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Abstract 
The probing system dynamics is important for coordinate measuring machine (CMM) performance, particularly when probing in 
scanning mode. This is a typical situation e.g. in gear metrology, where the flanks are typically scanned. This may occur even 
without full awareness of the user, who may accept default values or choose with little understanding.  This work presents a 
modelling of a contouring probe. The model is based on the characteristics of real probes; more specifically, continuous passive 
systems are considered, resulting essentially in second order 3D systems. The theoretical model is validated experimentally by 
scanning suitable surfaces exhibiting a range of slopes. The separation between static and dynamic effects is achieved by repeating 
the experiments at varying scanning speed, so that a same geometrical slope results in different temporal slopes – which the 
probing system dynamics is sensitive to. The model is oriented to define a good trade-off between the scanning speed and the 
measurement uncertainty. 
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1. Probe dynamics working area 

Coordinate measuring machines (CMMs) are increasingly used 
for dense gauging of complex shapes like gear tooth profiles. 
Even for simpler profiles with large dimensions, like large ring 
bearing for high-end wind turbines, dense gauging is requested 
to characterize tolerances and waviness for the wearing 
prediction of such mechanical parts. However, the probing 
system is the dominant dynamic contributor in gear metrology 
because the CMM carriage accelerations required in gear 
measurement are usually well borne by the structure. The 
probing system is not the only component inputting dynamic 
effects in coordinate measurement: the CMM itself does with 
its mechanical structure. This work presents a modelling of a 
contouring probe. The model is identified using the 
characteristics of real probes and it is oriented to define a good 
trade-off between the scanning speed and the measurement 
uncertainty.  

When the probe is subject to a small mechanical impulse, it 
behaves like a traditional second order oscillating system [1] 
and it exhibits a damped oscillation. All details of model 
identification are given in the section “probe model”. Probe 
dynamics can be essentially defined by its natural oscillating 
frequency ω0. From this model, it follows that the contribution 
to the measurement uncertainty increases rapidly approaching 
ω0. Since the frequencies of probe motion depend both on the 
scanning speed and the waviness of the mechanical part under 
measure, a convenient way to display the CMM scanning 

speeds is the plot in Figure 1. This plot shows an area (green 

shaded) where the influence of the natural oscillating 
frequency of the scanning probe is negligible. This area 
(working area) contains all the pairs of waviness-scanning 
speeds with such characteristic. Each curve in the plot 
represents the points where a probe of a CMM moving at the 
speed read from the X-axis on a surface with a waviness read 
from the Y-axis oscillates at a constant frequency. 

Specifically for a CMM Leitz PMM with a B4 controller and a 
TRX probe head ( 

Figure 4) the measured natural oscillating frequency is 0 = 

8,55 Hz (red curve) [1]. Assuming a buffer zone of 20% of 0, 
the area below the green curve can be considered as a good 
working area, since it has a low contribution to uncertainty 
coming from the probe dynamics.  

In this plot, two points (red and black dots) representing the 
scan speed and the measured waviness of a ring segment are 
also reported (Figure 2) [2]. The plot shows that the points fall 
in the good working area. 

 

 
Figure 1. Working area for surface scanning according to probe 
mechanical characteristics 

The waviness of the two points in Figure 1 are taken from the 
RSm parameter of the axial and longitudinal roughness plots 
shown in Figure 2. The RSm parameter represents the main 
harmonic component of the roughness profile acquired by a 
profilometer. The measured values are, respectively, 722,53 

m and 848,71 m for axial and longitudinal directions. 
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Figure 2. Roughness plots of ring segment. Axial roughness (upper). 
Longitudinal roughness (lower)  

2. Probe model 

Damping is always present in mechanical systems. Modelling 
the CMM probe like a classical spring-mass-dashpot system, by 
inputting an impulse to it, we can consider the second order 
differential equation for the displacement (along one axis):  
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whose underdamped (0 <  < 1) solution is 
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where 𝜔𝑛 and 𝜔𝑑  are, respectively, the natural frequency and 
the damped natural frequency. When the initial velocity is set 
to zero, at two different moments the ratio between two 
oscillation amplitudes is 
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Calculating the logarithmic ratio of succeeding 

amplitudes 𝑥1 , 𝑥2, that is the 
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it is possible to obtain the damping ratio  : 
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from which to derive, finally, 𝜔𝑑 and 𝜔𝑛   [3]. 
 

2. CMM dynamics 

We also tried to characterize the CMM global dynamics, 
apart from probe dynamics. For such a purpose, a “datum 

sphere” (with a diameter of 30 mm) was measured with 
different probe speeds (ranging from 1 mm s

-1
 to 10 mm s

-1
 on 

the sphere, along a path 45 mm long). From preliminary 
results, the deviation of measured data from the ideal fitted 
profile exhibits an oscillating frequency of ≈1 Hz that we 
assume as the global natural frequency of the CMM. Figure 3 
shows the same waviness/probe speed plot as Figure 1, with 

the addition of the 0 CMM curve (black curve). This curve 
introduces a low limit to the good working area at the lower 
frequencies. 

 
Figure 3. Same working area as in previous figure, with CMM 
capabilities at low frequencies added 

 
 

Figure 4. CMM probing system of a CMM Leitz PMM with a B4 
controller and a TRX probe head 

4. Conclusions 

This work presents a method to select the right scanning speed 
versus the waviness (working area) of the measurement object, 
taking into account both the probe dynamics and the CMM 
global dynamics. In such area there is a low contribution to 
uncertainty coming from the probe dynamics and CMM global 
dynamics. 
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