order and measuring the radius of the interference pattern w in r0

units, we write the alternating signal (2e) as

2Ξ

πw′2
=

2

πw′2

∫ 1

0

ρ e−2ρ2/w′2
dρ

∫ 2π

0

eiw(ρ,θ) dθ

= a0 + ia1 + a2 + ia3, (12a)

where w′ = w/r0 and

a0 =
4

w′2

∫ 1

0

ρ e−2ρ2/w′2
dρ = 1− e−2/w′2

, (12b)

a1 =
2

πw′2

∫ 1

0

ρ e−2ρ2/w′2
dρ

∫ 2π

0

w(ρ, θ) dθ, (12c)

a2 = − 1

πw′2

∫ 1

0

ρ e−2ρ2/w′2
dρ

∫ 2π

0

w2(ρ, θ) dθ, (12d)

a3 = − 1

3πw′2

∫ 1

0

ρ e−2ρ2/w′2
dρ

∫ 2π

0

w3(ρ, θ) dθ. (12e)
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Apart from the factor of two in the exponential and an unessential scale factor, (12a)
is identical to the third-order approximation of the Rayleigh-Sommerfeld integral
giving the on-axis far-field of a truncated aberrated wavefront having a Gaussian
intensity profile [6]. We carried out the integrations (12c-e) analytically with the aid
of Mathematica [10]. We do not give the results here, but the code is available in the
supplementary material.

By approximating arg(Ξ) as Im(Ξ)/Re(Ξ), limiting the wavefront aberration
to tilt, defocus, astigmatism, coma, trefoil, and spherical (i.e., by considering only
the modal amplitudes z1

1 , z
0
2 , z

2
2 , z

1
3 , z

3
3 , and z0

4), using the results of the (12c-e)
integrations, and considering only the lowest order terms, the extra phase of the
heterodyne signal (2d) is

φ ≈ (a1 + a3)(1− e−2/w′2 − a2)

(1− e−2/w′2)2

≈ b00 + b10ζx + b20ζ
2
x + b01ζy + b02ζ

2
y + b11ζxζy. (13)

In (13), we made explicit the dependence on the horizontal and vertical tilt aberrations,

ζx = |z1
1 | cos(θ1

1) = kr0αx/2, (14a)

ζy = |z1
1 | sin(θ1

1) = kr0αy/2, (14b)

where αx and αy are the horizontal and vertical components of the wavefront
misalignment α. When calculating the bij coefficients, which are given in the appendix,
we carried out the reparametrization from the |z1

1 | and θ1
1 pair to the ζx and ζy one

with the aid of Mathematica [10]. The code is available in the supplementary material.
The parabolic approximation (13) considers the aberration contribution up to the

third order. It requires that |w(r)| < 1, which – according to (10) – implies 2|z1
1 | < 1.

Therefore, by using λ = 1064 nm and r0 ≈ 1.1 mm in (11), the equation (13) is valid
if α < 155 µrad. The validity of the approximation (13) for larger misalignments will
be examined numerically in section 5.

3.4. Visiblity of the heterodyne signal.

By remembering (2c) and (12a) and up to second order of the Zernike modal
amplitudes, the visibility of the heterodyne signal is

Γ ≈
πw′

2∣∣a0 + ia1 + a2

∣∣
G

≈
√
a2

0 + 2a0a2 + a2
1

a0

=

√
(1− e−2/w′2)2 + 2(1− e−2/w′2)a2 + a2

1

1− e−2/w′2 , (15)

where, for the sake of simplicity, we assumed w1 = w2 = w′ and used G = πw′
2
a0.

Next, by using (12c-d) and making the dependence on z1
1 explicit, the signal visibility

is

Γ ≈ 1 + c1|z1
3 | cos(θ)|z1

1 | − c2|z1
1 |2, (16a)

where θ = θ1
1 − θ1

3 is the tilt-aberration azimuth relative to the one of the coma,

c1 = − 2 + 2(2 + e2/w′
)w′

2
+ 3(1− e2/w′

)w′
4
)

1− e2/w′ , (16b)

c2 =
2 + (1− e2/w′

)w′
2

2(1− e2/w′)
, (16c)
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and we considered only the lowest-order terms. The Figure 1 shows how the
c1,2 coefficients depends on the interference-pattern truncation. The symbolical
calculations implied in obtaining (16a-c) from (15) where carried out with the aid
of Mathematica [10]; the code is available in the supplementary material.

Figure 2 shows the impacts of the coupling between misalignments and
aberrations of the interfering wavefronts on the signal visibility when w/r0 = 1. The
left part shows that, when the coma is null, the visibility decreases quadratically
as the wavefront misalignment increases. As shown in Fig. 2 (right), a wavefront
misalignment at the same azimuthal angle of the coma increases the signal visibility.
Conversely, a misalignment at the opposite azimuthal angle reduces the visibility.
These gain and loss of visibility occur because of the beam’s perception – which
depends on the ratio between the radii of the interference-pattern and detector – of a
misalignment associated to the coma.

In the case of large misalignments of the interfering wavefronts, the wavefront
aberrations have a negligible effect on the signal visibility and can be neglected. Hence,
by assuming again w1 = w2 = w and using (5) and

G = (1− e−2/w′2
)πw′2 (17)

in (2c), we obtain

Γ =

4

∫ 1

0

ρ e−2ρ2/w′2
J0(kr0αρ) dρ

(1− e−2/w′2)w′2
, (18)

which is shown in Fig. 3 when w/r0 = 1. For a wavefront misalignment of 300 µrad,
the visibility reduces to 71%.

4. Phase noise

The pointing jitter of the receiving telescope translates in a (magnified) jitter of the
interfering wavefronts. Therefore, by linearization of (13) and propagation of the
tilt-aberration noise, the variance of the heterodyne-signal phase is

σ2
φ ≈ (b10 + 2b20ζ0x + b11ζ0y)2σ2

ζx + (b01 + 2b02ζ0y + b11ζ0x)2σ2
ζy, (19)

where ζ0x and ζ0y are the mean (14a-b) tilts and σ2
ζx and σ2

ζy are the variances of
the zero-mean and uncorrelated jitters of the tilt aberration.

Actually, (19) is not very useful because it depends on the Zernike modal
amplitudes of w(x, y). To find a criterion for the assessment of the wavefront quality,
we decided to use an expression determined by the w(x, y) flatness alone. This requires
the averaging of (7) with respect to zmn (excluded z1

1) constrained to a predetermined
flatness of w(x, y). After the averaging, by assuming the θmn angles uniform in the
[0, 2π] interval and observing how the bij coefficients given in (1.1a-f) depend on
these angles, (19) does not depend any more on the first powers and product of ζx
and ζy. In fact, only a constant and terms proportional to ζ2

0x and ζ2
0y withstand

the average. Therefore, in the simplest case where the jitter is isotropic – that is,
σζx = σζy = kr0σ0/2 – we can write the average variance as

〈σ2
φ〉zmn ≈ (g0 + g2α

2
0)σ2

α, (20)

where 〈�〉τ is the average of � calculated with respect the distribution of τ , we
substituted the αx and αy misalignments for the ζx and ζy tilts by using (14a-b),
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Figure 1. Coefficients of the polynomial (16a).

45o135o

o

225o

o

315o

-9 -6 -3 0

visibility loss / %

45o135o

225o 315o

-12 -8 -4 0
visibility loss / %

Figure 2. Polar plot of the visibility loss/gain of the heterodyne signal. The
angular coordinate is the z11 azimuth relative to the z13 one; w/r0 has been set
to one. Blue: |z11 | = 0 rad, orange: |z11 | = 0.25 rad (if r0 = 1.1 mm, 77 µrad
misalignment), green: |z11 | = 0.5 rad (if r0 = 1.1 mm, 154 µrad misalignment).
Left: |z13 | = 0 rad. Right: |z13 | = 0.52 rad.
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Figure 3. Visibility of the heterodyne signal for large wavefront misalignments
when the wavefront aberrations match and w/r0 = 1.
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α0 = (α2
0x + α2

0y)1/2 is the misalignment, σ2
α = 4σ2

0 is the jitter variance, and the
g0 and g2 coefficients – which depend on the w(x, y) flatness – must be calculated
numerically.

5. Results

To give a calculation example, in the absence of information on the w(x, y) spectrum,
in the Monte Carlo simulation the trigonometric components of the Zernike modal
amplitudes – z0

2 , z
2
2 , z

1
3 , z3

3 , and z0
4 – were drawn from less-informative, identical, and

zero-mean Gaussian distributions constrained to a deviation of w(x, y) from flatness
equal to λ/20. We imposed this constraint by calculating the deviation – say, λ/p
– and by re-scaling the picked amplitudes by the p/20 ratio. The detector radius
and beam wavelength were set to r0 = 1.1 mm and λ = 1064 nm, respectively. The
normalized radius w′ = w/r0 of the interference pattern was set to one. Next, for
each Monte Carlo run, the bij coefficients (1.1a) were calculated and stored for the
subsequent calculation of (13) and (19).

Figure 4 shows a randomly generated phase profile, w(x, y), of the interference
pattern. The phase and noise of the heterodyne signal, calculated according to (13)
and (19), are shown in Fig. 5 vs. the mean wavefront-misalignments, α0x and α0y.
To test the accuracy of the approximations made, Fig. 6 (left) compares (13) against
the numerical integration of (3). As expected, the approximation looks good up to
about 150 µrad wavefront misalignments; larger misalignments would require that
additional terms are taken into account. In order to quantify the approximation error,
we calculated the fractional residuals of 104 approximated values when the wavefront
misalignment is α = 300 µrad. Figure 6 (right) shows that, on the average, (13)
underestimates the phase by 5%, with a standard deviation of 10%.

When the flatness of w(x, y) is constrained to within λ/20, the phase of the
heterodyne signal is bounded as shown in Fig. 7. We subtracted the offset occurring
when the wavefronts are aligned to make evident the dependence of the bound on
the misalignment. Asymptotically, the phase standard-deviation increases with the
misalignment by about 5.3 pm/µrad.

In each Monte Carlo run, we calculated the ratio σ2
φ/σ

2
α between the signal and

isotropic-jitter variances by using (19), where σ2
α is the jitter variance. Figure 8 shows

the distribution of the results in the case of a α0 = 150 µrad wavefront misalignment.
The noise is minimum when the wavefront jitters about the stationary point of

(13). Hence, by solving ∇φ(ζx, ζy) = 0, the optimal tilt aberrations are

ζopt
x =

b01b11 − 2b10b02

4b02b20 − b211

, (21a)

ζopt
x =

b10b11 − 2b01b20

4b02b20 − b211

. (21b)

Figure 9 shows the distribution of the optimal angle αopt = |αopt
x , αopt

y |, where the
optimal misalignments are linked to ζopt

x and ζopt
y by (14a-b). The most probable

optimizing angle is about a misalignment of 7 µrad. However, the distribution has a
long tail, not represented in figure 9.

Providing that the jitter is isotropic and according to (20), the sensitivity of the
signal-phase to the alignment jitter – averaged over arbitrary w(x, y) aberrations – is

〈σ2
φ〉

1/2
zmn

σα
=
√
g0 + g2α2

0. (22)
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Figure 4. Phase profile of the interference pattern. The colour scale is from
−26.6 nm (violet) to +26.6 nm (red); x and y are the transverse coordinates in
the detection plane; r0 = 1.1 mm is the detector radius.

Figure 5. Left: phase of the heterodyne signal (13). The colour scale is from
zero (violet) to 1.5 nm (red). Right: standard deviation of the phase noise of the
heterodyne signal due to 100 nrad (standard deviation) jitters of the horizontal
and vertical wavefront misalignments. The colour scale is from zero (violet) to
1.1 nm (red). α0x and α0y are the mean misalignments. The detector radius is
r0 = 1.1 mm, the normalized radius of the interference pattern is w/r0 = 1. The
phase profile of the interference pattern is shown in Fig. 4.
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Figure 6. Left: comparison of the numerical (red dots) and approximate
(blue line) calculations of the heterodyne-signal phase in Fig. 5 (left). Right:
histogram of 104 Monte Carlo calculation of the fractional residuals of (13) when
the wavefront misalignment is α = 300 µrad. The detector radius is r0 = 1.1
mm, the normalized radius of the interference pattern is w/r0 = 1. The w(x, y)
flatness is constrained to λ/20.

Figure 7. Upper and lower bounds (standard deviations) of the heterodyne-
signal phase – see equation (13) – calculated for 104 random phase profiles w(x, y)
constrained to a λ/20 flatness. The colours range from −0.8 nm (violet) to +0.8
nm (red). αx and αy are the wavefront misalignments. The detector radius is
r0 = 1.1 mm, the normalized radius of the interference pattern is w/r0 = 1. The
phases profile of Fig. 5 (left) is also shown (green).

It was obtained by fitting (20) to the Monte Carlo average of (19); the result is shown
in Fig. 10. Table 1 shows the best-fit values of the g0 and g2 parameters. The standard
deviation of σφ/σα was approximated by

std(σφ)zmn
σα

≈
std(σ2

φ)zmn

2σα〈σ2
φ〉

1/2
zmn

, (23)

where std(�)zmn is the standard deviation of � calculated with respect the joint
distribution of zmn and std(σ2

φ)zmn was obtained from the Monte Carlo standard-
deviation of (19).

To establish a criterion for the quality of the interfering wavefronts, we repeated
the Monte Carlo calculation in the case of arbitrary λ/10 and λ/40 aberrations. The
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Figure 8. Histogram of 104 Monte Carlo calculations of the σ2
φ/σ

2
α ratio for 150

µrad wavefront misalignment. The jitter is isotropic and has σ2
α variance. The

detector radius is r0 = 1.1 mm, the normalized radius of the interference pattern
is w/r0 = 1. The phase profiles w(x, y) are constrained to a λ/20 flatness.
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Figure 9. Histogram of 104 Monte Carlo calculations of the wavefronts
misalignment αopt that minimize the phase noise of the heterodyne signal. The
αopt distribution is uniform in the [0, 2π] interval. The detector radius is r0 = 1.1
mm, the normalized radius of the interference pattern is w/r0 = 1. The phase
profiles w(x, y) are constrained to a λ/20 flatness.
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Figure 10. Mean (on the indicated aberrations flatness) of 104 Monte Carlo
calculations of the sensitivity of the heterodyne-signal phase to the alignment
jitter. The shadows indicate the 1σ confidence regions. α0 is the misalignment
of the interfering wavefronts, The jitter is isotropic and has σ2

α variance. The
detector radius is r0 = 1.1 mm, the normalized radius of the interference pattern
is w/r0 = 1.
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Table 1. Model parameters of the average sensitivities of the heterodyne-signal
phase to the alignment jitter of the interfering wavefronts, see (20). The means
are calculated over phase profiles of the interference pattern constrained to λ/10,
λ/20, and λ/40.

λ/10 λ/20 λ/40

g0 / (pm/µrad)2 1.5 8.5× 10−2 5.4× 10−4

g2 / (pm/µrad)2/µrad2 2.0× 10−3 4.9× 10−4 1.2× 10−4

asymptotic average sensitivity is

〈σ2
φ〉

1/2
zmn
≈ √g2α0σα, (24)

where
√
g2 increases from 1.1 × 10−2 pm/µrad2 to 4.5 × 10−2 pm/µrad2 when the

quality of the interfering wavefront decreases from λ/40 to λ/10.

6. Conclusions

Heterodyne interferometry, where laser beams are simultaneously transmitted and
received by onboard telescopes, monitors the separation of the LISA’s spacecraft
down to picometre sensitivity. The telescopes’ pointing is continuously corrected to
compensate for the disturbances [11], but the feedback loop jitters the propagation
directions of the transmitted and received beams.

Due to the receiver tilts and jitter, the interfering wavefronts are misaligned and
jittered by angles scaled-up by the telescope magnification. If the wavefronts of the
two interfering beams match, the jitter does not affect the phase of the heterodyne
signal. However, wavefront aberrations couple to the jitter and induce a noise.

The equations (13) and (19) give the phase and phase noise of the heterodyne
signal in terms of the radius w of the interference pattern and the lowest-order Zernike
aberrations of the phase profile. On these bases, we carried out a Monte Carlo
calculation of the jitter-induced noise for Gaussian intensity profiles of the interfering
beams and arbitrary wavefront misalignments and aberrations. Eventually, we
estimated the phase sensitivity to isotropic jitter for r0 = w detector radius, arbitrary
λ/10, λ/20, and λ/40 aberrations, and up to 300 µrad wavefront misalignments. The
average sensitivity is always less than the required 25 pm/µrad value [7]. However,
owing to the large dispersion, a wavefront quality at least equal to λ/20 might be
necessary. These results extend and complement our investigation of how the measured
spacecraft distance is coupled to the transmitter jitter [6] and open the way to a full
start-to-end analysis of the phase noise.

The assumption that aberrations other than defocus, astigmatism, coma, trefoil
and spherical are negligible might be optimistic, and future work must examine the
impact of higher-frequency aberrations. The experimental observation reported in
[12, 13] suggests that the Zernike spectra of the interfering wavefronts might have
high-frequency components originated in the beam path through the optical bench
and the receiving telescope.
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Appendix

The coefficients of the extra phase of the heterodyne signal (13) are

b00 = A2z
0
2 +A4z

0
4 , (1.1a)

b10 = B cos(θ3
3 − θ2

2)|z3
3 ||z2

2 |+ C cos(θ2
2 − θ1

3)|z1
3 ||z2

2 | (1.1b)

+D cos(θ1
3)|z1

3 |z0
2 +G cos(θ1

3)|z1
3 |z0

4 ,

b01 = B sin(θ3
3 − θ2

2)|z3
3 ||z2

2 |+ C sin(θ2
2 − θ1

3)|z1
3 ||z2

2 | (1.1c)

+D sin(θ1
3)|z1

3 |z0
2 +G sin(θ1

3)|z1
3 |z0

4 ,

b20 = Ez0
2 + F cos(θ2

2)|z2
2 |+Hz0

4 , (1.1d)

b02 = Ez0
2 − F cos(θ2

2)|z2
2 |+Hz0

4 , (1.1e)

b11 = 2F sin(θ2
2)|z2

2 |, (1.1f)

where, by measuring the 1/e2 radius of the interference in terms of the detector radius,

A2 =
1 + e2/w′2

1− e2/w′2 + w′2, (1.2a)

A4 = 1 +
3(1 + e2/w′2

)w′
2

1− e2/w′2 + 3w′2, (1.2b)

B = −2 + 3w′
2

+ 3w′
4

1− e2/w′2 − 3

2
w′

6
, (1.2c)

C = −2 + 5w′
2

+ (7 + 2e2/w′2
)w′

4

1− e2/w′2 − 9

2
w′

6
, (1.2d)

D =
4e2/w′2

+ 12e2/w′2
w′

2 − 2(2 + e2/w′2
)(1− e2/w′2

)w′
4

(1− e2/w′2)2
− 6w′2, (1.2e)

G =
12e2/w′2

w′
2 − 6(2− 9e2/w′2

+ e4/w′2
)w′

4 − 6(7− 2e2/w′2
+ 5e4/w′2

)w′
6

(1− e2/w′2)2
− 45w′

8
,

(1.2f)

E =
2e2/w′2

(1− e2/w′2)2
− 1

2
w′4, (1.2g)

F = − 1 + w′
2

1− e2/w′2 −
1

2
w′4, (1.2h)

H =
6e2/w′2

w′
2 − 3(1− e4/w′2

)w′
4
/2

(1− e2/w′2)2
− w′6. (1.2i)

Figure A1 shows the A2, A4, B, ...H coefficients vs. the normalized radius w′ = w/r0.
Apart from the w′ → w′/

√
2 transformation, (1.2a-i) are the same as given in [6].
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Figure A1. Coefficients of the (13) polynomials vs. the w/r0 ratio. The
horizontal lines are the asymptotic values (flat intensity-profile). The limits of
A2 and A4 when w/r0 → 0 are ±1.
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Zwetz M 2016 Classical and Quantum Gravity 33 245015
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