

ISTITUTO NAZIONALE DI RICERCA METROLOGICA Repository Istituzionale

Taratura autocollimatore di progetto LUMINAR

Original Taratura autocollimatore di progetto LUMINAR / Egidi, Andrea. - Rapporto Tecnico INRIM n. 3/2018 (febbraio):(2018), pp. 1-14.

Availability: This version is available at: 11696/58976 since: 2018-11-08T11:09:10Z

Publisher:

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

Andrea Egidi

Taratura autocollimatore di progetto LUMINAR

R.T. 3/2018

Febbraio 2018

I.N.RI.M. TECHNICAL REPORT

Sommario

Abstract	3
Verifica posizione fuochi autocollimatore e taratura	3
Caratteristiche del setup utilizzato	3
Esecuzione dell'esperimento	3
Prima fase	4
Seconda fase	4
Terza fase	5
Taratura dell'autocollimatore	5
Ripetibilità dello scarto angolare fra le due camere	8
Misure di rumore	9
Variazione del set up: abbattimento del rumore	10
Ripetibilità dello scarto angolare – nuove misure	11
Conclusioni	14

Abstract

In order to calibrate the auto-collimator employed in the Euramet-EMRP JRP <u>LUMINAR</u> project, I equipped a specific set up in the Angular reference laboratory at INRiM; this set up consisted of an optical head used to generate a laser beam (focalized in small spots on a pair of cameras by means of two collimating lenses), and a rotating table where the auto-collimator assembly was fixed; the rotating table was aimed to explore suitable angles for the determination of the auto-collimator resolution.

Allo scopo di effettuare una taratura dell'autocollimatore utilizzato nell'esperimento LUMINAR, si è allestito presso il laboratorio Angoli dell'INRiM un set up ad hoc, che ha previsto l'impiego di una testa ottica per lanciare un laser che funge da riferimento per generare, opportunamente focalizzato, degli spot su una coppia di camere, e una tavola rotante sulla quale collocare l'autocollimatore, così da quantificare la risoluzione angolare di questo.

Verifica posizione fuochi autocollimatore e taratura

Caratteristiche del setup utilizzato

La tavola con i due assi dell'autocollimatore è stata posizionata su una tavola rotante, con il laser che entra nel pentaprisma (fissato su una slitta X-Y) dopo l'impatto su due specchi e l'attraversamento di due attenuatori variabili, e poi si dirige nella lente di ciascun autocollimatore per essere focalizzato sulla rispettiva camera (Figura 1).

- Camere autocollimatori: UI154xLE; pixel size = 5.2 μm.
- Vite micrometrica su slitta: avanzamento di 500 μm al giro.

Figura 1: setup utilizzato presso il Laboratorio Angoli

Esecuzione dell'esperimento

I test sono consistiti nella traslazione, fatta a vari step, del pentaprisma montato sulla slitta di una quantità massima nota (10 mm) e nell'analisi di come si spostava di conseguenza il centro di massa – CdM– (nella sola coordinata X) dello spot sul sensore: per il principio di funzionamento dell'autocollimatore, quando il sensore si fosse venuto a trovare esattamente sul fuoco della sua lente, a patto che la traslazione del pentaprisma (che avveniva lungo la direzione indicata dalla freccia verde nella Figura 1) desse luogo ad un fascio sempre parallelo all'asse della lente, la posizione dello spot sul sensore non sarebbe dovuta variare; in realtà si è provato che il piano di entrambi i sensori, così come erano stati inizialmente installati, non giaceva sul piano focale delle lenti, ma si trovava un po' oltre (circa 3,5 cm): è stato possibile dedurre ciò osservando una migrazione progressiva dello spot che avveniva in ragione della traslazione del pentaprisma, in verso discorde.

Prima fase

Si è utilizzato un laser He-Ne. Per entrambi gli assi si è ricavato un errore di circa il 7% nella scelta della distanza lentecamera che corrisponde a circa 700 micrometri su 10 mm di corsa del pentaprisma (Figura 2 e 3): Il sensore si trova cioè a valle del fuoco dello spot. Il metodo di sogliatura sempre utilizzato per l'analisi delle immagini è l'*Otsu*.

Figura 2: verifica fuori fuoco su Camera asse X con sorgente laser He-Ne

Figura 3: verifica fuori fuoco su Camera asse Y con sorgente laser He-Ne

Seconda fase

Si è verificato un solo asse (Y), con un laser Thorlabs in fibra; divergenza del fascio misurata: circa 1 mm su 4 m; larghezza spot all'uscita dal collimatore: circa 8,5 mm. Fibra: P3-630 PM-FC2. Anche in questo caso il sensore è posizionato dopo il fuoco, e pure qui l'errore nella collocazione della camera è di poco meno del 7% (Figura 4).

Figura 4: verifica fuori fuoco su Camera asse X con sorgente laser Thorlabs in fibra

Terza fase

Si sono corrette le distanze reciproche camera-lente; il criterio seguito per ogni camera è il seguente: si è cercata la distanza che minimizzava la migrazione dello spot sul sensore (seguito a video in tempo reale) durante la traslazione del pentaprisma; si è infatti trovato in letteratura (si veda per esempio l'articolo "Focusing of spherical Gaussian beams"-eq.9b- o in "Waist Radius Measurement of Gaussian Beams"-eq.F19-) che il waist del fascio gaussiano e la posizione del fuoco della lente non coincidono necessariamente: nel nostro caso la distanza waist-fuoco era di circa 3 cm. Il meglio che si è potuto fare è stato trovare una distanza camera-lente in corrispondenza della quale, a fronte dei 10 mm di traslazione del pentaprisma, il CdM dello spot migrasse di soli 3 pixel, per entrambe le camere (Figura 5 e Figura 6).

Figura 5: migrazione spot dopo aggiustamento distanza Camera asse X-sensore

Figura 6: migrazione spot dopo aggiustamento distanza Camera asse Y-sensore

Taratura dell'autocollimatore

Si è proceduto con la taratura vera e propria dell'autocollimatore, con la breadbord libera di ruotare sulla tavola, e la posizione angolare acquisita da un software scritto in Labview;

Camera asse X: t_{exp} = 0.16 ms; lettura posizione angolare in corrispondenza della posizione centrale dello spot sulla camera (stimato ad occhio): θ ≅ 68" (angolo di offset); range angolare utile a causa dell'ingombro del supporto del sensore, che fa ombra sul sensore: θ_{min} = -1203", θ_{max} = 1358"; si prendono 10 punti equispaziati di 250" per esplorare il range utile, e si studia come varia la posizione del CdM dello spot in

funzione dell'angolo della tavola letto dal software. <u>Sensibilità ottenuta = 0,376 px/secondo d'arco</u> (Tabella 1 e Figura 7).

• **Camera asse Y**: stessa procedura dell'altra camera; $t_{exp} = 0,107 \text{ ms}$; $\theta_{min} = 323000''$, $\theta_{max} = 325500''$; posizione centrale spot quando $\theta \cong 324135''$. <u>Sensibilità ottenuta = 0,375 px/secondo d'arco</u> (Tabella 2 e Figura 8).

				Ca	amera asse X			
nor	lettura ar	ngolare	media	X CdM spot	range esplorato	coefficienti d	i sensibilità <i>K</i>	(px/angolo)
pos.	=	0	mrad	рх	o		0	mrad
1	-948,524	-0,263	-4,599	260,001				
2	-701,370	-0,195	-3,400	353,253				
3	-451,016	-0,125	-2,187	447,236				
4	-197,363	-0,055	-0,957	542,23				
5	49,565	0,014	0,240	634,778	0 627	0.276	1252 576	77 554
6	304,403	0,085	1,476	730,629	0,627	0,370	1555,570	77,554
7	550,921	0,153	2,671	823,415				
8	806,279	0,224	3,909	919,325				
9	1052,879	0,292	5,105	1012,469				
10	1307,337	0,363	6,338	1108,887				

Tabella 1: dati per il calcolo della sensibilità angolare della Camera asse X

Figura 7: regressione lineare per il calcolo della sensibilità angolare della Camera asse X

				Came	era asse Y			
noc	lettura a	ngolare	media	X CdM spot	range esplorato	coefficienti d	i sensibilità K	(px/angolo)
pos.	"	0	mrad	рх	o	"	o	mrad
1	322988,363	89,719	1565,892	203,493				
2	323257,625	89,794	1567,197	304,409				
3	323500,792	89,861	1568,376	394,159				
4	323753,690	89,932	1569,602	489,816				
5	323995,457	89,999	1570,774	578,145	0.622	0.275	1240 727	77 224
6	324252,765	90,070	1572,022	675,290	0,052	0,575	1549,727	//,554
7	324497,944	90,138	1573,210	769,488				
8	324753,715	90,209	1574,450	863,678				
9	325013,856	90,282	1575,712	963,542				
10	325263,081	90,351	1576,920	1055,635				

Tabella 2: dati per il calcolo della sensibilità angolare della Camera asse Y

Camera asse Y

Figura 8: regressione lineare per il calcolo della sensibilità angolare della Camera asse Y

Le equazioni lineari considerate per calcolare le sensibilità angolari K_x e K_y delle camere sono le seguenti:

asse X: $X_{CdM,X} = K_X \cdot \theta_1 + A_X$ asse Y: $X_{CdM,Y} = K_Y \cdot \theta_2 + A_Y$

Posto che, per entrambe le camere, si voglia avere verificata la relazione $X_{CdM,X} = X_{CdM,Y} = 640$ px, ovvero lo spot si trovi al centro del frame, da ciò discende che l'angolo $|\theta_1 - \theta_2|$ fra i due assi dell'autocollimatore è pari a 324096"; ciò equivale a dire che <u>l'errore di ortogonalità $\Delta\theta$ fra i 2 assi è di 96"</u>, ovvero di meno di 3 centesimi di grado, come si ricava dalla seguente equazione:

$$\Delta\theta(^{\circ}) = \frac{|324000 - (\theta_1 - \theta_2)|}{3600} = \frac{\left|324000 - \left(\frac{X_{CdM,X} - A_X}{K_X} - \frac{X_{CdM,Y} - A_Y}{K_Y}\right)\right|}{3600}$$

Ripetibilità dello scarto angolare fra le due camere

Per verificare la ripetibilità dell'errore di ortogonalità rilevato dalle due camere, fissata la posizione del pentaprisma, si sono considerate 11 posizioni angolari complessive, di cui 5 con il CdM dello spot a destra e 5 con il CdM dello spot a sinistra rispetto ad una posizione "centrale" iniziale riferita ad una camera (quella sull'asse X): fissato cioè uno zero arbitrario per la camera dell'asse X (posizione "PO" nella Tabella 3, nella quale lo spot cade pressoché al centro del sensore), si sono ottenute altre 10 immagini degli spot sulle due camere corrispondenti a delle rotazioni α_i della tavola nei due versi, leggendo di volta in volta la posizione con il software LabView; si è poi calcolato lo scarto angolare ε (in secondi d'arco) tenuto conto delle letture delle camere e della tavola, per tutte le posizioni, con questa formula:

$$(l_0 - t_0) - [l_1 - (t_1 + 324000")] = \epsilon = (l_0 - l_1) - (t_0 - t_1 + 324000")$$

Convertendo questa informazione in pixel, si può definire, di conseguenza, un ϵ' legato alla sensibilità media delle due camere, in questo modo: $\epsilon' = \frac{\epsilon}{\overline{K}}$. La ripetibilità e l'andamento di questo parametro sono mostrati nella Tabella 4 e nel grafico in Figura 9.

	Car	mera asse X		Camera asse Y										
posizione	θ mis. tavola / "	X CdM / px	Y CdM / px	θ' teor. tavola / "	θ' mis. tavola / "	heta ' mis- $ heta$ mis / "	scarto fra θ 'teor. e θ 'mis. /"	X CdM / px	YCdM/px					
P-5	-329130,2486	170,3650	514,9050	-5130,2486	-5130,1488	324000,0999	0,0998	137,5420	513,5140					
P-4	-328882,9437	263,0700	515,8860	-4882,9436	-4883,6110	323999,3327	-0,6673	231,5700	512,3280					
P-3	-328630,2199	359,4760	515,4880	-4630,2199	-4630,1757	324000,0442	0,0442	321,6480	512,5640					
P-2	-328381,7321	455,2270	513,7420	-4381,7321	-4380,8570	324000,8752	0,8752	416,7130	511,2330					
P-1	-328131,9706	544,9400	516,1340	-4131,9706	-4133,3035	323998,6671	-1,3329	509,4190	510,7800					
P0	-327882,2290	642,1050	513,2440	-3882,2290	-3880,6489	324001,5801	1,5801	604,6260	509,6080					
P1	-327633,0402	737,0220	515,1540	-3633,0402	-3632,5898	324000,4504	0,4504	699,3590	508,0310					
P2	-327384,4146	827,6230	515,9120	-3384,4146	-3382,4081	324002,0065	2,0065	792,1510	507,8450					
P3	-327129,6714	921,7980	515,2220	-3129,6714	-3130,3306	323999,3408	-0,6592	887,2220	506,9620					
P4	-326881,9767	1017,2050	515,4350	-2881,9767	-2881,8226	324000,1541	0,1541	980,7090	506,4090					
P5	-326637,9528	1111,1140	514,7740	-2637,9528	-2638,8401	323999,1127	-0,8873	1072,4720	505,5570					

Tabella 3: letture angolari della tavola e posizioni dei CdM degli spot nelle due camere nelle 11 posizioni scelte

	verifica	scarto X C	dM spot fra le d	ue camere				
posizione	ε/"	ε'/рх	$\varepsilon' medio / px$	$\sigma_{arepsilon'}$ / px				
P-5	86,35	32,42						
P-4	81,35	30,55						
P-3	98,21	36,87						
P-2	100,15	37,60						
P-1	89,28	33,52						
PO	96,67	36,30	34,33	2,23				
P1	95,32	35,79						
P2	90,34	33,92						
P3	84,57	31,75						
P4	89,78	33,71						
P5	93,75	35,20						

Tabella 4: ripetibilità del parametro ε'

Figura 9: parametro ε' in funzione della posizione angolare assoluta

Misure di rumore

Visto il risultato deludente ottenuto (l'incertezza di 2,23 pixel risulta ben al di sopra del valore target che ci si era posti), si sono fatte delle acquisizioni al solo scopo di testare la stabilità del laser; impostando in una camera un **framerate di 6 Hz**, si sono acquisiti filmati di **100 secondi**, e si è indagata la stabilità, nel tempo, del centro di massa dello spot. A seguire i grafici delle coordinate X e Y dei CdM nei vari frames (Figura 10 e 11):

Figura 10: variazione, nel tempo, della coordinata X del CdM dello spot

Figura 11: variazione, nel tempo, della coordinata Y del CdM dello spot

Le **deviazioni standard** $\sigma_x \in \sigma_y$ delle coordinate X e Y dei CdM degli spot acquisiti sono pari a, rispettivamente, **1,37** e **0,72 pixel**. Si sono notate, nel corso delle acquisizioni, delle variazioni di luminosità e geometria nello spot (dovute forse ad un comportamento bistabile del laser Thorlabs) e dei disturbi vari (verosimilmente legati all'illuminazione fornita dai neon); <u>spegnendo i neon e applicando una protezione alle camere</u>, a parità di framerate e di tempo di acquisizione, si sono ridotte le deviazioni standard delle posizioni dei CdM, così: $\sigma_x = 0,24$ px e $\sigma_y = 0,17$ px. A seguire i grafici che mostrano la posizione, nelle coordinate X e Y, del CdM nel tempo (Figura 12 e 13):

Figura 12: variazione, nel tempo, della coordinata X del CdM dello spot a neon spenti

Figura 13: variazione, nel tempo, della coordinata Y del CdM dello spot a neon spenti

Variazione del set up: abbattimento del rumore

Al fine di migliorare ancora i dati ottenuti ed abbattere il rumore, al setup descritto si sono affiancate misure condotte con un altro setup, introducendo le seguenti modifiche:

- laser He-Ne stabilizzato, accoppiato in fibra;
- cavetteria varia fissata con viti e rondelle alla breadboard, al fine di aumentare la stabilità meccanica di tutto il setup nel suo complesso;
- acquisizioni fatte con i neon spenti.

Usando lo stesso framerate e lo stesso tempo di acquisizione dei casi precedenti, si riportano i grafici delle coordinate dei CdM degli spot (Figure 14 e 15):

Figura 14: variazione, nel tempo, della coordinata X del CdM dello spot dopo la migliore ottimizzazione del set up

Figura 15: variazione, nel tempo, della coordinata Y del CdM dello spot dopo la migliore ottimizzazione del set up

Operando queste modifiche, il rumore misurato è risultato sensibilmente inferiore, in quanto si sono ottenuti i seguenti valori: $\sigma_x = 0.083 \text{ px} \text{ e } \sigma_y = 0.079 \text{ px}.$

Ripetibilità dello scarto angolare – nuove misure

A fronte dell'abbattimento del rumore ottenuto grazie all'utilizzo del laser He-Ne stabilizzato al posto del laser Thorlabs e dell'esecuzione delle misure a luce spenta, si sono ripetute le misure di stabilità descritte prima. Stavolta non si è esplorato tutto il range angolare delle camere, ma solo un piccolissimo intorno (di poco superiore al secondo d'arco) del punto centrale della *Camera asse X*; purtuttavia, anche se ci si basa su 6 soli dati, la ripetibilità ottenuta risulta di gran lunga superiore a quella calcolata nel setup precedente, in quanto si è ottenuto un valore $\sigma_x = 0,12 \text{ px}$ (di quasi 20 volte migliore) (Tabella 5).

	Ca	mera asse X					verifica scarto X CdM spot fra le due car						
posizione	θ mis. tavola / "	X CdM / px	Y CdM / px	θ' teor. tavola / "	θ' mis. tavola / "	θ ' mis- θ mis / "	scarto fra θ 'teor. e θ 'mis. /"	X CdM / px	Y CdM / px	ε/"	ε'/рх	ε' medio / px	$\sigma_{\varepsilon'}/px$
P1	-301691,0	641,8	518,6	22309,0	22309,9	324000,9	0,9	607,5	512,5	87,51	32,86		
P2	-301691,8	641,7	518,7	22308,2	22306,8	323998,6	-1,4	606,5	512,5	87,51	32,86]	
P3	-301691,1	641,9	518,7	22308,9	22308,8	323999,9	-0,1	607,3	512,5	87,48	32,84	22.70	0.12
P4	-301690,5	642,2	518,7	22309,5	22309,0	323999,5	-0,5	607,3	512,3	87,67	32,92	32,79	0,12
P5	-301691,3	641,8	518,7	22308,7	22308,4	323999,7	-0,3	607,3	512,4	87,00	32,66		
P6	-301691,1	641,9	518,7	22308,9	22308,2	323999,3	-0,7	607,2	512,3	86,87	32,62]	

Tabella 5: letture angolari, CdM degli spot nelle due camere e ripetibilità del parametro arepsilon'

L'ultima sessione di misure ha visto il ripetersi della procedura per il calcolo della sensibilità angolare e della ripetibilità delle due camere in quest'ultima configurazione (laser He-Ne stabilizzato e neon spenti), con la differenza che stavolta si sono esplorate 10 posizioni angolari che coprivano tutto il range utile delle camere (Tabella 6 e 7, Figura 16 e 17).

				Came	ra asse X			
noc	lettura a	ingolare	media	X CdM spot	range esplorato	coefficienti d	i sensibilità <i>K</i>	(px/angolo)
pos.	II	0	mrad	рх	0	"	o	mrad
1	-325005,050	-90,279	-1575,669	273,401				
2	-324723,651	-90,201	-1574,305	379,267				
3	-324491,479	-90,137	-1573,179	466,923				
4	-324256,591	-90,071	-1572,040	555,372				
5	-323991,083	-89,998	-1570,753	655,568	0.020	0.277	1256 470	77 720
6	-323749,577	-89,930	-1569,582	746,447	0,629	0,377	1350,470	//,/20
7	-323501,079	-89,861	-1568,377	839,968				
8	-323238,826	-89,789	-1567,106	938,793				
9	-323006,408	-89,724	-1565,979	1026,541				
10	-322739,382	-89,650	-1564,685	1127,039				

Tabella 6: dati per il calcolo della sensibilità angolare della Camera asse X

Camera asse X

Figura 16: regressione lineare per il calcolo della sensibilità angolare della Camera asse X

				C	amera asse Y			
noc	lettura a	ngolare	media	X CdM spot	range esplorato	coefficienti d	li sensibilità K	px/angolo)
pos.	1 1005 994 0 270 4 977 220 490		рх	o	"	o	mrad	
1	-1005,884	-0,279	-4,877	239,489				
2	-723,458	-0,201	-3,507	345,704				
3	-491,554	-0,137	-2,383	432,778				
4	-256,176	-0,071	-1,242	521,112				
5	8,649	0,002	0,042	620,707	0.620	0.276	1252 122	77 520
6	250,476	0,070	1,214	711,433	0,050	0,370	1555,152	11,529
7	498,664	0,139	2,418	805,07				
8	761,726	0,212	3,693	903,817				
9	993,226	0,276	4,815	990,902				
10	1260,454	0,350	6,111	1091,333				

Tabella 7: dati per il calcolo della sensibilità angolare della Camera asse Y

Camera asse Y

Figura 17: regressione lineare per il calcolo della sensibilità angolare della Camera asse Y

I valori ottenuti per le sensibilità angolari K delle camere sono dunque i seguenti:

- K_{camx} = 0,377 px/" (Figura 16);
- K_{camY} = 0,376 px/" (Figura 17).

	Car	mera asse Y				Cam	era asse X			verifica	scarto X C	dM spot fra le d	ue camere
posizione	θ mis. tavola / "	X CdM / px	YCdM/px	θ' teor. tavola / "	θ' mis. tavola / "	θ' mis- θ mis / "	scarto fra θ 'teor. e θ 'mis. /"	X CdM / px	Y CdM / px	ε/"	ε'/рх	ε' medio / px	$\sigma_{\varepsilon'}/px$
P1	-1005,884	239,489	515,684	-325005,884	-325005,050	-323999,166	0,834	273,401	518,599	-87,599	-32,966		
P2	-723,458	345,704	515,091	-324723,458	-324723,651	-324000,193	-0,193	379,267	518,610	-87,004	-32,743		
P3	-491,554	432,778	514,067	-324491,554	-324491,479	-323999,925	0,075	466,923	518,974	-87,711	-33,009		
P4	-256,176	521,112	513,359	-324256,176	-324256,591	-324000,415	-0,415	555,372	519,000	-87,928	-33,090		
P5	8,649	620,707	512,489	-323991,351	-323991,083	-323999,732	0,268	655,568	519,144	-88,187	-33,188	22.020	0 170
P6	250,476	711,433	511,522	-323749,524	-323749,577	-324000,053	-0,053	746,447	519,153	-88,320	-33,238	-55,059	0,178
P7	498,664	805,070	510,854	-323501,336	-323501,079	-323999,743	0,257	839,968	519,318	-87,089	-32,775		
P8	761,726	903,817	510,012	-323238,274	-323238,826	-324000,552	-0,552	938,793	519,340	-87,459	-32,914		
P9	993,226	990,902	509,817	-323006,774	-323006,408	-323999,634	0,366	1026,541	519,377	-87,731	-33,016		
P10	1260,454	1091,333	508,489	-322739,546	-322739,382	-323999,836	0,164	1127,039	519,487	-87,453	-32,912		

Tabella 8: letture angolari, CdM degli spot nelle due camere e ripetibilità del parametro ε'

Lo studio della ripetibilità su 10 posizioni (Tabella 8) ha restituito un valore di $\sigma_x = 0,18 \text{ px}$ (un po' peggiore di quello mostrato in Tabella 5, che si era ottenuto esplorando solo un piccolo intorno della zona centrale di un sensore).

L'ultimo intervento meccanico è consistito nel <u>serraggio delle viti di fissaggio del supporto delle camere</u>, a cui è seguita l'ultima acquisizione per la verifica della sensibilità e della ripetibilità, come mostrato nelle seguenti 3 tabelle:

						Camera a	isse X					
	noc	lett. Angol. a spot	lettura a	ngolare	media	X CdM spot	Y CdM spot	range esplorato	coefficienti d	ti di sensibilità K (px/angolo		
	pos.	п	-	٥	mrad	рх	рх	٥	"	٥	mrad	
	1	-749.605	-749.635	-0.208	-3.634	359.5	514					
a sin del	2	-498.382	-498.446	-0.138	-2.417	453.886	513.235					
centro	3	-249.749	-249.760	-0.069	-1.211	547.236	512.466					
centrale	4	-2.921	-2.924	-0.001	-0.014	640.061	511.793	0.417	0.376	1352.538	77.495	
	5	246.963	246.977	0.069	1.197	734.013	510.788					
a dx del	6	499.219	499.228	0.139	2.420	828.611	510.031					
centro	7	749.991	750.005	0.208	3.636	922.943	508.88					

						Camera	a asse Y				
	n	lett. Angol. a spot	lettura a	ingolare	media	X CdM spot	Y CdM spot	range esplorato	coefficienti d	li sensibilità K (px/angolo)
	pos.	п	"	0	mrad	рх	рх	٥	"	٥	mrad
a sin del	1	-324749.394	-324749.400	-90.208	-1574.430	352.6	519.371				
contro	2	-324498.589	-324498.586	-90.138	-1573.214	447.333	519.403				
centro	3	-324249.733	-324249.734	-90.069	-1572.007	540.919	519.595				
centrale	4	-324002.701	-324002.704	-90.001	-1570.809	634.077	519.585	0.416	0.377	1356.975	77.749
	5	-323753.357	-323753.351	-89.931	-1569.601	727.886	519.557				
a ux dei	6	-323500.394	-323500.391	-89.861	-1568.374	823.514	519.688				
centro	7	-323250.336	-323250.333	-89.792	-1567.162	917.75	519.662				

	Car	mera asse Y		Camera asse X							verifica scarto X CdM spot fra le due camere				
posizione	θ mis. tavola / "	X CdM / px	YCdM/px	θ' teor. tavola / "	θ' mis. tavola / "	θ ' mis- θ mis / °	scarto fra θ 'teor. e θ 'mis. /"	X CdM / px	YCdM/px	ε / "	ε'/рх	$\varepsilon' medio / px$	$\sigma_{\varepsilon'}/\mathrm{px}$		
P1	-749,6050	359,5	514	-324749,6050	-324749,4001	-89,9999	0,2049	352,6	519,371	21,598	8,128				
P2	-498,3820	453,886	513,235	-324498,3820	-324498,5856	-90,0001	-0,2036	447,333	519,403	21,079	7,933				
P3	-249,7490	547,236	512,466	-324249,7490	-324249,7339	-90,0000	0,0151	540,919	519,595	21,474	8,081				
P4 - centrale	-2,9210	640,061	511,793	-324002,9210	-324002,7042	-89,9999	0,2168	634,077	519,585	21,589	8,125	8,092	0,166		
P5	246,9630	734,013	510,788	-323753,0370	-323753,3514	-90,0001	-0,3144	727,886	519,557	22,244	8,371				
P6	499,2190	828,611	510,031	-323500,7810	-323500,3910	-89,9999	0,3900	823,514	519,688	21,028	7,914				
P7	749 9910	922 943	508.88	-323250 0090	-323250 3334	-90 0001	-0 3244	917 75	519 662	21 379	8 045				

Conclusioni

L'esito di questo lavoro è stato la determinazione della sensibilità angolare delle camere installate sui due assi dell'autocollimatore - ovvero la taratura di questo – destinato all'esperimento LUMINAR, attraverso l'impiego di una testa ottica deputata al lancio di un laser, una tavola rotante per generare angoli al fine di orientare opportunamente gli assi dell'autocollimatore rispetto al laser, e di semplici operazioni di *image processing* applicato alle immagini acquisite dalle camere a bordo; le sensibilità angolari ottenute, in definitiva, sono quelle mostrate nelle Figure 16 e 17 (K_{camX} = 0,377 px/" e K_{camY} = 0,376 px/"), e questi sono dati essenziali di cui tener conto nell'analisi dei segnali di back-scattering che si acquisiranno con l'intero apparato sperimentale di LUMINAR.