
bitis

version 0.12.3

Fabrizio Pollastri

December 09, 2014

Contents
Contents 1

Bitis, binary timed signals processing library 1

Introduction 1

Requirements 1

Installation 1

Code Repository 1

Usage examples 1

Logic operations 1

Graphic and semigraphic plot 2

Correlation Function 4

Serial signal 5

Phase lockin 6

Modulation 8

Module reference 11

Objects and methods 12

Functions 15

BTS format 16

Definition 16

Python implementation 17

Pre version 0.9.0 format 17

Pre 0.9.0 definition 17

Pre 0.9.0 python implementation 17

Changes 17

Release 0.12.3 (released 9-Dec-2014) 17

Changes 17

Bugs fixed 17

Documentation 18

Release 0.12.2 (released 6-Dec-2014) 18

Bugs fixed 18

Documentation 18

Release 0.12.1 (released 3-Dec-2014) 18

New features 18

Bugs fixed 18

Release 0.12.0 (released 1-Dec-2014) 18

New features 18

Changes 18

Internals 18

Documentation 18

Release 0.11.2 (released 8-Oct-2014) 19

Bugs fixed 19

Release 0.11.1 (released 6-Oct-2014) 19

Changes 19

Bugs fixed 19

Internals 19

Release 0.11.0 (released 1-Oct-2014) 19

Features added 19

Changes 19

Bugs fixed 19

Documentation 19

Release 0.10.0 (released 26-Sep-2014) 19

Features added 19

Changes 20

Bugs fixed 20

Documentation 20

Internals 20

Release 0.9.0 (released 10-Sep-2014) 20

Features added 20

Changes 20

Bugs fixed 21

Internals 21

Release 0.8.0 (released 26-Aug-2014) 21

Features added 21

Changes 21

Bugs fixed 21

Internals 21

Release 0.7.1 (released 3-Feb-2014) 22

Bugs fixed 22

Internals 22

Release 0.7.0 (released 27-Jan-2014) 22

Features added 22

Incompatible changes 22

Release 0.6.0 (released 16-Dec-2013) 22

Features added 22

Incompatible changes 22

Bugs fixed 22

Internals 22

Release 0.5.0 (released 9-Dec-2013) 23

Features added 23

Incompatible changes 23

Bugs fixed 23

Internals 23

Release 0.4.0 (released 2-Dec-2013) 23

Features added 23

Incompatible changes 23

Bugs fixed 23

Internals 23

Release 0.3.0 (released 11-Nov-2013) 24

Features added 24

Release 0.2.0 (released 4-Nov-2013) 24

Features added 24

Release 0.1.0 (released 29-Oct-2013) 24

Index 25

Contents

Bitis, binary timed signals processing library

Introduction
Bitis is a python module that implements a full set of operators over binary signals represented with BTS format.
The BTS format is a computer memory representation of a binary signal that can have a very compact memory
footprint when the signal has a low rate of change with respect to its sampling period.

For example, let see a typical case, a time reference signal having about one pulse per second and one
microsecond of time resolution. The BTS format allows to completely discard the one million samples per second
between each two pulses and allows to keep in memory only the signal change times: for each second, the time of
the pulse front edge and the time of the trailing edge.

This is the documentation for version 0.12.3.

Since version 0.9.0, the BTS format has changed. The start and the end times of the signal are no more in the signal
changes times sequence. Now, they are attributes of the signal object (Signal.start, Signal.end).`

At present, no effort is made for speed optimization and the employed algorithms are essentially procedural. The
only goal is "make it work in some way" and understand what can be a decent set of objects/methods/functions.

BITIS is released under the GNU General Public License.

At present, version 0.12.3, BITIS is in alpha status. Any debugging aid is welcome.

For any question, suggestion, contribution contact the author Fabrizio Pollastri <f.pollastri_a_t_inrim.it>.

Requirements
To run the code, Python 2.6 or later must already be installed. The latest release is recommended. Python is
available from http://www.python.org/.

When the Signal plotting method is used also Matplotlib is required. This also requires all dependencies of
Matplotlib, like NumPy, etc.

Installation

1. Open a shell.

2. Get root privileges and install the package. Command:

pip install bitis

Code Repository
There is also a code repository at https://github.com/fabriziop/bitis .

Usage examples

Logic operations
This simple example shows some logic operations supported by the BITIS module.

 1 import bitis as bt
 2
 3 ## Check the equation: a xor b = a and not b or not a and b
 4
 5 # create two random signals
 6 a = bt.noise(0,0,100,period_mean=10,width_mean=3)

Contents

1

file:///home/fabrizio/dcf77/bitis-0.12.3/doc/btsformat.html
file:///home/fabrizio/dcf77/bitis-0.12.3/doc/btsformat.html
http://www.python.org/
http://matplotlib.org
http://matplotlib.org
http://numpy.org
https://github.com/fabriziop/bitis

 7 b = bt.noise(-10,-10,90,period_mean=4,width_mean=2)
 8
 9 # direct xor
10 xor1 = a ^ b
11
12 # xor from equation
13 xor2 = a & ~b | ~a & b
14
15 # check results
16 if xor1 == xor2:
17 print 'Success!'
18 else:
19 print 'Failure!'
20
21 #### END

Graphic and semigraphic plot
The following example shows the plotting capabilitites of methods plot and plotchar. The method plot uses the
matplotlib to produce graphic drawing of the given signal as a square/rectangular wave. The x axis represents the
time, the y axis represents the logical levels. The method plotchar uses the box line drawing characters from
unicode for drawing the best approximation of a graphic representation of the given signal. Below there are two
representations of the same test signal.

 1 import bitis as bt
 2 import locale
 3 import matplotlib.pyplot as pl
 4 import sys
 5 import StringIO as SI
 6
 7 # init locale
 8 locale.setlocale(locale.LC_ALL,"")
 9
10 # a test signal
11 signal = bt.test()
12
13 # graphic plot
14 fig1 = pl.figure(1,figsize=(5,2))
15 pl.suptitle('BITIS: test signal graphic plot.')
16 pl.xlabel('time')
17 signal.plot()
18 pl.grid()
19
20 # save graphic plot to file
21 fig1.savefig('plot.png',format='png')
22
23 # sequence of semigraphic plots of increasing resolution
24 buf = SI.StringIO()
25 buf.write('BITIS: test signal semigraphic plot\n')
26 for width in range(1,77,5):
27 top, bot = signal.plotchar(width,max_flat=4)
28 buf.write('%3d ' % width + top + '\n')
29 buf.write(' ' + bot + '\n')
30 sys.stdout.write(buf.getvalue())
31
32 # save semigraphic plot to file
33 pfile = open('plot.txt','w')
34 pfile.write(buf.getvalue())
35 pfile.close()
36

Contents

2

37
38 if __name__ == '__main__':
39 pl.show()
40
41 #### END

This is the graphic plotting result using plot method.

This is the semigraphic plotting result using plotchar method. The figure shows a sequence of plotting of the same
test signal with increasing resolution. Resolution is the length of the plotting character string, it is printed at line
beginning and spans from only one chararacter until a string 76 characters long.

 1 BITIS: test signal semigraphic plot
 2 1 ■
 3 ■
 4 6 ■■■■■■
 5 ■■■■■■
 6 11 ■■■■■■■■■■■
 7 ■■■■■■■■■■■
 8 16 ■■■■■■■■■■■■■■ ■
 9 ■■■■■■■■■■■■■■■■
10 21 ■■■ ■ ■ ■■■■■ ■ ■■■ ■
11 ■■■■■■■■■ ■ ■■■■■ ■■■
12 26 ■■■■■■ ■■■■■■■■■ ■■■■■■ ■■
13 ■■■■■■■■■■ ■■ ■■■■■ ■■■■
14 31 ■■■■ ■■ ■■ ■■■■■■■■ ■■ ■■■■ ■■
15 ■■■■■■■■■■■■ ■■ ■■■■■■ ■■■■■
16 36 ■■■■■ ■■■ ■■ ■■■■■■■■■ ■■ ■■■■ ■■
17 ■■■■■■■ ■■■■■■ ■■ ■■■■■■■ ■■■■■■
18 41 ■■■■■■ ■■■ ■■■ ■■■■■■■■■■ ■■ ■■■■■ ■■
19 ■■■■ ■■■ ■■■ ■■■ ■■ ■■■■■■■■ ■■■■■■
20 46 ■■■ ■■ ■■■ ■■ ■■■■■ ■■■■■ ■■■ ■■■■■ ■■■
21 ■■■■■■■■■ ■■■■■■■■ ■■■ ■■■■ ■■■■ ■■■■■ ■
22 51 ■■■■■■■ ■■■ ■■■ ■■■■■■■■■■■■ ■■ ■■■■■■ ■■■
23 ■■■■■ ■■■■ ■■■■ ■■■■ ■■ ■■■■■■■■■ ■■■■■■ ■
24 56 ■■■■ ■■■ ■■■ ■■ ■■■■■■ ■■■■■■ ■■■ ■■■x■■ ■■■
25 ■■■■■■ ■■■■ ■■■■■■■■■■ ■■■ ■■■■■ ■■■■ ■■■■■■ ■
26 61 ■■■■ ■■■ ■■■ ■■■ ■■■x■■■■■x■■ ■■■ ■■■x■■ ■■■
27 ■■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■ ■■■■■ ■■■■■ ■■■x■■ ■
28 66 ■■■■ ■■■ ■■■ ■■■ ■■■x■■ ■■■x■■ ■■■ ■■■x■■ ■■■
29 ■■■■■■■ ■■■■■ ■■■■■ ■■■■■■ ■■■ ■■■■■■ ■■■■■ ■■■x■■ ■■
30 71 ■■■■ ■■■■ ■■■ ■■■ ■■■x■■ ■■■x■■ ■■■ ■■■x■■ ■■■
31 ■■■■■■■ ■■■■■ ■■■■■■ ■■■■■■ ■■■■ ■■■■■■ ■■■■■■ ■■■x■■ ■■
32 76 ■■■■ ■■■ ■■■ ■■■■ ■■■x■■ ■■■x■■ ■■■■ ■■■x■■ ■■■
33 ■■■■■■■■ ■■■■■■ ■■■■■■ ■■■■■ ■■■ ■■■■■■ ■■■■■ ■■■x■■ ■■

When resolution is too low to represent all signal transition edges, plotchar puts an heavy vertical line as symbol of
multiple edges.

Contents

3

In this example, plotchar is called with the argument max_flat=4 . This means that a signal constant level elapsing
more than 4 characters is compressed (in time) to be of length 4 characters. This characters drop is marked by the
'x' chararacter that can be seen in the last four semigraphic plots. When this happens, it is important to keep in mind
that the x axis time scale is no more uniform.

Correlation Function
The following example shows the plotting of two random signals and their correlation function.

 1 import bitis as bt
 2 import random
 3
 4 import matplotlib.pyplot as pl
 5
 6 # make repeatable random sequences
 7 random.seed(1)
 8
 9 # create random signals
10 in_a = bt.noise(-2,-2,12,period_mean=6,width_mean=3)
11 in_b = bt.noise(-2,-2,12,period_mean=4,width_mean=2)
12
13 # compute correlation
14 corr_ab = in_a.correlation(in_b,step_size=0.1)
15
16 # start plotting
17 fig1 = pl.figure(1,figsize=(5,5))
18 pl.suptitle('BITIS: correlation of two signals.')
19
20 # plot signal a
21 pl.subplot(3,1,1)
22 pl.xlim(-2,12)
23 pl.ylabel('signal a')
24 pl.xlabel('time')
25 in_a.plot()
26
27 # plot signal b
28 pl.subplot(3,1,2)
29 pl.xlim(-2,12)
30 pl.ylabel('signal b')
31 pl.xlabel('time')
32 in_b.plot()
33
34 # plot correlation function
35 pl.subplot(3,1,3)
36 pl.grid()
37 corr, shift = corr_ab
38 pl.plot(shift,corr)
39 pl.ylabel('correlation a b')
40 pl.xlabel('signal a shift')
41 pl.subplots_adjust(hspace=0.4)
42
43 # save plot to file
44 fig1.savefig('correlation.png',format='png',)
45
46
47 if __name__ == '__main__':
48 pl.show()
49
50 #### END

This is the plotting result.

Contents

4

Serial signal
The following example shows the signal of an asynchronous serial interface coding the ASCII character "U" with 8
character bits, odd parity, 2 stop bits and 50 baud tranmitting speed.

 1 import bitis as bt
 2 import matplotlib.pyplot as pl
 3
 4 CHAR_BITS = 8
 5 PARITY = 'odd'
 6 STOP_BITS = 2
 7 BAUD = 50
 8 TSCALE = 1.
 9
10 chars = ['U']
11 timings = [0]
12
13 fig1 = pl.figure(1,figsize=(5,2))
14 pl.suptitle('BITIS: "U" character serial line coding.')
15 pl.xlabel('time')
16 bt.serial_tx(chars,timings,char_bits=CHAR_BITS,parity=PARITY,
17 stop_bits=STOP_BITS,baud=BAUD).plot()
18 bit_time = TSCALE / BAUD
19 pl.text(bit_time/2,0.5,'S',ha='center')
20 mask = 1
21 for c in range(CHAR_BITS):
22 if ord(chars[0]) & mask:
23 char = '1'
24 else:
25 char = '0'

Contents

5

26 pl.text((c + 1.5) * bit_time,0.5,char,ha='center')
27 mask <<= 1
28 pl.text((c + 2.5) * bit_time,0.5,'P',ha='center')
29 pl.text((c + 3.5) * bit_time,0.5,'E',ha='center')
30 pl.text((c + 4.5) * bit_time,0.5,'E',ha='center')
31 pl.grid()
32
33 # save plot to file
34 fig1.savefig('serial_tx.png',format='png')
35
36
37 if __name__ == '__main__':
38 pl.show()
39
40 #### END

This is the plotting result. The x axis units are milliseconds.

Phase lockin
The following example demonstrate a phase recovery from a disturbed periodic signal whose undisturbed original is
known. The original signal is a square wave of 50 cycles @1Hz, 50 % duty cycle. A gaussian jitter is added to the
original signal change times and the result is xored with noise pulses to simulate transmission line disturbances.

 1 import bitis as bt
 2 import random
 3
 4 import matplotlib.pyplot as pl
 5
 6 # make repeatable random sequences
 7 random.seed(1)
 8
 9 # generate the original signal: square wave, 50 cycles @1Hz, 50% duty cycle.
10 original = bt.square(0.,0.,50.,1.,0.5)
11
12 # add jitter to original signal
13 jittered = original.clone()
14 jittered.jitter(0.1)
15
16 # add noise by xor
17 jittered_noised = jittered ^ bt.noise(0,0,50,period_mean=5,width_mean=0.5)
18
19 # compute correlation between original and disturbed signal
20 corr, shift = original.correlation(jittered_noised,step_size=0.05,
21 skip=49.45,width=1.05)
22
23 # start plotting
24 fig1 = pl.figure(1,figsize=(6,7))

Contents

6

25 pl.suptitle('BITIS: lockin to a noisy signal.')
26
27 # plot original signal
28 pl.subplot(4,1,1)
29 pl.xlim(-1,51)
30 pl.ylabel('original')
31 pl.xlabel('time')
32 original.plot()
33
34 # plot signal with jitter
35 pl.subplot(4,1,2)
36 pl.xlim(-1,51)
37 pl.ylabel('+jitter')
38 pl.xlabel('time')
39 jittered.plot()
40
41 # plot signal with jitter and noise
42 pl.subplot(4,1,3)
43 pl.xlim(-1,51)
44 pl.ylabel('+noise+jitter')
45 pl.xlabel('time')
46 jittered_noised.plot()
47
48 # plot correlation function
49 pl.subplot(4,1,4)
50 pl.grid()
51 pl.plot(shift,corr)
52 pl.ylabel('correlation')
53 pl.xlabel('lockin phase')
54 pl.subplots_adjust(hspace=0.4)
55
56 # save plot to file
57 fig1.savefig('lockin.png',format='png')
58
59
60 if __name__ == '__main__':
61 pl.show()
62
63 #### END

The plot shows the original, the disturbed signal and the correlation among them, correlation that reaches a
maximum when the original has that same phase of the disturbed original.

Contents

7

Modulation
The following example shows the generation of a modulated signal, given a random code and a set of symbols. The
modulated signal is obtained concatenating in time the symbol corresponding to a code value. Then the modulated
signal is demodulated by maximal correlation symbol estimation. As a byproduct, the signal/symbols correlation
matrix is obtained as shown below. The example does not take into account any signal alteration by noise.

 1 import bitis as bt
 2 import random
 3 import matplotlib.pyplot as pl
 4 from mpl_toolkits.mplot3d import Axes3D
 5 import numpy as np
 6
 7 SYMBOLS_NUM = 4
 8 SYMBOL_ELAPSE = 4.
 9 SYMBOL_PULSES_MEAN_PERIOD = 1.
10 SYMBOL_PULSES_MEAN_WIDTH = 0.5
11 CODE = [3,0,1,2]

Contents

8

12
13 # make repeatable random sequences
14 random.seed(1)
15
16 # generate symbols as random signals
17 symbols = []
18 for i in range(SYMBOLS_NUM):
19 symbol = bt.noise(0.,SYMBOL_ELAPSE,period_mean=
20 SYMBOL_PULSES_MEAN_PERIOD,width_mean=SYMBOL_PULSES_MEAN_WIDTH)
21 # ensure same start and end levels equal to 0
22 while symbol.slevel or symbol.slevel != symbol.end_level():
23 symbol = bt.noise(0.,SYMBOL_ELAPSE,period_mean=
24 SYMBOL_PULSES_MEAN_PERIOD,width_mean=SYMBOL_PULSES_MEAN_WIDTH)
25 symbols.append(symbol)
26
27 # modulate
28 mod = bt.code2mod(CODE,symbols)
29
30 # demodulate
31 decode, corr, corrs = bt.mod2code(mod,symbols)
32
33 # plot symbols
34 fig1 = pl.figure(1,figsize=(6,6))
35 pl.suptitle('BITIS: modulation symbols.')
36 for i in range(len(symbols)):
37 pl.subplot(4,1,i+1)
38 pl.xlim(0,SYMBOL_ELAPSE)
39 pl.ylabel('%d symbol' % i)
40 pl.xlabel('time')
41 symbols[i].plot()
42
43 # plot modulated signal
44 fig2 = pl.figure(2,figsize=(6,2.5))
45 fig2.subplots_adjust(top=0.9,bottom=0.2)
46 pl.suptitle('BITIS: modulated signal.')
47 pl.xlim(0,SYMBOL_ELAPSE*len(CODE))
48 pl.xlabel('time')
49 pl.xticks(np.arange(0,17,4))
50 pl.grid(axis='x',linestyle='-',linewidth=1)
51 mod.plot()
52 for c in range(len(CODE)):
53 pl.text(c*4+2 ,0.5,'code %d' % CODE[c],ha='center',size=14)
54
55 # plot correlation matrix of modulated signal
56 fig3 = pl.figure(3,figsize=(6,6))
57 pl.suptitle('BITIS: correlation matrix of modulated signal.')
58 ax = fig3.gca(projection='3d')
59 x, y = np.mgrid[0:len(CODE),0:SYMBOLS_NUM] - 0.1
60 x = x.flatten()
61 y = y.flatten()
62 z = np.zeros_like(x)
63 pl.xlabel('code time')
64 pl.ylabel('symbol')
65 ax.set_zlabel('correlation')
66 dz = np.array(corrs).flatten()
67 pl.xticks(np.arange(4))
68 pl.yticks(np.arange(4))
69 cz = ['g']*len(z)
70 for i in range(len(cz)):
71 if dz[i] > 0.9:

Contents

9

72 cz[i] = 'r'
73 ax.bar3d(x,y,z,0.2,0.2,dz,color=cz)
74
75 # save plots to files
76 fig1.savefig('modem1.png',format='png')
77 fig2.savefig('modem2.png',format='png')
78 fig3.savefig('modem3.png',format='png')
79
80
81 if __name__ == '__main__':
82 pl.show()
83
84 #### END

The plot shows the set of four random symbols. Each symbol has an elapse time of 4 seconds.

The plot shows the modulated signal with the boundaries between the symbols. For each symbol time, the code
value is shown.

Contents

10

The plot shows the symbol correlation matrix of the modulated signal. The correlation value reaches the maximum
where the correlating symbol is equal to the modulating symbol. For each code time, the symbol with maximum
correlation (+1) is marked in red.

Module reference
The Bitis modules defines one class realizing a BTS signal with a set of methods implementing several unary or
binary operators over the signal. There are also some functions for data interface.

Module reference

11

Objects and methods

class bitis.Signal (start=None, edges=None, end=None, slevel=0, tscale=1.0)
Implements the concept of "Binary Timed Signal": a memory representation of a binary signal as sequence of the
times of signal edges (signal changes). start sets the signal start time. edges can be used to initialize the signal
edges sequence, it must be a list of times (integers or floats). May be empty. The signal level before the first
change is specified by slevel. Also a time scale factor can be specified by tscale, at present not used.

__add__ (other)
Concatenate (join) other to self.

__and__ (other)
Compute the logic and of two given signal objects: self and other. Return a signal object with the and of the two
input signals. Can be used as the bitwise and operator as in the following example (signal a,b,c are instances of
the Signal class):

signal_c = signal_a & signal_b

__eq__ (other)
Equality test between two signals. Return True if the two signals are equal. Otherwise, return False. Can be
used as the equality operator as in the following example (signal a,b are instances of the Signal class):

if signal_a == signal_b:
 print 'signal a and b are equal'

__invert__ (inplace=False)
Compute the logic not of the given signal object: self. If inplace is false, return the result as a new signal object.
Otherwise, return the result as self. Can be used as the bitwise not operator as in the following example (signal
a,b are instances of the Signal class):

signal_b = ~ signal_a

__len__ ()
Return the length of the change times sequence.

__ne__ (other)
Inequality test between two signals. Return True if the two signals are not equal. Otherwise, return False. Can
be used as the inequality operator as in the following example (signal a,b are instances of the Signal class):

if signal_a != signal_b:
 print 'signal a and b are different'

__nonzero__ ()
Return true if the signal is not void, return false otherwise.

__or__ (other)
Compute the logic or of two given signal objects: self and other. Return a signal object with the or of the two
input signals. Can be used as the bitwise or operator as in the following example (signal a,b,c are instances of
the Signal class):

signal_c = signal_a | signal-b

__xor__ (other)
Compute the logic xor of two given signal objects: self and signal. Return a signal object with the xor of the two
input signals. Can be used as the bitwise xor operator as in the following example (signal a,b,c are instances of
the Signal class):

signal_c = signal_a ^ signal_b

Module reference

12

append (other)
Return the self signal modified by appending other signal to it. If there is a time gap between the signals, fill it.
The start time of other must be greater or equal to end time of self. The end level of self must be equal to the
start level of other. Otherwise, no append is done.

chop (period, origin=None, max_chops=1000)
Divide the signal into several time contiguous signals with the same elapse time equal to period. The dividing
times sequence starts at origin and has an element every period time, except for the last element. It has end
time = period * max_chops, if max_chops is reached. Otherwise, it has the end time of the chopped signal.
Return a list with the chopped signals. If origin is before the signal start, it is moved forward by an integer times
of period, until it falls into the signal domain. If origin is none, it is set to self start time by default. If origin is after
the signal end, no chop occours, an empty list is returned. If self is void, return an empty chop list.

clone ()
Return a deep copy with the same attributes/values of signal object.

clone_into (other)
Return a full copy of signal object into other. Each other attribute is assigned a deep copy of the value of the
same attribute in signal object. Return other.

correlation (other, mask=None, step_size=1.0, skip=0, width=None, normalize=False)
Return the correlation function of two given signal objects: self and other.

mask: signal or None, same elapse of other. Compute correlation only where mask == 1. If None, compute
correlation on the whole intersection of self and other.

step_size: positive float, the time pitch of the correlation function.

skip: positive float, the time elapse at the start of the correlation function not to be computed.

width: is the time elapse where to compute the correlation function. If None, compute the correlation
function for each time shift of self that has an intersection with other, having an elapse time >= step_size.

normalize: boolean, controls the values of the correlation function. If True, values are normalized in the
range -1 +1. If False, values are absolute: the integral of xor between shifted self and other signals.

Return pattern (corr, shift)

corr: list of floats. The values of the correlation function.

shift: list of floats. The time shift applied to self to slide it over other signal for each value of corr.

elapse ()
Ruturn the signal elapse time: end time - start time. If self is void, return zero.

end_level ()
Return the logic level at the end of a signal object.

integral (level=1, normalize=False)
Return the integral of a signal object: the elapsed time of all periods in which the signal is at the level specified
by level. Output can be absolute (normalize=False) or can be normalized (normalize=True): absolute integral
averaged over the whole signal domain. The summation is operated on the signal domain only. If self is void,
return none.

jitter (stddev=0)
Add a gaussian jitter to the change times of self signal object with the given standard deviation stddev and zero
mean. Signal start and end times are unchanged.

join (other, inplace=False)
Join two signals (self and other) in one signal. End time of self must be less or equal to start time of other. If
there is a time gap between the joining signals, fill it. Return a signal object with the join result. If inplace is false,
a new signal object is returned. If inplace is true, the join result is put into self and self is returned. Signals with
different levels at self end and at other start cannot be joined (join return a void signal).

level (time, tpos=0)

Module reference

13

Return the logic level and the number of edges of a signal object at a given time (time) and a given edge
position where to start searching (tpos). The edge position is the number of signal edges before time. When
time is equal to an edge time that edge is considered before time. time must be in the signal time domain,
otherwise None is returned. tpos must point to an edge before time.

newer (split, inplace=False)
Split self into two signals at time split and return the part after split time. If split is equal to a signal change time,
the change is put into the return signal. If split is at or before signal start, return self. If split is at or after signal
end, return the void signal. If inplace is false, a new signal object is returned. If inplace is true, self is changed to
the newer part and returned. If self is void, the void signal is returned.

older (split, inplace=False)
Split self into two signals at time split and return the part before split time. If split is equal to a signal change
time, the change is not put into the return signal. If split is at or before signal start, return the void signal. If split
is at or after signal end, return self. If inplace is false, a new signal object is returned. If inplace is true, self is
changed to the older part and returned. If self is void, the void signal is returned.

phase (other, mask, resolutions, period=None)
Find the phase between self and other. Phase is the time shift that applied to self gives the maximum
correlation: self (t + phase) * other (t) is maximum (* means correlation). For faster computation, the phase can
be computed by progressive smaller resolutions.

mask: signal or None, same elapse of other. Compute correlation only where mask == 1. If None, compute
correlation on the whole intersection of self and other.

resolutions: tuple or list of positive float, at least one element, sequence of resolutions from coarser to
finest, the time step used in the computation of correlation.

period: None or positive float. If None, phase is computed as absolute time shift. If float, phase is the time
shift with respect to nearest integer multiple of period, its range is - period/2. <= phase < + period/2..

Return pattern (phase, corr_phase, corrs, shifts)

phase: float, the computed phase.

corr_phase: float, the correlation function value at phase shift.

corrs: list of lists of floats, positive. For each resolution value specified in resolutions, the unnormalized
values of the correlation function.

shifts: list of lists of floats. The time shift values corresponding to the correlation function values in corrs.

plot (*args, **kargs)
Graphic plot of signal self as square wave. Requires Matplotlib. *args and **kargs are passed on to matplotlib
functions.

plotchar (charnum, origin=None, end=None, max_flat=None)
Semigraphic plot of signal self with unicode line drawing characters (U+25xx). Require locale setting.

charnum: integer, the maximum length of the string of the rendering characters.

origin: float, the rendering start time. If None, start is set to the signal start time.

end: float, the rendering end time. If None, end is set to the signal end time.

max_flat: integer, the maximum number of consecutive horizontal line characters. When reached, no more
horizontal chars are added and a lower case 'x' char is put in the middle of this sequence to mark the
character drop. If None, compression is disbled.

Return pattern (topchars, botchars)

topchars: utf-8 encoded string. The top row of unicode characters rendering the semigraphic plot.

botchars: the same as topchars, but for the bottom row.

reverse (inplace=False)
Reverse the signal change times sequence: last change becomes the first and viceversa. Time intervals
between edges are preserved. If inplace is false, return the result as a new signal object. Otherwise, return the
result as self.

Module reference

14

shift (offset, inplace=False)
Add offset to signal start and end times and to each signal change time. If inplace is false, return the result as a
new signal object. Otherwise, return the result as self.

split (split, inplace=False)
Split self into two signals at time split.
Return pattern (older, newer)

older: signal, the part of self from start time to split time.

newer: signal, the part of self from split time to signal end.
If split is equal to a signal change time, the change is put into the newer part. If split is at or before signal start,
older is the void signal and newer is self. If split is at or after signal end, older is self and newer is the void
signal. If inplace is false, newer is returned as a new signal object. If inplace is true, self is changed to newer
and returned as newer. If self is void, both older and newer are the void signal.

stream (other, elapse, buf_step=1.0)
Append other signal to self signal. If self signal elapse time becomes greater than elapse, delete from the older
part of self until its elapse time is less or equal than elapse. The elapsed time fo the deleted part is forced to a
integer multiple of buf_step.

validate ()
Validate signal attributes. Complete type and value checking of signal object attributes. If a check fails, an
exception is raised.

Functions

bitis.bin2pwm (bincode, elapse_0, elapse_1, period, active=1, origin=0, tscale=1.0)
Convert a binary code into a pulse width modulation signal in BTS format. Return a Signal class object. bincode is
a tuple or a list of tuples: (bit_length, bits). bit_length is an integer with the number of bits. bits is an integer or a
long integer with the binary code. First bit is the LSB, last bit is the MSB. period is the period of pwm pulses.
elapse_0 is the elapse time of a pulse coding a 0 bit. elapse_1, the same for a 1 bit. active is the active pulse
level. origin is the time of the leading edge of the first signal pulse.

bitis.pwm2bin (pwm, elapse_0, elapse_1, period=None, active=1, origin=0, threshold=0.2)
Convert a pulse width modulation signal in BTS format to binary code. Return a tuple: see bincode in bin2pwm.
pwm is the signal to decode. For the other arguments see bin2pwm. If period is not defined, conversion is done
by testing only the active pulse level elapse against a threshold computed as mean of elapse_0 and elapse_1. No
check is done on pulse period and decoding consider every pulse. If period is set to the modulation pulse period,
conversion is done by synchronous symbols correlation. The signal is chopped with the given period, starting from
origin, start of symbol periods, until signal end. Each signal chop, corresponding to one symbol time, is correlated
with both models of 0 and 1 pulses. The better value above threshold is taken as result.

bitis.code2mod (code, symbols, origin=0, tscale=1.0)
Modulate a code sequence into a modulation signal in BTS format. For each number in code, the symbol in
symbols with index equal to number is appended to the modulation signal. Return a Signal class object. code is
list of integer. symbols is a list of signal objects, one for each coding symbol. origin is the start time of the first
coded symbol.

bitis.mod2code (mod, symbols, mask=None, origin=None, tscale=1.0)
Demodulate a modulation signal in BTS format by maximal correlation symbol estimation. Return the demodulated
code sequence (list of int), the corresponding normalized correlation, list of float) of all symbols and the time
where the demodulation ends. symbols is a list of signal objects, one for each coding symbol. The symbols start
time is assumed as phase difference with respect to the signal start time. mask is a signal objects. Symbol
correlation is computed only where mask = 1. origin is the start time of the first coded symbol. If not defined, it is
set to start time of mod. All symbols must have the same elapse time that is the symbol period. The same holds
for mask.

bitis.serial_tx (chars, times, char_bits=8, parity='off', stop_bits=2, baud=50, tscale=1.0)
Simulate a serial asynchronous transmitting interface. Return a BTS signal with the serial line pulses coding a
given list of characters, according to the following serial parameters. The list of chars is the input to the serial
transmitter. times is the list of the start bit rising edge time of each char in chars. If times are too fast with respect
to the current baud rate, a char fifo behavoiur is activated. char_bits is the character size in bits (5,6,7,8). parity is

Module reference

15

the parity bit even, odd or off (parity absent). stop_bits is the number of stop bits (1,2). baud is the serial line
speed, any positive value is allowed. The serial line is assumed active high.

bitis.serial_rx (sline, char_bits=8, parity='off', stop_bits=2, baud=50)
Simulate a serial asynchronous receiving interface. Return a list of the received characters, a list of their start
times and a list of their status: 0 = ok, 1 = parity error. sline is a BTS signal with the serial line pulses coding the
characters to be received. For the keyword arguments see serial_tx. The serial line pulses are sampled at the
given baud rate like a real asynchronous serial interface.

bitis.noise (start, origin, end, period_mean=1, period_stddev=1, width_mean=1,
width_stddev=1, active='random')

Return a signal object with random pulses. start is the noise signal start. origin is the time of the first pulse trailing
edge. end is the signal end time. Pulses period and width follow a gaussian distribution: period_mean and
period_stddev are the given mean and standard deviation of pulses period, width_mean and width_stddev are the
given mean and standard deviation of the pulse width at 1 level. active is the active pulse level, can be
0,1,'random'.

bitis.square (start, origin, end, period, width, active=1)
Return a signal object with a square wave with constant period and constant duty cycle. start is the start time.
origin is the time of the first pulse trailing edge. end is the signal end time. period is the pulse period. width is the
pulse width at active level.

bitis.test ()
Return a signal object with a test signal. The signal has a sequence of primes as edges timing.

BTS format

Definition
The scope of this memo is to describe the BTS, Binary Timed Signal. A format for compact storage of binary signals
in computer memory. Binary signals are signal that can have only two logic levels/states, zero or one, true or false.

The BTS format is composed by 5 signal elements.

1. The start time, integer or float.

2. The edges times, sequence of integers or floats.

3. The end time, integer or float.

4. The start level, integer or boolean.

5. The time scale, integer or float.

Start time

The start time of the signal. Before this time, the signal is not defined. When it is none, the signal is considered void.

Edges times

This sequence stores all the times where the signal changes its level from 0 to 1 or viceversa. The edge times
sequence may be empty: in this case the signal is constant. The sequence must be sorted in ascending order. All
elements must have different times. The first element must be greater or equal to the start time. The last element
must be lower or equal to the end time.

End time

The end time of the signal. After this time, the signal is not defined. The end time must be greater than the start time.
May be none when start is none.

Start level

If the edges times sequence has 1 or more items, the start level value specifies the signal level from the signal start
time to the first edge time. If the edges times sequence is empty, the signal has a constant level that is equal to the
start level value.

Time scale

BTS format

16

An arbitrary unit of time can be chosen to express the values of times. The time scale value is the ratio: 1 second /
arbitrary time unit.

Python implementation
BITIS implements the BTS format with the Signal class. Each BTS signal is an instance of this class. The five
elements of the BTS format are the five attributes (start, edges, end, slevel, tscale) of the Signal class. The
sequence edges is realized as list of integers or floats.

Pre version 0.9.0 format

Pre 0.9.0 definition
The BTS format is composed by 3 elements.

1. The change times.

2. The start level.

3. The time scale.

Change times

This sequence stores all the times where the signal changes its level from 0 to 1 or viceversa. The first and the last
sequence items have a different meaning: they are respectively the start time and the end time of the signal. The
signal start and end are the boundaries of the signal domain. Outside this interval, the signal is to be itended as not
defined. The change times sequence may be empty: in this case the signal must be threated as empty or null. The
sequence may have 2 items: in this case the signal has a constant level along all its domain and there are no level
changes. The sequence may have 3 or more items: in this case the signal has 1 or more level changes. A sequence
with only one item is not allowed. The sequence must be sorted in ascending order.

Start level

If the change times sequence has 3 or more items, the start level value specifies the signal level from the signal start
time to the first change time. If the change times sequence has 2 items, the signal has a constant level that is equal
to the start level value.

Time scale

An arbitrary unit of time can be chosen to express the values of change times. The time scale value is the ratio: 1
second / arbitrary time unit.

Pre 0.9.0 python implementation
BITIS implements the BTS format with the Signal class. Each BTS signal is an instance of this class. The three
elements of the BTS format are the three attributes (times, slevel, tscale) of the Signal class. The sequence times is
realized as list of integers or floats.

Changes

Release 0.12.3 (released 9-Dec-2014)

Changes

• Methods older and newer: rewrite of boundary conditions processing.

Bugs fixed

• Method split: wrong return signal when split at or after self end.

• Method older: wrong end time of return signal.

Pre version 0.9.0 format

17

Documentation

• Methods split, newer and older: new documentation and layout.

Release 0.12.2 (released 6-Dec-2014)

Bugs fixed

• Method correlation: fix wrong computation of correlation function when there is a mask.

• Method phase: fix initial search width not set to the whole shift range.

Documentation

• Method correlation: new documentation layout.

Release 0.12.1 (released 3-Dec-2014)

New features

• Method phase: add correlation value at phase shift.

Bugs fixed

• Method phase: fix incomplete refactoring of other identifier.

Release 0.12.0 (released 1-Dec-2014)

New features

• Method shift: now skips computations for zero offset.

• New method phase: computation of phase among two signals.

Changes

• Method split: now manage a split time outside signal domain returning the proper void signal.

• Method correlation: dropped step_left and step_right arguments, substituted skip and width.

• Method plotchar: dropped period argument.

• Method mod2code: now symbol start time is the phase with respect to the sig start time.

• Methods noise and square: now require an origin argument.

Internals

• Method correlation: refactoring for new arguments skip and width.

• Method correlation: augumented test.

• New method phase: add test.

Documentation

• Started better layout for function/methods arguments and return patterns.

Pre version 0.9.0 format

18

Release 0.11.2 (released 8-Oct-2014)

Bugs fixed

• Method plotchar: missing last non flat char after flat chars.

Release 0.11.1 (released 6-Oct-2014)

Changes

• Method plotchar: now argument max_flat deault is None, was 100 .

Bugs fixed

• Method level: now for time < start return (None,0) .

• Method plotchar: last flat lost when signal end < plot end.

• Method stream: now the newest part is self, was a new allocated signal.

Internals

• Method plotchar refactored.

• New test for methods level and plotchar.

Release 0.11.0 (released 1-Oct-2014)

Features added

• Method plotchar: semigraphic signal plot with line drawing characters.

Changes

• Method level: now return None, len(signal) when time is beyond signal end.

• Method elapse: return zero when signal is void, before was none.

Bugs fixed

• Method serial_tx: returned void signal when chars had len == 1.

• Method serial_rx: dead lock when last sample time was before end time and after last ege time.

Documentation

• Add example plot.

Release 0.10.0 (released 26-Sep-2014)

Features added

• Method validate: a consistency checker for signal attributes.

• Method code2mod: code to symbols signal modulator.

• Method mod2code: demodulator by maximum correlation symbol estimation.

Pre version 0.9.0 format

19

• Example "modulation".

• New method end_level: return the ending level of a signal.

• New method older: return the older part of a signal with respect to a given time.

• New method newer: return the newer part of a signal with respect to a given time.

Changes

• Method test changed to function.

• Signal instancing now validate signal attributes.

• Now, instancing of Signal() generates a void signal.

• Changed return of method split when split time falls outside signal domain.

• Now method serial_tx generate a serial signal with start=origin.

Bugs fixed

• Method chop: wrong chop when split falls on signal end.

• Method __add__: added inplace=false to join call.

• Method level: wrong level returned.

• Method join: changed start and end calls with corresponding attributes.

• Method serial_rx: corrected wrong char start detection and level tests.

• Method noise: missing return argument, the noise signal itself.

• Method append: now update correctly the end time of the result.

Documentation

• Added the rules of BTS format.

Internals

• Rewrite of void signal handling through all methods and functions.

• New test for methods code2mod and mod2code.

• Refactored method split with method level.

• Added random inplace to spit/join test.

• New test for methods older and newer.

• Method append: now implemented with a call to split.

Release 0.9.0 (released 10-Sep-2014)

Features added

• New method level: return the signal level and edge position at a given time.

• Methods shift, reverse, __invert__ now can work inplace: result into self signal.

• New method __nonzero__: return true if the signal is not empty.

Changes

• All methods and objects changed to work with the new BTS format (v2).

Pre version 0.9.0 format

20

• Removed methods: start, end.

Bugs fixed

• Fix method reverse: now works when signal start != 0.

• Fix method split when split time falls on signal start or end and after last edge.

• Fix method chop.

• Fix methods __eq__ and __ne__: now work when operands are None.

• Fix function serial_rx. Now work with constant (no edges) signals. Eliminated spurious status generation.

Internals

• Method _intersect now returns as last edge position the position plus one.

• Added tests for inplace/noinplace testing.

Release 0.8.0 (released 26-Aug-2014)

Features added

• New method chop: divide a signal in a sequence of contiguous signal of given period.

• Method correlation now has a mask argument: if mask signal is not none, the correlation is computed only
where mask=1.

• Method join now has an inplace arguments. When true, no new signal is generated for the join result. Self
signal is used instead.

• Method pwm2bin now can convert by synchronouos symbols correlation.

• Method split now has an inplace argument. When true, no new signal is generated for the newer signal part.
Self signal is used instead.

• Method split, when splitting on a signal change time, now assigns the change to the start of the newer signal
part.

Changes

• Methods start, end, elapsed now return None when the signal time changes sequence is empty.

• Method bin2pwm now signal start=origin and signal end is not extended.

Bugs fixed

• Fix method correlation stepping limits for defaults.

• Fix method split splitting on a change time: now correct end of older part and correct start of newer part are
generated. start of newer were generated.

• Fix method serial_rx bit time computation: use floats.

Internals

• Added test for method chop.

• Added test for new the convertion mode (sync symb corr) of method pwm2bin.

Pre version 0.9.0 format

21

Release 0.7.1 (released 3-Feb-2014)

Bugs fixed

• Fix inequality test: missing __ne__ method.

Internals

• Optimized "and" and "or" operator for constant signals.

Release 0.7.0 (released 27-Jan-2014)

Features added

• Add buf_step to method stream.

• Add return self to in place working method clone_into.

Incompatible changes

• Change step_start, step_num with step_left, step_right in method correlation.

• Change correlation unittest from a graphic one to procedural only.

Release 0.6.0 (released 16-Dec-2013)

Features added

• Add method clone_into.

• Add method concatenate: add operator.

• Add method stream.

• Add method elapse returning the signal elapse time.

• Add example to demonstrate phase recovery from a noisy signal (lockin).

• Add examples, module reference, bts format, change log to doc pages.

• Add unittest for stream.

Incompatible changes

• Change start level with active argument in noise method.

Bugs fixed

• Fix method append: make it return the signal with the append result.

• Fix shift in correlation method.

• Fix time shift computation in correlaton method: was delayed by 1 step size.

Internals

• Change method append: check arguments with assert.

• Refactor method split.

Pre version 0.9.0 format

22

Release 0.5.0 (released 9-Dec-2013)

Features added

• Embed y limits setting into plot method.

• Add method square for signal generation of a periodc square wave.

• Add a more fine control in correlation function computation.

• Add signal append method.

• Add method start, return signal start time.

• Add method end, return signal end time.

• Add method len, return signal change times sequence length.

Incompatible changes

• Change start times computation in bin2pwn, serial_tx to minimize time elapse from start to first change.

Bugs fixed

• Fix 0.4.0 release changelog: missing changes.

Internals

• Change noise from method to function.

• Change examples for changed noise method.

Release 0.4.0 (released 2-Dec-2013)

Features added

• Add signal split method.

• Add two signals join method.

• Add unittest for split and join.

• Add float times capability to BTS signals.

Incompatible changes

• Uniformate pwm2bin arguments to bin2pwm methods.

• Add tscale=1. argument in bin2pwm.

• Change to tscale=1. argument in serial_tx.

Bugs fixed

• Fix slevel setup, signal start and end in bin2pwm.

Internals

• Rewrite jitter method.

Pre version 0.9.0 format

23

Release 0.3.0 (released 11-Nov-2013)

Features added

• Add async serial transmitter (bits.serial_tx method) from chars to BTS serial line signal.

• Add async serial receiver (bitis.serial_rx method) from BTS serial line to chars.

• Add async serial transmitter example: serial_tx.py.

• Add unittest for async serial tx and rx.

• Modified plot method: only 0,1 ticks on y axis.

Release 0.2.0 (released 4-Nov-2013)

Features added

• Add PWM coder and decoder between a BTS signal (PWM) and a binary code.

• New correlation example.

Release 0.1.0 (released 29-Oct-2013)

• First release.

Pre version 0.9.0 format

24

Index

_

__add__() (bitis.Signal method)

__and__() (bitis.Signal method)

__eq__() (bitis.Signal method)

__invert__() (bitis.Signal method)

__len__() (bitis.Signal method)

__ne__() (bitis.Signal method)

__nonzero__() (bitis.Signal method)

__or__() (bitis.Signal method)

__xor__() (bitis.Signal method)

A

append() (bitis.Signal method)

B

bin2pwm() (in module bitis)

C

chop() (bitis.Signal method)

clone() (bitis.Signal method)

clone_into() (bitis.Signal method)

code2mod() (in module bitis)

correlation() (bitis.Signal method)

E

elapse() (bitis.Signal method)

end_level() (bitis.Signal method)

I

integral() (bitis.Signal method)

J

jitter() (bitis.Signal method)

join() (bitis.Signal method)

L

level() (bitis.Signal method)

M

mod2code() (in module bitis)

N

newer() (bitis.Signal method)

noise() (in module bitis)

O

older() (bitis.Signal method)

P

phase() (bitis.Signal method)

plot() (bitis.Signal method)

plotchar() (bitis.Signal method)

pwm2bin() (in module bitis)

R

reverse() (bitis.Signal method)

S

serial_rx() (in module bitis)

serial_tx() (in module bitis)

shift() (bitis.Signal method)

Signal (class in bitis)

split() (bitis.Signal method)

square() (in module bitis)

stream() (bitis.Signal method)

T

test() (in module bitis)

V

validate() (bitis.Signal method)

	Contents
	Bitis, binary timed signals processing library
	Introduction
	Requirements
	Installation
	Code Repository

	Usage examples
	Logic operations
	Graphic and semigraphic plot
	Correlation Function
	Serial signal
	Phase lockin
	Modulation

	Module reference
	Objects and methods
	Functions

	BTS format
	Definition
	Python implementation

	Pre version 0.9.0 format
	Pre 0.9.0 definition
	Pre 0.9.0 python implementation

	Changes
	Release 0.12.3 (released 9-Dec-2014)
	Changes
	Bugs fixed
	Documentation

	Release 0.12.2 (released 6-Dec-2014)
	Bugs fixed
	Documentation

	Release 0.12.1 (released 3-Dec-2014)
	New features
	Bugs fixed

	Release 0.12.0 (released 1-Dec-2014)
	New features
	Changes
	Internals
	Documentation

	Release 0.11.2 (released 8-Oct-2014)
	Bugs fixed

	Release 0.11.1 (released 6-Oct-2014)
	Changes
	Bugs fixed
	Internals

	Release 0.11.0 (released 1-Oct-2014)
	Features added
	Changes
	Bugs fixed
	Documentation

	Release 0.10.0 (released 26-Sep-2014)
	Features added
	Changes
	Bugs fixed
	Documentation
	Internals

	Release 0.9.0 (released 10-Sep-2014)
	Features added
	Changes
	Bugs fixed
	Internals

	Release 0.8.0 (released 26-Aug-2014)
	Features added
	Changes
	Bugs fixed
	Internals

	Release 0.7.1 (released 3-Feb-2014)
	Bugs fixed
	Internals

	Release 0.7.0 (released 27-Jan-2014)
	Features added
	Incompatible changes

	Release 0.6.0 (released 16-Dec-2013)
	Features added
	Incompatible changes
	Bugs fixed
	Internals

	Release 0.5.0 (released 9-Dec-2013)
	Features added
	Incompatible changes
	Bugs fixed
	Internals

	Release 0.4.0 (released 2-Dec-2013)
	Features added
	Incompatible changes
	Bugs fixed
	Internals

	Release 0.3.0 (released 11-Nov-2013)
	Features added

	Release 0.2.0 (released 4-Nov-2013)
	Features added

	Release 0.1.0 (released 29-Oct-2013)

	Index

