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Abstract 

The primary aim of the presented research is to introduce a new approach based on the probabilistic 

analysis, which provides an accurate prediction for the improvement of the impact sound pressure level 

of a floating floor considering the uncertainty of material parameters. The theoretical background of the 

novel method was provided. It embraces two theorems describing the propagation of uncertainty of a 

random variables function. The introduced technique leads to the determination of the probability 

density function of a considered output parameter based on the joint distribution of an input random 

vector. Secondly, the algorithm was applied to investigate the insulation improvement of an exemplary 

floating floor. The considered construction was composed of extruded polystyrene as a resilient material 

and cement screed as a floating slab. The dynamic stiffness and the loss factor of the resilient layer and 

the density of cement screed served as input variable parameters with Gaussian distributions. The 

probabilistic analysis was based on two models providing the insulation improvement of a floating floor, 

e.g. Cremer-Vér formula and the recently proposed transmissibility model. Finally, the accuracy of the 

described methodology was verified by comparing it to the results obtained by Monte Carlo, performing 

106 simulations. Additionally, we introduced a simplified model using the linearization of the Cremer-
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Vér relation, which can be applied to determine the probability density of sound insulation improvement 

for floating floor composed of XPS and cement screed in a simple and efficient way.  

1. Introduction 

Every construction should be designed appropriately concerning acoustic properties to provide residents 

with sufficient comfort. Suitable acoustic conditions should be identified twofold, as the reduction of 

unwanted sounds, but also as the confidence that one’s activities cannot be heard by other residents. In 

particular, this issue is decisive in the case of high residential buildings located in densely populated 

areas. In 2018 46% of the European Union population lived in apartments [1]. In such a dwelling type, 

the slabs separating two flats are subjected to airborne sounds (e.g. talking, dog barking, audio devices) 

and impact sounds mainly caused by footsteps or falling items. Due to such actions, the building 

structure is set into vibration, which can be gradually transmitted to consecutive elements of the 

construction skeleton, thereby affecting the comfort of living. In 1995 Swedish scientists carried out a 

survey on acoustic comfort among people living in multi-storey buildings [2].  The results evince that 

nearly 60% of the population are disposed to pay higher rent for improved acoustic insulation efficiency. 

According to numerous studies [3-8], the impact sounds are a primary source of residents’ noise 

annoyance. Hence, sound insulation effectiveness is an issue frequently examined by scientists of many 
fields.  

Sound insulation can be readily estimated experimentally. The standard ISO 10140-3 [9] specifies the 

laboratory procedure, which leads to the determination of normalized impact sound pressure level 

[ ]nL dB . The standard method aims at generating impact noise by a tapping machine and measuring the 

sound pressure levels in the receiving room for particular frequencies. In the majority of European 

countries, the experimental test is conducted within 1/3-octave frequency bands ranging from 100 to 

3150 Hz [10]. It is convenient to describe acoustic insulation properties using single-number quantities 

(SNQ) introduced by ISO 717-2 [11] such as the weighted normalized impact sound pressure level 

,' [ ]n wL dB . The effectiveness of acoustic insulation can be clearly expressed by the reduction of impact 

sound pressure level , [ ]n wL dB , which was introduced by Gösele [12]. The parameter corresponds to 

the decrease in sound pressure level in the receiving room due to applied insulation in comparison to 
floor containing solely a load-bearing slab.  

Since a slab consisting only of structural material, such as concrete, does not provide sufficient comfort 

of living with regard to acoustic conditions, the proper insulating material has to be installed. An 

effective way of reducing impact noise is to attenuate vibrations before they reach the framework of a 

building, which can be readily achieved with floating floor systems. Such a construction consists of a 

layer of resilient material (e.g. expanded polystyrene, expanded polypropylene, glass fibers, rock wool, 

waste tyres, etc. ) encasing the structural base floor, see Fig. 1. The insulating material is covered by the 

floating slab, usually made of screed, which is not supposed to be connected to lateral walls. Due to 

inherent elastic properties, the resilient layer dissipates the energy of impacts. Hence, the floating floor 

can be considered as a system of mass combined with spring and dampener [13]. The insulation effect 

can be further extended by the application of some flooring materials, whose insulating properties 
depend on texture [14].  

In order to analyze the improvement of impact sound insulation, the deterministic approach is usually 

employed. It assumes that all material parameters and boundary conditions admit the scalar values. 

However, it is recognized that instead of the single value, the material properties should be taken as a 

random variable described by the probability density function. The randomness of input parameters 
propagates during the experimental and/or theoretical analysis implying the uncertainty of its result.  

As it is known, both building structural materials (such as cement, mortar, bricks, blocks, etc.), and 

insulating materials (elastic, poroelastic, resilient, etc.), contain some uncontrolled inhomogeneities and 



inherent variabilities, which can severely affect the effectiveness of the acoustical performance of a final 

construction.  Therefore, the main goal of the presented research is to propose a new approach based on 

stochastic analysis, which enables one to predict the distribution of the impact sound pressure level 

improvement of a floating floor considering the uncertainty of material parameters. Firstly, the 

theoretical framework of the novel approach is described. The procedure is based on two theorems 

adopted from probability theory, which allow to identify the probability distribution of a function, 

providing the probability distributions of its arguments are known. Secondly, the proposed approach is  

applied to a particular case of a floating floor. The considered resilient layer is made of 33-mm extruded 

polystyrene XPS, whereas the floating slab constitutes a cement screed of 30 mm. Probability 

distributions of input parameters, i.e. dynamic stiffness of the resilient layer, the cement screed density 

and loss factor are defined based on the conducted experimental research or taken from the literature. 

The stochastic analysis is conducted for two empirical models describing the improvement of impact 

sound insulation, i.e. the classical Cremer-Vér formula [15, 16] and the constitutive model for floating 

floors [13], based on the transmissibility theory. The first approach has been widely applied to determine 

the insulation effectiveness, for the frequencies above the resonance, for more than 40 years. The 

transmissibility model, presented in 2018, allows evaluating the amplification effects at the resonance, 

and the acoustical performance for frequencies below the resonance, based on the involved materials 

properties, and its suitability has been verified [17-19]. Additionally, a simplified model, which defines 

the probability density function of sound improvement considering the linearization of the Cremer-Vér 

formula was provided. Finally, the calculated results are compared to histograms obtained by the Monte-

Carlo method, which is usually treated as the reference one but also the one of high computational cost. 

The comparison showed a good agreement.  

 

 

Figure 1. Schematic construction of an exemplary floating floor. 

 

2. Theoretical background  

2.1. Empirical models 



There have been introduced several approaches leading to computation of the sound reduction index for 

floating floors. In 1952 Cremer introduced an empirical model [15], which has been improved over the 

years, mainly by Vér [16, 20]. The final version of the Cremer-Vér formula describes the relation 

between L  and frequency f  as a straight line with the slope of 30 dB per decade (in 1/3 octave 

bands), as follows [21-23]: 
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where 0f  is the floating floor’s mass-spring resonance frequency, determined according to the formula 

[13, 23]: 

0

1 '
,

2

s
f

m
            (2) 

where 
3's N m    is the dynamic stiffness of the resilient material and 

2m kg m    is the actual mass of 

the floating slab per unit area.  

Cremer assumed that the insulation effectiveness of a floating floor is negligible below the resonance 

frequency, disregarding the amplification effects at the resonance. Hence, the Cremer-Vér model (1) 

does not allow predicting the improvement of sound insulation for such a range, which constitutes a 

certain limitation. Nevertheless, due to its simplicity, the formula gained widespread popularity and 
became adopted in the Standard ISO 12354-2 [24]. 

A constitutive model for floating floors, based on the force transmissibility theory [25], was recently 

proposed [13]. In this approach, a floating floor is considered as a vibrating system, which transfers 

motions towards the foundation, i.e. the load-bearing slab, through an elastic layer of insulating material.  

Thus, it can be considered as a mass-spring system, and the inherent insulation effectiveness can be 

determined in terms of transmissibility fT  [13, 22, 26]. Transmissibility also depends on the dissipative 

properties of the elastic layer of insulating material, which can be expressed in terms of total loss factor 

 [27, 28]. This dimensionless parameter usually ranges between 0.1 and 0.3, for common insulation 

materials  [29]. For resonantly reacting floors, i.e. where the floating slab is rigid, lightly damped, and 
finite [16], the insulation effectiveness can be defined as follows [13]: 
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2.2. Stochastic approach 

The main goal of the conducted probabilistic analysis is to determine the probability density function 

(PDF), g , of the impact sound insulation improvement. There are several approaches, which enable to 

determine distribution of a random variable function, knowing the PDF of its variable-argument. Each 

of them originates from the primary observation. Namely, suppose that a vector Y , in the general case, 

represents the vector function of a multivariate variable X ,    1 2, ,.., nY X     , and  Xg x  is the 

known joint probability distribution of the random vector X . The function vector Y  occurs in the set 



B  if and only if the random variable X  occurs in the set 
BA . The set 

BA  is also called the inverse 

image of the set B  corresponding to the function  X  and is denoted by: 

    1 :BA B x x B             (4) 

The probability that the random vector Y  occurs in the set B  is equal to the probability that the random 

vector X  is in the set 
BA . This observation can be rewritten in the following form: 
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B
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The first applied theorem employs the change of variables in order to transform the integral region of 

the eq.(5) into the set B. Nevertheless, to reach that goal some essential requirements have to be fulfilled 

[30, 31]. First of all, the function   should be measurable, which means that 
BA  can be determined for 

each y. Secondly, each component of function vector Y needs to be continuously differentiable with 

regard to all components of X. Additionally, in the range of all probable x values, each  y x needs 

to have a unique solution. Finally, the the Jacobian of the components of vector  x  with respect to 

the components of random vector x  is of the same sign in the region of possible argument values and 

vanishes only in the set of points being of measure zero. Then, the theorem can be expressed as follows 
[30]: 

Theorem (transformed variables method): Suppose that the vectors Y and X are of the same dimensions, 

and the density function of the random variable X equals  Xg x . Assuming that in each case the 

function  y x is injective and of C1 class, the probability density of vector function Y can be 

expressed as: 
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where  J y  describes the Jacobian of the components of  1x y  with respect to the components 

of y : 

 
 
 

1 1 1

1 2

1 2

, ,..,

, ,..,

n

n

J y
y y y

    



.         (6b) 

 

In practical application the dimension, m, of vector Y  is usually smaller than the dimension, n, of vector 

X . For m components of vector X  the equation  y x  has a unique solution. Let us denote 'x  the 

vector composed of those m components and ''x  the vector composed of remaining n-m components of 

vector x . Then  ', ''y x x  and consequently its solution  1' , ''x y x . Following the same 

reasoning as above the equations (6a) and (6b) might be rearranged for the case when m n  in the 
following form: 
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If one assumes that the equation  y x  has the set of solutions    1 ,ix y i I y   , where i  is the 

interval, the distribution of random vector Y  might be determined according to the following formula 
[30, 31]: 
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The above-described theorem enables one to determine the explicit form of the PDF of the considered 

function. Having PDF, it is possible to calculate the cumulative distribution function (CDF), G , by the 
definition [31]: 

   
x

G x g t dt


            (9) 

Since both, output and input vectors can be of any dimension, the approach is quite universal. Its 

restrictive assumptions can seem to be a serious obstacle, nevertheless they can be overcame by dividing 

the domain onto regions, in which all requirements providing an inversible function are met [30, 31]. 

The calculations are rather simple for injective transformation functions but become more complex for 

functions being injective only piecewise, such as eq. (3), and when the dimension of random vector is 

greater than one. To resolve this problem one might refer to the theorem, which regard the cumulative 

distribution function of a random variable. According to reasoning introduced at the beginning of this 

section, the assumption of  B Y y   implies that the probability of the random vector  Y X  

occurring in the set B  is equal to the probability of X  being in the corresponding set 

  :B yA A x x y    [30]. In case of the second applied theorem, it is sufficient for the  x

functions to satisfy only one requirement. Namely, for each y the probability of X being contained in the 

set AB has to be known, which means the functions have to be measurable. Then, the cumulative 
distribution function theorem can be expressed accordingly [30]: 

Theorem (cumulative distribution function): Suppose the density function of the random variable vector 

X equals  Xg x . Assuming that each component of vector  Y X  is measurable, its cumulative 

density function  YG y can be determined by: 
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It is noticeable that the method is very general and does not depend on the dimensions of input and 

output random vectors X  and Y . Such an approach is particularly effective when the input argument is 

a multicomponent vector and the function   is not injective. Having a CDF it is possible to determine 

PDF by differentiation of eq. (10). Further, all discrete parameters of random variable, such as statistical 

moments and their functions, can be determined. Since the sound insulation improvement defined 

according to the transmissibility model, eq.(3) is the piece-wise injective function of frequency, in this 

case, the cumulative distribution function theorem was applied. Hence, the L corresponds to the vector 

function Y , whereas the material parameters, i.e. the surface mass, the dynamic stiffness of the resilient 
layer and total loss factor represent the components of argument vector X. 



 

3. Results and discussion 

Let us analyze the improvement of impact sound insulation of the floor presented in Figure 1. The 

considered construction is composed of 33-mm layer of extruded polystyrene (XPS) as a resilient 

material, 30-mm of cement screed as a floating slab, and concrete base as a load-bearing element. As 

mentioned before, the resonance frequency, and as a consequence, the sound insulation effectiveness of 

such a construction depends only on the stiffness and the inertial properties of XPS and cement screed 

respectively. The performance of the examined floor was estimated by applying Cremer-Vér formula, 

eq. (1) as well as the transmissibility model, eq. (3). Fig. 2 presents the comparison between both models 

(in case of the transmissibility approach two different values of total loss factor were used) and 

experimental data [19]. It can be observed that the transmissibility model reflects the experimental 

results more accurately. Contrary to classical Cremer-Vér theory, the Schiavi approach enables one to 

predict the insulation effectiveness also below the resonance frequency. The model allows predicting 

the decrease of the floating floor acoustic insulation of a partition in the vicinity of the resonance 

frequency. The positive values of impact sound insulation improvement and thereby the benefits from 

application of sound insulation are observed at frequencies above approx. 
01.5 f . It also can be noticed 

that the lower total loss factor of a resilient layer is, the worse acoustic properties of floating floor around 

resonance frequency are observed. 

 

 

Figure 2. The comparison of impact sound insulation calculated using Cremer-Vér model and the 

transmissibility model assuming =0.1 and =0.2 with experimental data [19].  

 

3.1 Materials uncertainties 

To investigate the uncertainty of impact sound insulation improvement, the randomness of the cement 

screed density, dynamic stiffness and loss factor of the resilient layer were considered. Such a choice of 

variable arguments results from the fact, that they represent all of the input parameters of considered 

models, eq.(2), eq.(3). Nevertheless, one has to be aware that Actually, also some other material 

properties can affect the uncertainty of acoustic effectiveness, such as Among them, the resilient layer 

density can be supposedly relevant. Indeed, creep effects (e.g., determined according EN 1606 […]), 

due to static deflection in time, increase density of resilient layers; this in turn, increases dynamic 
stiffness, reducing the sound insulation effectiveness, according to [PLEASE CITE]. 



As majority of material characteristics this parameter has a Gaussian distribution, however, it has not 

been clearly confirmed in the literature so far. Nevertheless, the chosen models neglect the influence of 

other material characteristics on the acoustic performance of a floating floor. Although, the randomness 

of those parameters might increase the uncertainty of the improvement effectiveness. Hence, the 

attention was focused on the three mentioned parameters. The distribution of cement screed density was 

investigated on 90 cubic samples of dimensions equal to 100 mm. They were made of cement CEM I 

42.5R and w/c ratio was equal to 0.5. The analysis of dynamic stiffness probability density was carried 

out for XPS, thickness 33 mm; 60 results were taken from the literature [32, 33]. The histograms of the 

density and dynamic stiffness are presented in Fig. 3. The normal distributions of dynamic stiffness and 

density were confirmed by the Shapiro-Wilk test [34]. Assuming x1 ≤ x2 ≤ … ≤ xn is an ordered sample 
tested for non-normality, the Shapiro-Wilk W statistic can be calculated according to the equation [34]: 
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where n is the number of observations, x  is the sample mean of the data and ai are the coefficients. In 

this work, the approximations of the coefficients, W statistic and P-values, proposed by Royston [35, 

36], have been adopted. For the dynamic stiffness of the resilient layer, the W was equal to 0.985 and 

the P-value to 0.387, while for the cement screed density the W was equal to 0.984 and the P-value to 

0.594. The P-values were greater than 0.05, so it can be concluded that the hypothesis that normal 

distribution is appropriate is not rejected. 

 

Figure 3. Histograms of the dynamic stiffness of resilient layer (A) and cement screed density (B) and 
parameters of normal distributions fitted to the experimental data. 

Parameters of the normal distributions have been determined using regression analysis. As a result, the 

distributions of N(15.95, 4.692) and N(2278.47, 40.92) have been assumed for dynamic stiffness of the 

resilient layer and the cement screed density, respectively. It was assumed that the thickness of the 

cement screed layer in the floating slab is certain and equal to d=3cm along the area of the floor. One 

can apply directly the properties of expectation and variance to calculate the distribution parameters of 

the mass per unit area: 

m d  ,            (12a) 

    2Var Var m d .          (12b) 



Since the thickness of the cement screed is assumed to be constant, the mass per unit area of the cement 

screed layer, m , is treated as the random input parameter in further acoustic analysis. Consequently, one 

can assume that the mass per unit area of the floating slab is normally distributed with the following 

parameters: 268.35m kg m   and   21.23m Var m kg m   . Concerning the loss factor, there is 

lack of any information regarding the distribution of this parameter. Some national regulations indicate 

that the loss factor should lie in the interval [0.1,0.3] [37]. Most of the random variables describing the 

materials properties have the Gaussian distribution. Therefore, one assumed that loss factor is normally 

distributed with the expected value and standard deviation equal to 0.2 and 0.03, respectively. Such 

assumption ensures that the loss factor admits the value from the interval [0.1,0.3] with the probability 

larger than 99.9%. This made, according to the transmissibility theory, the improvement of impact sound 
insulation the function of three random variable: surface density, dynamic stiffness and loss factor.   

 

3.2 Resonance frequency 

The randomness of material parameters is transferred into the insulation effectiveness uncertainty of the 

floating floor. Let us first analyze the probability density of resonance frequency, which is given by the 

function of two random variables, namely, dynamic stiffness and surface mass, see eq. (2). Applying 

the method described in the section 2.2 one is able to determine directly the density of resonance 

frequency. One assumes the vector argument  ',x s m , the output 
0y f  and the function 

 
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. Since the dimension of the argument vector is equal to 2 while the dimension of 

output vector is equal to 1, one has to apply the equation (7a) and 7(b). The Jacobian takes the form of 

scalar. It can be noticed that one can obtain two equivalent formulations describing the distribution of 

resonance frequency. To complete this task, one needs to calculate the inverse functions of resonance 

frequency with regard to dynamic stiffness as well as unitary mass along with their derivatives: 
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and consequently, the probability density function of resonance frequency: 
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where ',s mg  is the joint probability distribution of  ',s m . Following the same reasoning for surface 

mass one can obtain the following expressions: 
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and consequently: 
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For the readers' convenience, there are given both partial derivatives, although only one of them is 

needed to determine the Jacobian, eq. (7). The PDF of the resonance frequency is directly determined – 

see Fig. 4a. Having the PDF, it is possible to calculate the CDF (Fig. 4b). One can notice that although 

both arguments of the resonance frequency have symmetric, normal probability densities, the resulting 

variable has the nonsymmetrical PDF. The expected value of resonance frequency is equal to 76.1 Hz 

while its standard deviation is 11.7 Hz. The probability that resonance frequency is higher than 100 Hz 
is around 1%.  

 

Figure 4. a) Probability density (a) and cumulative distribution function (b) of resonance frequency 

being function of two random variables: dynamic stiffness of XPS and mass per unit area of cement 

screed. 

3.3 Improvement of impact sound insulation 

Since the transmissibility model covers the frequencies higher and lower than the resonance, the 

insulation effectiveness is only the piecewise injective function. Assuming three input random variables 

(loss factor, dynamic stiffness and surface mass), the application of equations (7a) and (7b) might cause 

some difficulties. Hence, the distribution of the improvement of impact sound insulation was obtained 

applying eq. (10) – see section 2.2. Then the probability density was calculated by differentiation of a 

distribution function. It must be pointed out that the distribution is calculated by numerical integration, 

hence it might be not smooth. The differentiation of such a function might lead to oscillations, which 

disturb the PDF. Alternatively, the inverse functions with respect to the arbitrary variables and their 

derivatives needed to apply the change of variable method are given in the appendix. They are expressed 

by very complex equations. However, using them one can formulate the exact form of probability 

density functions of improvement of impact sound insulation by transmissibility model. Cremer-Vér 

function is monotonic with frequency and with respect to both investigated random variables. 

Consequently, it possesses the single inverse function concerning both arguments in the entire domain. 

Therefore, for Cremer-Vér model the direct determination of insulation improvement probability density 

is possible and rather easy to obtain. One assumes the vector argument  ',x s m , the output  y L  

and the function  ', 30 log 2
'
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m
s m

s
. As in the previous case the dimension of the argument 

vector equals 2 and the dimension of output vector equals 1, therefore one has to apply the equation (7a) 

and 7(b). To reach the goal the inverse functions with regard to dynamic stiffness as well as unitary mass 



have to be calculated. Then, their partial derivatives with respect to L  are needed to determine the 

Jacobian. Two equivalent expressions describing probability density function might be obtained: 
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and consequently, the probability density function of the improvement of impact sound insulation: 
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For the surface mass one can obtain the following expressions: 
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and the probability density of the improvement of impact sound insulation: 
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Distribution is calculated by integration of the PDF, see eq. (9). To present the results legibly, they were 

divided into two groups: 1) frequency lower or equal to 100 Hz (f = 50 Hz, 60 Hz, 70 Hz, 80 Hz, 90 Hz, 

and 100 Hz), 2) frequency higher than 100 Hz, the following octave band frequencies are taken: 125 

Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz. For lower frequencies (the first group) the improvement of 

impact sound insulation was calculated only using the transmissibility model, while for the higher 

frequencies (the second group) both Cramer-Vér and Schiavi relations were employed. The PDF and 

CDF determined for lower frequencies are presented in Fig. 5a, b. It is noticeable that although the 

random input parameters are normally distributed, the output function has strongly nonsymmetrical 

distribution – see Fig. 5a. The CDF presented in Fig. 5b might be used to determine the quantile of any 

desirable order. According to the presented results, the probability that floating floor will impair the 

insulation effect of a partition equals 70% for sound frequency of 100 Hz and increases up to 100% 
along with the decreasing frequency. 



  

Figure 5. The a) PDF and b) CDF of the impact sound insulation improvement determined using the 

transmissibility model for frequencies equal to 50 Hz, 60 Hz, 70 Hz, 80 Hz, 90 Hz, and 100 Hz. 

The discrete parameters of insulation improvement density are gathered in Table 1. Based on the PDF, 

determined by the proposed approach, it is possible to calculate the expectation and standard deviation. 

The non-symmetrical shape of the probability density of the improvement of impact sound insulation 

determined for frequencies lower than 100Hz results from the features of relation between insulation 

effectiveness and frequency of the noise, which is highly nonlinear – see eq. (3) and Fig. 2. 

Consequently, one is not allowed to linearize the improvement of impact sound insulation in this region. 

Since the expected value of the resonance frequency for analyzed case equals 76.1 Hz, the worst 

improvement (deterioration) can be observed for adjacent frequencies, namely 70Hz and 80Hz – see 
Table 1. The standard deviation monotonously grows along with the frequency. 

 

Table 1. The expected value and standard deviation of insulation improvement calculated using the 
transmissibility model for frequencies less or equal than 100 Hz. 

Frequency [Hz] Expectation [dB] Standard deviation [dB] 

50 -4.04 1.86 

60 -6.04 2.34 

70 -7.59 2.76 

80 -7.35 3.11 

90 -5.09 4.46 

100 -2.18 4.22 

 

For frequencies higher than 100 Hz both Cremer-Vér and Schiavi relations were applied. The 

comparison of these approaches are presented in Figure 7a, b. The nonsymmetrical behavior of PDFs 

might be still recognized by applying both approaches (Cremer-Vér and Schiavi) – see Fig. 6a and Fig. 

7a. but become much softer than for frequencies below 100 Hz. The PDF peak determined using the 

transmissibility model grows and becomes more soaring along with the band frequency while the shape 

of PDF calculated applying Cremer-Vér relation remains unchanged. They are only shifted toward 

larger values of sound insulation improvement along with the band frequency. Based on the PDF, the 

expected values and standard deviations of insulation improvement using both models might be 

determined. Their comparison is presented in Table 2. The standard deviation calculated using Cremer-

Vér equation remains unchanged for all band frequencies. Assuming the transmissibility model the 

standard deviation decreases along with the growing frequency and admits slightly lower values for 



larger total loss factor. Generally, the transmissibility model implies that for higher sounds the efficiency 

of insulation increases, and simultaneously particular results are closer to the expected values.  

 

Figure 6. The a) PDF and b) CDF of the impact sound insulation improvement determined using the 
Cremer-Vér model for frequencies equal to 125 Hz, 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz. 

 

  

Figure 7. The a) PDF and b) CDF of the impact sound insulation improvement determined by using 
the transmissibility model for frequencies equal to 125 Hz, 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz.  

 

Table 2. The comparison of expected values and standard deviations of insulation improvement 

calculated using Cremer-Vér model and the transmissibility model assuming =0.1 and =0.2 for 
frequencies higher than 100 Hz. 

f [Hz] 

Expectation [dB] Standard deviation [dB] 

Cremer-Vér Schiavi Cremer-Vér 
Schiavi 

 

125 6.65 3.15 

2.17 

3.10 

250 15.68 13.74 2.00 

500 24.71 21.15 1.62 

1000 33.74 26.87 1.49 

2000 42.77 31.76 1.47 
 



To validate the results calculated using eq. (7), the comparison with the Monte-Carlo data [38] was 

made. In order to decrease the number of simulations, the total loss factor was assumed to be the constant 

value equal to 0.1   and 0.2  , appropriately. For two random variables (surface density and 

dynamic stiffness) 106 calculations were performed. The number of bins  k  was taken as the maximum 

integer (46) satisfying the inequality  5lnk n , where n  is the number of sampling points. The 

comparison is presented in Fig. 8 and concerns data obtained for frequency equal to 90 Hz. Since this 

value is relatively close to the expectation of the resonance frequency, the transmissibility model is used 

for this purpose. One can notice that the probability density of the improvement effectiveness obtained 

using eq. (7) resembles the Monte Carlo results. The slight difference between the results obtained using 

those two techniques is visible only in the sharp peak. This peak stems from the non-monotonic relation 

between improvement of the impact sound insulation and frequency. Since the number of beans in MC 

method is limited by the empirical inequality, therefore the accuracy of MC method is worse than the 

accuracy of method based on transformed variables. By increasing the number of sampling point the 

result calculated using MC would converge to the one obtained by the transformed variable method, but 

it would require much longer computational time. 

 

Figure 8. The comparison of improvement of impact sound insulation probability density calculated 

using transformed random variable method with Monte Carlo simulation, with  90 Hz of frequency for 

a) 0.1   and b) 0.2  . 

3.4 Linearization of Cremer-Vér formula 

According to the aforementioned results, the dynamic stiffness 's  of the insulating layer, as well as mass 
per unit area m of cement screed, are characterized by normal distributions, which can be denoted as 

 2

' ',s sN    and  2,m mN    respectively. Let us presume that standard deviations of both input 

parameters admit relatively low values. Such an assumption implies that the output variable, i.e. the 
improvement of impact sound insulation might be approximated using linear relation in the vicinity of 
its expected value. Consequently, the improvement of impact sound insulation is normally distributed, 

with PDF, Lg , given by the formula: 
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Applying the Cremer-Vér model expected value and standard deviation are given accordingly: 
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Eq. (15a) allows predicting the probability density of the floating floor construction, whose component 
parameters’ distributions, i.e. dynamic stiffness and unitary mass are known. The equation (14c) was 
derived from the first order Taylor expansion of the variance [30]. Assuming a linear relation between 
the improvement of sound impact insulation and surface mass and dynamic stiffness truncation of terms 
of order higher than one does not introduce any error. However, for strongly nonlinear function such a 
simplification might cause substantial error. The accuracy of the determined formulas (eq. 15b – 15c) 
was verified based on the statistical parameters of materials data considered in the manuscript. The 
expected values and standard deviations describing the insulation improvement of the floating floor 
composed of XPS and cement screed were calculated assuming their statistical parameters as presented 
in section 3.1. Then they were compared to the expectation and standard deviation calculated by 
integration of PDF determined using the transformed variables theorem, see Table 3. The comparison 
evinces remarkable accuracy with regard to standard deviation, which implies that the proposed formula 
can be successfully applied to predict the insulation effectiveness uncertainty concerning floating floor 
composed of XPS and cement screed. 

The results of linearization might be compared with the procedures enclosed in ISO/IEC GUIDE 98-

3:2008 [39]. According to ISO/IEC 98-3:2008, point 4.1.5 the combined standard uncertainty equals the 

estimated standard deviation, which is equal to the variance (point 4.2.2, ISO/IEC 98-3:2008). 

Consequently, combined standard uncertainty of the improvement of impact sound insulation presented 
by eq. (10), p. 5.1.2 of ISO/IEC 98-3:2008, equals its variance eq. (15c) of the manuscript: 
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However, it shall be mentioned that the guide ISO/IEC 98-3:2008 considers only variables with 
symmetrical distribution, while the presented approach does not involve such limitations. 

Table 3. The comparison of expected values and standard deviations of insulation improvement 
calculated by means of transformed variables theorem and linearization of the Cremer-Vér model  

f [Hz] 

Expectation [dB] Standard deviation [dB] 

Transformed 
variables 
theorem 

Linearization 
of Cremer-
Vér formula 

Transformed 
variables 
theorem 

Linearization 
of Cremer-
Vér formula 

125 6.65 6.33 

2.17 1.92 

250 15.68 15.36 

500 24.71 24.39 

1000 33.74 33.42 

2000 42.77 42.45 

 
4. Conclusions 

The main object of the present paper was to propose an innovative method, which enables one to predict 

the uncertainty of the improvement of impact sound insulation of a floating floor. So far the acoustic 

analyses have been usually performed assuming a deterministic approach. Since the mechanical 

properties of resilient materials are often related to certain randomness and uncertainties, such an 

approach is inevitably related to some inaccuracy. Based on the stochastic analysis one proposed the 

algorithm, in which the randomness of input material properties is taken into consideration. The 

procedure was applied to empirical estimations of the acoustical performance of actual floating floor 

construction, consisting of XPS (33 mm) as a resilient material, cement screed (30 mm) as a floating 



slab, and concrete base, with regards to the experimental result. According to the obtained results, the 

following conclusions can be drawn: 

 The insulation effectiveness of a floating floor depends solely on elastic and inner properties of 

the resilient and floating layer respectively. However, since material parameters are related to 

some randomness, the acoustic service of a final partition is also burdened with some 

uncertainty. The statistical test applied with regard to the experimental data concerning dynamic 

stiffness of XPS and density of cement screed indicates that the distribution of both random 

variables might be described by Gaussian probability density functions. Despite that, the 

resonance frequency, which is the output function, has a non-gaussian probability distribution. 

This is caused by the non-linear relation between input and output variables.  

 The probability density function of insulation effectiveness determined by the transmissibility 

model is bimodal for frequencies close to the resonance one especially in the range 60 Hz - 90 

Hz. In the direct vicinity of the resonance frequency, the presence of floating layers even 

aggravates the acoustic properties of a slab in comparison to the bare concrete slab, whereby 

negative values of L are greater for resilient material with a lower total loss factor  . 

According to the given distribution of total loss factor, dynamic stiffness of resilient layer and 

cement screed density, the probability that floating floor will impair acoustic comfort equals 

70% for noise with 100 Hz of frequency and increases up to 100% along with the decreasing 

frequency. This effect is practically independent of the total loss factor. 

 Above the resonance frequency, the insulation effectiveness can be equivalently estimated by 

using either Cremer-Vér and transmissibility models. However, Cremer-Vér model does not 

take into account energy dissipation within the resilient layer, whereas the transmissibility 

model depends on the total loss factor. Hence, Cremer-Vér formula overestimates the benefits 

accruing from the installation of a floating floor. In both models, the acoustic improvement is 

described by a non-symmetrical probability distribution function, but for Cremer-Vér formula, 

standard deviation is constant along with rising frequency. On the other hand, the expected 

values provided by transmissibility models are closer to the experimental data along with rising 

frequency. The simplified formula derived based on linearization of the Cremer-Vér model 

provides accurate results concerning the probability density function of insulation effectiveness 

and can be practically applied to assess the floating floor performance uncertainty. The results 

obtained by the linearization were confirmed with the data provided by ISO/IEC GUIDE 98-

3:2008. However, apart from the discrete features the linearization technique provides 

additionally the distribution function of output variable. 

 The accuracy of the proposed stochastic algorithm was verified using Monte Carlo methods. 

Since the calculated probability density functions closely reflect the MC histograms (for 106 

simulations) it is evident that the introduced technique evinces high efficiency, simultaneously 

demanding less calculation cost than sampling methods. 
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Appendix A. Formulas providing the explicit forms of probability density functions of the impact sound 
insulation improvement according to the transmissibility model. 

Application of transformed variables theorem (section 2.2.) enables to formulate explicitly the PDF of 

output variable. To that end, the inverse functions of a considered parameter with regard to its variable-

arguments needs to be established along with their derivatives. For readers’ convenience the general 
expression for the PDF determined by means of variables transformation is inserted below [31,32]: 

      1

Y Xg y g y J y , where the Jacobian is determined accordingly: (A1) 
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Due to the complexity of established formulas, the appropriate components necessary for inserting to 

eq. (A1) are provided below. Both, the inverse functions and derivatives needed to PDFs of resonance 

frequency (Fig. 4A), and the impact of sound insulation according to Cremer-Vér formula (Fig.6A) are 



contained in the main text of the manuscript. Below the expressions concerning the transmissibility 

model, eq. (3) are provided. Since the function is not injective, the formulas concerning dynamic 
stiffness and unitary mass differ for frequencies below and above the resonance frequency. 

Inverse functions with regard to the impact sound insulation improvement 

1. Loss factor    
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2. Dynamic stiffness s’ 
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3.2. For 0f f : 
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Derivatives with regard to the impact sound insulation improvement 

1. Loss factor    
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2. Dynamic stiffness s’ 
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3. Surface mass m 
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