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ABSTRACT
We propose an exact expression to describe the hysteresis loops of an ensemble of Stoner–Wohlfarth particles undergoing an alternating
quasi-static magnetic field. A statistical approach, which treats the quantities characterizing each particle as random variables, is adopted to
get the orientation distribution of the local polarizations with respect to the applied field direction and the constitutive equation of the whole
particle assembly. The hysteresis loop area gives the energy loss figure, but we have also obtained a straightforward integral expression for
this quantity. The analytical relationships for the symmetric loops and the losses are successfully tested against numerical results, and the
mathematical method adopted also displayed the ability to reproduce the “elemental loop” associated with any given particle of the system.
While having a fundamental character, the proposed approach bears applicative interest, representing a versatile tool as the core of codes that
simulate the behavior of devices employing magnetic components.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143905

I. INTRODUCTION

Magnetic materials exhibit a broad variety of compositions
and microstructures and a wide spectrum of responses to a varying
magnetizing field �H.1–3

Although such behavior is the result of three-dimensional (3D)
magnetization process, a two-dimensional theoretical approach is
often regarded as appropriate, in addition to being perfectly ade-
quate for a large class of materials, such as steel sheets, amorphous
and nanocrystalline alloys, and thin films. It is also possible, in many
cases, to consider a given material as an ensemble of mesoscopic
regions (“particles”), either interacting or independent, each char-
acterized by the local polarization �Js and a magnetic anisotropy
{uniaxial [see Fig. 1(a)], biaxial, cubic, etc.}, and even single-domain,
if sufficiently small.

The Stoner–Wohlfarth (SW) theory,4–8 in its native formu-
lation (which considers single-domain particles as independent,
endowed with uniaxial anisotropy, and at T = 0 K), fits the sim-
plifications mentioned above and is, thus, widely exploited in
modeling. The main fields where the SW approach (often with
some modifications) plays an important role are (1) magnetic
nanoparticles,9–12 notably for magnetic hyperthermia;13,14 (2) ferro-
magnetic thin films15–17 and magnetic random access memories;18–20

(3) amorphous and nanocrystalline materials;21–25 (4) soft magnetic
composites;26,27 (5) permanent magnets;28 and (6) study of the effect
of spin-polarized currents.29,30

In the SW model, the response to an applied field �H of a par-
ticle characterized by the local uniaxial anisotropy

↔
K is described

by a vector hysteresis transducer providing the constitutive law for
the reversible coherent rotations and the irreversible jumps of the
local polarization

�→
Js . In other words, one gets the equilibrium ori-

entation γ of each �Js as a function of the anisotropy constant K, its
orientation φ, and �H [see Fig. 1(a)]. With �J being the polarization
of the whole particle assembly, the �J( �H) constitutive equation of
the system comes out after integration over the probability density
functions (pdfs) of K and φ. The design of magnetic components
needs to implement �J( �H) in numeric modeling codes: a step with
high computational cost, scaling up with the device size. Indeed, an
explicit γ = γH(K, φ) solution for the �Js orientation is not available
so far, being the equilibrium angle obtained either following numeric
procedures25,31 or using analytic approximations.

In the first case, the problem is commonly faced by adopt-
ing the astroid representation for the SW transducer [see Fig. 1(b)]
and exploiting the so-called “tangent method,”7 as well as search-
ing for the minimum of the Gibbs free energy of each particle
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FIG. 1. Panel (a) shows, for a particle of the system, the relative orientation of the

local anisotropy
↔
K and the local polarization �Js with respect to the reference direc-

tion determined by the applied field �H. In the (H�, H�) plane, the corresponding
astroid representation, with vertices ±HK, is displayed in (b), with uH being the
associated Gibbs free energy. (c) Branches of a general hysteresis loop, drawn
starting from the demagnetized state (DEM). (d) Correspondence between the Q
quadrants and the values of the γ angle.

utilizing, e.g., the Newton–Raphson method. These are time-
consuming approaches, not efficient when implemented in codes
used to design magnetic devices.

Researchers following the second way tried, for example, to
recover the SW loop branches with ad hoc analytic functions,32 or
proposed an H = H(J) “inverse” constitutive law,12 or limited the
analytic solution to the low-field regime.33 Alternatively, an SW-like
hysteron with different kinds of approximations for the anisotropy
energy term,34,35 or with an equivalent field playing the role of the
anisotropy,36 has been also adopted.

This work is not focused on the search of the γ = γH(K, φ)
single particle solution [see Fig. 1(a)], afterward integrated over
the whole system, but it deals at the start from the entire particle
assembly by handling each quantity as a random variable (rv) with
associated pdf. Statistical methods37,38 are then utilized to retrieve
pH(γ): the equilibrium angle pdf, ending with an exact expression
for the hysteresis loops (and consequently for the energy losses) of
the whole system. The single particle behavior comes out as a partic-
ular case. Apart from its importance from the basic viewpoint, this
result turns out to be useful for applications (chiefly in the magnetic
loss prediction39), shortening the cumbersome and slow procedure
needed for the design of devices.

In this paper, after a review of the SW model features essential
for our purposes (Sec. II A), and some hints about the numerical
approach and the adopted statistics (Sec. II B), the core of the work
is discussed in Sec. III. Here, the statistical approach is outlined, and
the pdfs controlling the equilibrium orientation of the local polar-
ization vs a quasi-static �H are worked out, separately accounting

for the irreversible (Sec. III A) and reversible (Sec. III B) phenom-
ena. In both these subsections, the pdf evolution is described starting
from the demagnetized state and following the system magnetization
along the branches of the hysteresis loop driven by an alternat-
ing field [Fig. 1(c)], separately for the four Q quadrants shown in
Fig. 1(d). Eventually, the obtained constitutive equation (and thus the
hysteresis loop and loss) is successfully tested against the numerical
procedure, both for the entire assembly (Sec. III B 5) and for the case
of a single particle (Sec. III B 6). An approximate analytic expression
for the energy loss, not involving the knowledge of the hysteresis
loop, is worked out and effectively checked (Sec. IV), and finally, in
Sec. V, some possible advancements of the proposed approach are
listed.

II. THE CLASSICAL SW MODEL AND ITS NUMERICAL
IMPLEMENTATION
A. The Stoner–Wohlfarth model

The SW approach considers the physical system as an ensemble
of non-interacting single-domain “particles” at T = 0 K, each char-
acterized by a local anisotropy axis with modulus K (and anisotropy
field HK = 2K�Js, where Js = ��Js�), forming an angle φ with a reference
direction defined by the applied field �H [Fig. 1(a)]. After introduc-
ing the Gibbs free energy density of the particle, together with its first
and second derivative (where H = � �H�),

uH(K, φ; γ) = K sin2(φ − γ) −HJs cos γ, (1a)

u′H ∶= @uH

@γ
= −K sin (2φ − 2γ) +HJs sin γ, (1b)

u′′H ∶= @u′H
@γ

= 2 K cos (2φ − 2γ) +HJs cos γ, (1c)

the γ equilibrium orientations of the local polarization �Js (cor-
responding to the minima of uH) are derived.4–7 This can be
done starting from the conditions u′H = u′′H = 0 (identifying the
uH horizontal inflection point generated by the merging of one
minimum and one maximum), which allows one to draw, in the(H� ∶= H cos φ, H� ∶= H sin φ) Cartesian reference frame, a closed
curve (astroid) whose contour (with vertices ±HK ) represents the
border separating the (H�, H�) plane region corresponding to two
minima of uH (inside) from the one where one minimum only
appears [Fig. 1(b)]. On passing to the polar coordinates (φ, H), after
defining the quantity

A(φ) = (sin2�3 φ + cos2�3 φ)3�2, (2)

the field threshold corresponding to the astroid is written as

Hc,K (φ) = HK�A(φ). (3)

If H is instead given, in the (φ, K) plane, where each point represents
a particle of the system, one finds the corresponding always positive
anisotropy threshold,

Kc,H(φ) = 1
2
�H�Js A(φ), (4)
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with one (two) minimum (minima) when K is lower (higher) than
Kc,H .

The introduction reports the strategies followed in the litera-
ture to find the γ equilibrium angle for each particle. In the following,
the statistics of the system is described by the ψ(K, φ) joint proba-
bility density function, with K > 0 and φ limited to the [0; π�2] range
for symmetry reasons.

B. Numerical implementation
The numerical approach adopted in this work to test the ana-

lytic form of J(H), worked out in the following, finds the local �Js
equilibrium orientations via an iterative procedure searching for the
uH absolute minimum and follows its time evolution by tracking
the memory of the irreversible rotations (IRs), for each particle. On
passing to an assembly of SW particles, one gets the behavior of
the whole system after integration over the ψ(K, φ) pdf. When we
compare the analytic expressions for the hysteresis loop and loss
to the numerical simulations, φ and K are assumed to be statis-
tically independent variables. Consequently, we can write ψ(K, φ)= f (K)g(φ), and in particular, we have chosen for the tests, with �K�
the average anisotropy value,

f (K) = � 2�K��
2

K exp�− 2�K�K�, (5a)

g(φ) = 2�π. (5b)

III. THE ANALYTIC-STATISTICAL APPROACH
FOR AN ENSEMBLE OF SW PARTICLES

In this work, we have abandoned the problem of finding the
exact analytical solution for the local �Js equilibrium orientation γ of a
single SW particle in favor of a statistical approach that considers the
whole assembly of SW particles from the beginning. Accordingly,
the quantities K, φ, and γ (−π to+π) are treated as random variables,
along with their ψ(K, φ) and p(b,Q)

H (γ) pdfs (the first normalized to
1 for each φ angle). In the latter, “b” indicates the loop branch con-
sidered [see Fig. 1(c)], “Q” is the quadrant to which γ pertains [see
Fig. 1(d)], and H plays the role of a parameter. All along the paper,
the evolution of the γ values, which are bound to increase from −π
to π [see Fig. 1(d)], dictates the sequence adopted to discuss the Q
quadrants (III → IV → I → II).

As a response to an alternating field, with peak values ±Hp, the
corresponding hysteresis loop is obtained as follows: The magnetiza-
tion process is assumed to start from the demagnetized state (DEM),
where H = J = 0 [Fig. 1(c)]—a situation that, for symmetry reasons,
can be obtained by formulating the pdf for the �Js equilibrium ori-
entation still in terms of K and φ instead of γ, the local polarization
lying along the easy axis direction in each particle,

p(Q=I)
DEM (K, φ) = p(Q=III)

DEM (K, φ) = 1
2

ψ(K, φ), (6a)

p(Q=II)
DEM (K, φ) = p(Q=IV)

DEM (K, φ) = 0. (6b)

[An example, for a given φ = φ1 and a postulated ψ(K, φ1) vs K
behavior, is reported in Fig. 3(a).] The J vs H evolution is then
followed and investigated in sequence [see Fig. 1(c)] along the First

FIG. 2. Evolution of the probability density function, from the K and φ statistics
to the γ statistics. The two steps describing the irreversible and reversible pro-
cesses in sequence are put in evidence. The superscripts (b, Q) of the pdfs are
understood for the sake of simplicity. Note the dependence on (K, φ) of pDEM and
pH,IRR, and on γ of the final pH pdf.

Magnetization Curve (FMC), the RECoil curve (REC), and the Neg-
ative Descending Branch (NDB) of the hysteresis loop, both in Secs.
III A and III B. Note that the ascending branch (↑) of the major
loop of vertex (Hp, Jp) can be obtained from the descending one (↓),
build-up of the REC and NDB curves, being J↑(H) = −J↓(−H) for
symmetry reasons.

Along each loop branch, the applied field triggers the irre-
versible rotations (IRs) and drives any local �Js of the whole particle
ensemble to its equilibrium angle (reversible rotations) at the same
time. Despite the ensuing complex interplay between reversible and
irreversible processes, the technique developed here treats them sep-
arately, and the γ pdf is consequently worked out in two steps:
before finding p(b,Q)

H,IRR(K, φ), i.e., the pdf determined by the IRs only,
which bring the local �Js to their absolute minimum (Sec. III A), and
subsequently accounting for the coherent reversible rotations (by
means of the �Js relaxation to the equilibrium orientation), ending
with p(b,Q)

H (γ) (Sec. III B). This approach is sketched in Fig. 2.
Eventually, after the integration of p(b,Q)

H (γ)cos γ over the
[−π; +π] γ domain, one gets the constitutive law of the system
[Sec. III B 5, Eq. (28)].

A. Step 1: Irreversible rotations (IRs)
At this stage, we assume �H to drive the irreversible processes

only, again leaving the local �Js to point along one of the two sides of
the φ easy axis directions of the particle to which it pertains. For this
reason, the magnetization distribution among the quadrants, rear-
ranged by the occurrence of the IRs, is again described by a pdf
stated in terms of K and φ instead of γ: p(b,Q)

H,IRR(K, φ), for the three
loop branches of Fig. 1(c), as listed in Sections III A 1 -III A 4, and
illustrated in Fig. 3 for a given φ = φ1.

1. First magnetization curve (FMC)
For H increasing from DEM [Fig. 1(c)], Eqs. (1b) and (1c)

state that the �Js in quadrant III smoothly (i.e., without IRs) crosses
the γ = −π�2 threshold and move to quadrant IV when φ > π/4
and H > HIII → IV = (K�Js)sin 2φ [a value always lower or equal to
Hc,K(φ): the threshold for IRs]. As stated above, we are not inter-
ested at this stage in the equilibrium position of �Js, so we account for
these �Js reversible rotations by assigning the same pdfs to these quad-
rants: p(FMC,IV)

H,IRR = p(FMC,III)
H,IRR . Note that this “doubling” of the p(FMC,Q)

H,IRR
does not affect the normalization because each �Js does not pertain
to Q = III and Q = IV for the same field, the Step 2 (Sec. III B)
taking charge of finding the actual �Js orientation vs H. As H increases
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FIG. 3. For a given φ = φ1, and with a postulated ψ(K, φ1), the evolution of the pdfs (see the left part of Fig. 2) is described for the four Q quadrants [see Fig. 1(d)]. As

H drives the system along the branch sequence of Fig. 1(c), the p(Q)
DEM [Eq. (6)] describing the demagnetized state (DEM) transforms into the p(FMC,Q)

H,IRR , p(REC,Q)
H,IRR , and p(NDB,Q)

H,IRR
as a response to the irreversible rotations (IRs) displayed by the gray arrows.

from zero [where Kc,0 = 0, see Eq. (4)] to the peak value Hp, the�Js in quadrant III or IV switch to quadrant I if K < Kc,H(φ), and
the corresponding p(FMC,Q)

H,IRR (K, φ) is reported in Fig. 3(b). Note that
p(FMC,II)

H,IRR = 0 because the system geometry [Fig. 1(a)] does not allow
irreversible rotations to the second quadrant, a fact in agreement
with the detailed discussion reported in the Appendix, which shows
that no energy minima of uH [Eq. (1a)] can appear in Q = II.

2. Recoil curve (REC)

When the field is reduced from Hp to zero, the polarization
decreases from its peak value Jp = J(Hp) to the remanence Jr . Along
this branch, no IRs occur, and thus, p(REC,Q)

H,IRR (K, φ) is frozen to the
value reached along FMC at H = Hp: p(FMC,Q)

Hp,IRR (K, φ) [see Fig. 3(c)].
Here, again, we have p(REC,IV)

H,IRR = p(REC,III)
H,IRR because the “doubling” of

AIP Advances 13, 055018 (2023); doi: 10.1063/5.0143905 13, 055018-4

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0143905/17586016/055018_1_5.0143905.pdf



AIP Advances ARTICLE scitation.org/journal/adv

the pdfs, pointed out in FMC persists, but, as above, it does not affect
the normalization.

3. Negative descending branch (NDB)
Eventually, the system is brought from the remanence to the

negative tip of the hysteresis loop, lowering H from 0 to −Hp,
with the magnetization evolving as described by p(NDB,Q)

H,IRR (K, φ)
[Fig. 3(d)]. For what concern the IRs and the smooth �Js transitions
discussed in Sec. III A 1, a “symmetrical” reasoning applies here,
with the quadrants I, II, and IV correspondingly playing the role
of Q = III, IV , and I in FMC, and the γ = π/2 crossing occurring at
the threshold HI→II = −HIII → IV [≤Hc,K(φ)], when φ > π/4.

4. Thresholds of the p(b,Q)
H,IRR(K , φ) functions

The quantities Kc,H(φ1) and Kc,Hp(φ1) of Fig. 3, signaling
a variation of the p(b,Q)

H,IRR values for a given φ = φ1, become the
Kc,H(φ) and Kc,Hp(φ) threshold functions when considering the
entire 0 ≤ φ ≤ π�2 range. As H, starting from the demagnetized state
(DEM), oscillates between the ±Hp peak values of the hysteresis
loop, the Kc,H(φ) threshold follows it, swinging between Kc,0 = 0 and
Kc,Hp(φ), with the p(b,Q)

H,IRR(K, φ) function that accordingly changes.
An example for Q = I across NDB is depicted in the (φ, K) plane of
Fig. 4.

B. Step 2: Coherent reversible rotations
and constitutive equation

Given H and γ, and considering the scheme of Fig. 2, for
the three branches of the hysteresis loop indicated in Fig. 1(c),
the p(b,Q)

H (γ) pdf, which accounts for irreversible and reversible
processes, is obtained through standard statistical methods.37,38

One starts by computing the cumulative distribution function
P(b,Q)

H (γ), i.e., the probability for a general γ′ to satisfy the request
γ′low ≤ γ′ ≤ γ, where the lower limit is −π, −π�2, 0, and π�2 when
γ pertains to Q = III, IV , I, and II, respectively [Fig. 1(d)]. Having
available the p(b,Q)

H,IRR(K, φ) pdfs, this approach can be stated in terms
of K and φ, i.e., identifying in the (K, φ) plane (limited to the 0 ≤ φ≤ π/2 range for symmetry reasons), a DH(γ) domain that satisfies the
demand above (γ′low ≤ γ′ ≤ γ)—a result achievable if a relationship
connecting the rv γ′ to the rv’s K and φ: γ′ = γH(K, φ) exists. In the
case of an SW particle, for which it is not possible to get such an
explicit γH function, the connection between the rv’s can be stated in

FIG. 4. An example of the “irreversible” p(NDB,I)
H,IRR (K, φ1) pdf (on the right) selected

by the Kc,H(φ) and Kc,Hp(φ) thresholds (on the left). See Fig. 3 for other cases.

an implicit way from the request that uH(K, φ; γ′) [Eq. (1a)] shows
a minimum, i.e., from a couple of conditions,

u′H = 0, (7a)

u′′H > 0. (7b)

The first one, solved with respect to K [see Eq. (1b)], provides a
relationship valid for H and φ values making it positive,

K∗H(φ; γ′) = HJs
sin γ′

sin (2φ − 2γ′) . (8)

The second one, with the constraint K = K∗H , becomes [see Eq. (1c)]

u′′∗H (φ; γ′) = HJs sin γ′� 2
tan (2φ − 2γ′) + 1

tan γ′ � > 0. (9)

By setting Eq. (9) to zero, one gets the φ values where it changes
sign in the 0 ≤ φ ≤ π�2 interval,

φ(Q)0 (γ′) = γ′ − 1
2

arctan (2 tan γ′) + n(Q) π
2

, (10)

where n(Q) = 2, 1, 0, and −1 when Q = III, IV , I, and II, respec-
tively. Furthermore, in the 0 ≤ φ ≤ π/2 range, both the K∗H and u′′∗H
functions have a vertical asymptote at

φ(Q)∞ (γ′) = γ′ + n(Q) π
2

. (11)

To delimit the DH(γ) domain (magenta regions in Fig. 5), one has
to find before, for each γ′, the �∗φ(γ′) interval, i.e., the φ values
range making uH(K, φ; γ′)minimum, which is defined by the over-
lap region where both K∗H(φ; γ′) and u′′∗H (φ; γ′) are positive. This
process is described in the Appendix, for the three loop branches
[Fig. 1(c)] and the four quadrants [Fig. 1(d)].

Once this is done, the DH(γ) domain emerges as the (φ, K)
plane region swept by all the K∗H(φ; γ′) functions [each of them lim-
ited to its �∗φ(γ′) range] for increasing γ′ between γ′low to γ (white
curves in Fig. 5). This procedure is summarized by the D̂-operator,

D̂H(γ) = �K∗H�φ; γ′��γ
γ′low

, (12)

where γ′low is the lower limit of the quadrant considered, as detailed
in the next paragraphs.

The knowledge of DH(γ) allows one to write the cumula-
tive distribution function, given H and γ, and its derivative—the
probability density function,

P(b,Q)
H (γ) =�

DH(γ)p
(b,Q)
H,IRR(K, φ) dK dφ, (13a)

p(b,Q)
H (γ) = dP(b,Q)

H (γ)�dγ, (13b)

with the integrand reported in Fig. 3 (red curves). When perform-
ing the integration vs K in Eq. (13a), one must remember that the
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FIG. 5. The magenta regions represent the DH(γ) integration domains of the P(b,Q)
H cumulative distribution functions [Eq. (13a)], for the three “b” branches (FMC, REC,

and NDB) reported in Fig. 1(c), and the four Q quadrants. Note that when Q = II in FMC and REC, and Q = IV in NDB, no DH domain appears, according to the fact that,
in these conditions, the local �Js cannot find any stable equilibrium orientation. In Q = IV of FMC and REC, and in Q = II of NDB, the top-left DH border is correspondingly
given by the function K∗H (φ;∓π�2) = �H�Js�sin(2φ) [Eq. (8) with γ′ = ∓π�2], with asymptotes φ = π/2 in both cases. Observe the thin white curves K∗H (φ; γ′), whose
evolution from γ′low to γ (thick black curves) devises the DH(γ) regions.

thresholds Kc,H(φ) and Kc,Hp(φ) [see Eq. (4)] indicate, for each φ,
the K values where the p(b,Q)

H,IRR(K, φ) pdf changes, as discussed in
Sec. III A 4. As an example, Fig. 4 displays the case Q = I across
NDB.

1. First magnetization curve (FMC)
According to Sec. III A 4 and Fig. 3(b), along this branch, the

Kc,Hp(φ) curves do not play any role (and thus are not depicted in
Fig. 5), whereas the Kc,H(φ) ones not only signal the K thresholds
where the p(FMC,Q)

H,IRR pdfs [retrieved from Fig. 3(b)] change but also
represent a portion of the DH integration domains (magenta regions
in Fig. 5, for Q = III and Q = IV) border.

a) −π ≤ γ ≤ −π�2 (Q = III)
¯

The DH(γ) domain is obtained employing the D̂-operator
[Eq. (12)] with γ′low = −π. Being φ(III)∞ (γ) = γ + π [Eq. (11) with
n(Q) = 2], Eq. (13a) becomes

P(FMC,III)
H (γ) = � φ(III)

0 (γ)
0

� ∞
Kc,H(φ)p

(FMC,III)
H,IRR (K, φ) dK dφ

+� γ+π

φ(III)
0 (γ) �

∞
K∗H(φ;γ)p

(FMC,III)
H,IRR (K, φ) dK dφ. (14)

Observing [Eq. (8)] that K∗H(γ + π; γ)→∞ (where any pdf van-
ishes), and considering Eq. (A2), Eq. (13b) becomes

p(FMC,III)
H (γ) = � φ(III)

0 (γ)
γ+π

I
(FMC,III)
H (φ; γ) dφ, (15)

where φ(III)0 is supplied by Eq. (10) with γ′ = γ and n(Q) = 2, and the
integrand is defined as follows:

I
(FMC,III)
H (φ; γ) ∶= p(FMC,III)

H,IRR �K∗H(φ; γ), φ� @K∗H(φ; γ)
@ γ

, (16)

with

@K∗H(φ; γ)
@ γ

= HJs
cos γ sin (2φ − 2γ) + 2 sin γ cos (2φ − 2γ)

sin2(2φ − 2γ)
(17)

b) −π�2 ≤ γ ≤ 0 (Q = IV)
The DH(γ) domain is obtained by utilizing the D̂-operator

[Eq. (12)] with γ′low = −π�2. The top-left border of DH(γ) is given
[Eq. (8)] by the curve K∗H(φ;−π�2) = HJs� sin 2φ, with asymptote
φ = π/2—a value not accounted for by Eq. (11). The cumulative
and density functions [the second one remembering again Eq. (A2)]
become

P(FMC,IV)
H (γ) = � φ(IV)

0 (γ)
π�4 � K∗H(φ;−π�2)

Kc,H(φ) p(FMC,IV)
H,IRR (K, φ) dK dφ

+� π�2
φ(IV)

0 (γ) �
K∗H(φ;−π�2)

K∗H(φ;γ) p(FMC,IV)
H,IRR (K, φ) dK dφ,

(18)

p(FMC,IV)
H (γ) = � φ(IV)

0 (γ)
π�2 I

(FMC,IV)
H (φ; γ) dφ, (19)
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with φ(III)0 given by Eq. (10) with γ′ = γ and n(Q) = 1, and the
integrand defined similarly as in Q = III [Eqs. (16) and (17)]

c) 0 ≤ γ ≤ π�2 (Q = I)
The DH(γ) domain is obtained using the D̂-operator [Eq. (12)]

with γ′ increasing from γ′low = 0. The cumulative function [being
φ∞(γ) = γ from Eq. (11) with n(Q) = 0], and the pdf associated
[observing that K∗H(γ; γ)→∞, from Eq. (8)] become

P(FMC,I)
H (γ) = � γ

0
� ∞

0
p(FMC,I)

H,IRR (K, φ) dK dφ

+� π�2
γ
� K∗H(φ;γ)

0
p(FMC,I)

H,IRR (K, φ) dK dφ, (20)

p(FMC,I)
H (γ) = � π�2

γ
I
(FMC,I)
H (φ; γ) dφ, (21)

again with the integrand defined similarly as in Q = III [Eqs. (16) and
(17)].

d) π�2 ≤ γ ≤ π (Q = II)
As discussed in the Appendix, the absence of a stable equi-

librium orientation for the local �Js is reflected in the lack of the
integration domain DH , and agrees with the fact that, in this region,
we have p(FMC,II)

H,IRR = 0 (Sec. III A and Fig. 2). Therefore,

p(FMC,II)
H (γ) = 0. (22)

2. Recoil curve (REC)
The very same path driving to the FMC pdfs can be adopted

here, the Kc,H threshold decreasing with H, from Kc,Hp to zero. How-
ever, as shown in Fig. 3(c), due to the absence of IRs along this
branch, the “irreversible” pdfs are frozen to the last value reached
across FMC, i.e., when H = Hp,

p(REC,Q)
H,IRR = p(FMC,Q)

Hp,IRR, (23)

for all Q quadrants. Accordingly, the integrands [Eq. (16)] turn into

I
(REC,Q)
H (φ; γ) = p(FMC,Q)

Hp,IRR �K∗H(φ; γ), φ� @K∗H(φ; γ)
@ γ

, (24)

with the derivative given by Eq. (17).

3. Negative descending branch (NDB)
Along this branch, a very similar and, to some extent, specular

scenario (specular to the FMC and REC cases) appears, with the DH
shapes in Q = III, IV , I, and II recovering the ones found along FMC
(or REC) in Q = I, II, III, and IV , respectively, but with different
φ integration limits (see Fig. 5). Now, the top-left border of DH in
Q = II is given [Eq. (8)] by the curve K∗H(φ; π�2) = −HJs� sin 2φ, with
asymptote φ = π/2—a value not accounted for by Eq. (11). Thus, a
procedure like the one described above supplies the γ pdfs for the
four quadrants,

p(NDB,III)
H (γ) = � π�2

γ+π
I
(NDB,III)
H (φ; γ) dφ, (25a)

FIG. 6. Limits of the integral appearing in Eq. (26), for the FMC, REC, and NDB
branches of the hysteresis loop [see Fig. 1(c)], and the Q quadrants. The threshold
φ(Q)

0 (γ) is given by Eq. (10), with γ′ = γ.

p(NDB,IV )
H (γ) = 0, (25b)

p(NDB,I)
H (γ) = � φ(I)

0 (γ)
γ

I
(NDB,I)
H (φ; γ) dφ, (25c)

p(NDB,II)
H (γ) = � φ(II)

0 (γ)
π�2 I

(NDB,II)
H (φ; γ) dφ, (25d)

with the I(NDB,Q)
H defined similarly to I

(FMC,Q)
H , and the

p(NDB,Q)
H,IRR (K, φ) values changing over both the thresholds Kc,H(φ)

and Kc,Hp(φ), as shown in Fig. 3(d).

4. Compact expression for the p(b,Q)
H (γ) pdfs

It is possible to write the pdfs for the local �Js making an angle
γ with �H in a very compact integral form, depending on the “b”
branch (FMC, REC, or NDB) and the Q (=III, IV , I, and II) quadrant
occupied by the equilibrium angle γ,

p(b,Q)
H (γ) = � φ(b,Q)

HIGH

φ(b,Q)
LOW

I
(b,Q)
H (φ; γ) dφ, (26)

with

I
(b,Q)
H (φ; γ) ∶= p(b,Q)

H,IRR�K∗H(φ; γ), φ� @K∗H(φ; γ)
@ γ

. (27)

The p(b,Q)
H,IRR are retrieved from Fig. 3 [remember Eq. (23) as well], the

derivative from Eq. (17), and the integration limits summarized in
the scheme of Fig. 6. In it, to make Eq. (26) formally valid for any
“b” and “Q,” the integration limits of Q = II in FMC and REC and
of Q = IV in NDB are “artificially” put equal to zero, thus obtaining
p(FMC,II)

H = p(REC,II)
H = p(NDB,IV)

H = 0.

5. Constitutive law and hysteresis loop
Considering a particle assembly magnetized by an alternating

quasi-static field, from the constitutive equation, calculated over the
whole γ domain,

J(b)(H) = Js� π

−π
p(b,Q)

H (γ) cos γ dγ, (28)
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FIG. 7. When a quasi-static alternating field is applied, the evolution of pH(γ)
[Eqs. (26) and (27)] is displayed for the FMC, REC, and NDB branches [Eq. (28)]
of the hysteresis loop drawn on the top, where the fields in correspondence of
which the pH(γ) are calculated are marked with open dots of the same color. The
dashed black lines represent the demagnetized state (H = J = 0) realized when
Eq. (6) is satisfied. On the other extreme, pH(γ) becomes the Dirac delta function
δD(γ) or δD(γ + π) when H → ±∞, respectively. Observe the symmetry of the
pH(γ) corresponding to the ±Hp peak fields.

with p(b,Q)
H given by Eq. (26), the hysteresis loop is drawn, and the

corresponding energy loss W is given by its area. Moreover, as
described below (Sec. IV), it is also possible to work out a semi-
empirical but very accurate integral expression for W not entailing
the knowledge of the hysteresis loop.

Figure 7 shows, for the whole −π ≤ γ ≤ π range, an example
of p(b,Q)

H (γ) vs H evolution, calculated with Eq. (26), and the cor-
responding hysteresis loop [Eq. (28)] with Js = 1.61 T. We have

FIG. 8. Alternating quasi-static magnetizing field. The excellent agreement
between the First Magnetization Curve (open dots and dashed lines) and the hys-
teresis loops numerically found, and the ones obtained via the statistical method,
are displayed (�HK� = 2�K�/Js; Js = ��Js�). The inset shows the behavior of losses,
with the red curve representing both the values given by the loop areas and the
empirical ones of Eq. (33), this last plotted in correspondence with the Jp(Hp)
peak polarizations of Eq. (34). One cannot appreciate significant differences
between the two loss figures.

assumed ψ(K, φ) =f (K)g(φ), with the marginal pdfs supplied by
Eqs. (5a) and (5b) and �K� = 3000 J/m3.

The effectiveness of the statistical method is apparent in Fig. 8,
where the quasi-static hysteresis loops, computed at different peak
polarization Jp using Eq. (28) and the corresponding loss figures
(inset), perfectly recover the ones obtained via the numerical proce-
dure presented in Sec. II B [again it is assumed ψ(K, φ) = f (K)g(φ),
with the marginal pdfs furnished by Eqs. (5a) and (5b)].

6. Elemental hysteresis loops
The statistical approach developed was dictated by the impos-

sibility to solve Eq. (8) with respect to the γ equilibrium angle for
the local polarization �Js [see Fig. 1(a)]—a goal that would directly
supply the analytic expression for the elemental loops associated
with a single particle. This difficulty has been circumvented by the
mathematical technique outlined above, which supplies, in a sense,
a “statistical solution” of Eq. (8), working out pH(γ), the probability
to find �Js laid along the γ direction. In this framework, the elemental
hysteresis loops corresponding to a particle characterized by φ = φ1
and K = K1 come out defining the K and φ joint statistics as follows:

ψ(K, φ) = δD(K − K1) δD(φ − φ1), (29)

where δD is the Dirac delta function.
As usual, the starting point is the demagnetized state (DEM),

identified by Eq. (6), which can now be rewritten in terms of γ, for
any K1,

p(Q=I)
DEM (γ) = 1

2
δD[γ − φ1], (30a)
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FIG. 9. Alternating quasi-static magnetizing field. For different φ1 angles between

the local easy axis
↔
K and the �H applied field direction (HK1 = 2K1/Js; Js = ��Js�), it

is apparent the capacity of the statistical approach to perfectly cover the elemental
hysteresis loops obtained through the numerical procedure outlined in Sec. II B.

p(Q=III)
DEM (γ) = 1

2
δD[γ − (φ1 − π)], (30b)

p(Q=II)
DEM (γ) = p(Q=IV)

DEM (γ) = 0. (30c)

For increasing H ≤ Hc,K1(φ1) [Eq. (3)], all the local �Js reversibly
rotate toward γ = 0 [in particular, the �Js belonging to the third quad-
rant when H = 0 remains confined in it if φ ≤ π/4 or, when φ > π/4,

as long as H ≤ HIII→IV (see Sec. III A 1)], and no loop appears. When
the alternating H overcomes the inversion field Hp = Hc,K1(φ1), the�Js particles in Q = III or Q = IV jump to the first quadrant in the
0 ≤ γ ≤ φ1 range [with pH(γ)→ δD(γ) when H → +∞]. A similar
and, to some extent, specular behavior is found following the recoil
curve and the negative descending branch.

The ability of the analytic procedure to reproduce the elemental
loops obtained when H oscillates with peak values �Hp� = Hc,K(φ1)
[Eq. (3)] and J = Js cos γ measured along the �H direction is appar-
ent in Fig. 9, from the comparison with the cycles numerically
computed.

IV. ENERGY LOSS: AN APPROXIMATE
INTEGRAL EXPRESSION

Let us consider the elemental hysteresis loops introduced
above (Sec. III B 6), with local coercive fields ±Hc,K(φ) [Eq. (3)],
peak polarization Jp(φ), remanence Jr(φ), and loss W. Now, we
take as peak value the polarization reached immediately after
the irreversible switch occurring at Hc,K under increasing field:
Jp(φ) ∶= J[H+c,K] (a larger H moves J along a reversible branch,
non-modifying the loop area). An example obtained for φ = 35○
(Js = 1 T, K = 1 J/m3) is given by the green solid line in Fig. 10(a),
where instead the orange dashed rectangle corresponds to the case
where irreversible rotations (180○ switches between φ and φ–π of the
local �Js) only are present. The area (giving the energy loss in J/m3) of
the latter, with peak irreversible polarization JIRR,p ≡ Jr = Js cos φ, is
supplied by the following relationship:

WIRR(K, φ) = 2Hc,K(φ) ⋅ 2Jr(φ) = 8K
cos φ
A(φ) , (31)

which is obtained from Eq. (3), and with A(φ) given by Eq. (2).
For any φ, the difference between W and WIRR is concen-

trated in the gray pseudo-triangles with vertices ±Jr , ±Jc, and ±Jp
[Fig. 10(a)]: all linear quantities dependent on Js and independent

FIG. 10. (a) The continuous green line describing the elemental hysteresis loop transforms into the dashed orange rectangle when only irreversible rotations are accounted
for (Js = 1 T, K = 1 J/m3, φ = 35○, Hc,K(φ) = 1.02 A/m, Jc = 0.243 T, Jr = 0.819 T, Jp = 0.92 T). The difference between the loop areas is put in evidence by the gray
pseudo-triangles. (b) Behavior vs φ of the loss W , and its irreversible component WIRR (both independent of Js), of the corresponding elemental loops. For φ = 0, the
absence of irreversible processes entails W = WIRR = 8K [Eq. (31)]. (c) Interpolation of the K independent quantity W /WIRR vs φ, obtained (see inset) through the least
squares linear fit of such a ratio vs log10[1�(1 − 2

π φ)].
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of K [Jr = Js cos φ, and for Jc and Jp, see Eqs. (8.34), (8.38), and
(8.41) of Ref. 5]. Being Hc,K [Eq. (3)] inversely proportional to Js,
as this last varies the loops aspect ratio modifies, but W and WIRR
[Eq. (31)] do not. Moreover, Hc,K is the same for both loops, and
one gets WIRR(aK, φ) = aWIRR(K, φ) and W(aK, φ) = aW(K, φ).
For the arguments above, the ratio between the two losses [these last
plotted in Fig. 10(b)] turns out to be φ dependent only, as reported in
Fig. 10(c), where it is interpolated by the following general empirical
law:

rW(φ) ∶= W (K, φ)
WIRR(K, φ) = 1 + 0.289 log10� 1 − 2

π
φ �, (32)

with the coefficient 0.289 found via a least square linear fit of
W�WIRR vs log10[1�(1 − 2

π φ)] [Fig. 10(c) inset].
Eventually, for H = Hp, the energy loss of the whole particle

ensemble is obtained after integration over the anisotropy axes val-
ues and orientations [from Eqs. (31) and (32), and with Kc,Hp given
by Eq. (4)],

W(Hp) = � π�2
0
� Kc,Hp (φ)

0
ψ(K, φ) W(K, φ) dK dφ

= 8� π�2
0

rW(φ) cos φ
A(φ)�

Kc,Hp (φ)
0

ψ(K, φ)K dK dφ. (33)

One can also formulate this expression in terms of the peak induc-
tion corresponding to Hp, calculated on the First Magnetization
Curve with Eq. (28),

Jp ∶= J(FMC)(Hp) = Js � π

−π
p(FMC,Q)

Hp (γ) cos γ dγ . (34)

The energy loss values supplied by Eq. (33) are almost identical to
the ones given by the hysteresis loops areas, as shown in the inset of
Fig. 8.

V. CONCLUSIONS
The developed mathematical tool analytically predicts the

response of an assembly of non-interacting SW particles driven by
a quasi-static alternating magnetic field. The exact integral relation-
ships for the hysteresis loops and losses allow one to bypass the
computationally slow numeric procedure necessary to implement
the SW model in software used to predict the behavior of devices
containing magnetic components.

The versatility of this approach lies in its skills listed below.

(1) It works with any anisotropy distribution, permitting one to
easily predict the role played by the sample texture (e.g., the
effect of a macroscopic easy axis induced either by annealing
or by applied stress).

(2) The same analytic-statistical procedure, although more com-
plicated, can be exploited with any field history (e.g., rotating
fields,31,34 loops with bias, and asymmetrical minor loops).

(3) Marginal modifications of the approach allow it to account
for the presence of domain walls inside the particles,
following the idea suggested in Ref. 22.

(4) The whole mathematical structure is prone to a gener-
alization for systems of particles endowed with biaxial
anisotropy.

(5) Under whatever field history and accounting for interactions,
in Ref. 40, a mathematical technique capable to track the
irreversible switches in a particle assembly described by the
SW model has been worked out (so preserving the non-local
memory of the system), together with a graphic representa-
tion that turns out to be an extension of the one operating
in the Preisach model. One can then envisage a coupling
between such a tool and the one developed here, with the aim
to assess a more general analytical approach to the particle
systems description.
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APPENDIX: MINIMA OF THE GIBBS FREE ENERGY
DENSITY uH VS THE ANISOTROPY AXIS
ORIENTATION φ

For a general γ′ equilibrium orientation of �Js, with γ′low ≤ γ′ ≤ γ
(where γ depends on the Q quadrant considered, and γ′low is its lower
limit), the �∗φ(γ′) range, corresponding to a minimum of the particle
Gibbs energy uH(K, φ; γ′) [Eq. (1a)], is determined by the over-
lap between two φ regions: the first one, where K∗H(φ; γ′) [Eq. (8)]
is positive, and the second one satisfying Eq. (9), u′′∗H (φ; γ′) > 0, as
illustrated in Fig. 11 (remember that φ is limited between 0 and π�2
for symmetry reasons).

The �∗φ(γ′) interval is found before for the field values 0 ≤ H≤ Hp, i.e., when the First Magnetization Curve (FMC) and the
RECoil curve (REC) are covered (upper strip of Fig. 11). In this case,
for Q = III and Q = IV , the two regions partially overlap, and the
�∗φ(γ′) limits are [φ(III)0 ; φ(III)∞ = γ′ + π] and [φ(IV)0 ; π/2], respectively
[see Eqs. (10) and (11)]. In Q = I, the entire region where K∗H > 0
falls in the range where u′′∗H > 0; φ(I)0 , which drops outside, does not
play any role, and the �∗φ(γ′) limits are [φ(I)∞ ; π/2]. Eventually, in
Q = II, the two regions do not overlap, signaling the fact that, in this
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FIG. 11. The �∗φ (γ′) intervals, where the Gibbs free energy uH(K, φ; γ′) of a “particle” displays a minimum, are shown for each branch and quadrant (note that no �∗φ
exists for Q = II in FMC or REC, and for Q = IV in NDB). The values of φ(Q)

0 (γ′) and of the asymptotes φ(Q)∞ (γ′) of K∗H (φ; γ′) and u′′∗H (φ; γ′) are given by Eqs. (10) and
(11), respectively. In the case Q = I for FMC and REC, the picture displays the situation occurring when γ ≤ π/4, corresponding to the of K∗H and u′′∗H crossing. A similar
situation is found in the case Q = III for NDB, when γ ≤ −3π/4.

quadrant, no stable equilibrium position for �Js exists. This fact agrees
with the result p(FMC,II)

H,IRR = 0, which is reported at the end of Sec. III A,
and is derived simply by observing the system geometry [Fig. 1(a)].

When H < 0 (lower strip of Fig. 11), i.e., along the Negative
Descending Branch (NDB), a very similar and, to some extent, spec-
ular scenario appears—the situations in Q = III, IV , I, and II now
recovering the ones found along FMC and REC in Q = I, II, III, and
IV , respectively.

Eventually, let us contemplate the case when φ(Q)0 constitutes
the lower limit of the �∗φ(γ′) interval (Q = III and Q = IV for FMC
and REC, and Q = I and Q = II for NDB). In this circumstance,
inserting the φ(Q)0 value [Eq. (10)] into Eq. (8), one gets (considering
that K > 0)

K∗H �φ(Q)0 (γ′); γ′� = Js �H sin γ′
sin [ arctan (2 tan γ′) ] �, (A1)

a quantity that, together with function (10), constitutes a couple of
parametric equations (with γ′ parameter) identifying, in the (φ, K)

plane, a curve that coincides with Kc,H , being this last obtained under
the conditions u′H = u′′H = 0, as well. Consequently, φ(Q)0 repre-
sents the abscissa of the tangent point between K∗H and Kc,H , and
one gets

K∗H �φ(Q)0 (γ′); γ′� = Kc,H �φ(Q)0 (γ′)� , (A2)

an essential result for the calculation leading to pH(γ), in Sec. III B 1.
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