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2 Departamento de Fı́sica, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil

3 Istituto Nazionale di Ricerca Metrologica, strada delle Cacce 91, Torino, Italy
4 Centro Brasileiro de Pesquisas Fı́sicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil

We present a proof of principle for the validity of the functional renormalization group, by measuring the force
correlations in Barkhausen-noise experiments. Our samples are soft ferromagnets in two distinct universality
classes, differing in the range of spin interactions, and the effects of eddy currents. We show that the force
correlations have a universal form predicted by the functional renormalization group, distinct for short-range
and long-range elasticity, and mostly independent of eddy currents. In all cases correlations grow linearly at
small distances, as in mean-field models, but in contrast to the latter are bounded at large distances. As a
consequence, avalanches are anti-correlated. We derive bounds for these anti-correlations, which are saturated
in the experiments, showing that the multiple domain walls in our samples effectively behave as a single wall.

Each theory of disordered systems relies on specific as-
sumptions, and often their validity is checked only for stan-
dard observables, such as the roughness exponent. Measuring
its central ingredients would be a much more stringent test to
discriminate between them. Two general theories have been
proposed: the Gaussian variational ansatz invoking replica-
symmetry breaking [1–3], which is exact for fully connected
models [4, 5], and the functional renormalization group (FRG)
for short-ranged elastic systems [6, 7], where the central in-
gredient is the effective force correlator. This correlator is the
solution of a non-linear partial differential equation [6–8], and
can experimentally be extracted from the center-of-mass fluc-
tuations of the interface.

To prove the validity of the FRG for disordered systems,
we analyse the domain-wall motion in soft magnets (the
Barkhausen noise) [9], the oldest example of depinning and
avalanche motion [8, 10–12]. Standard observables as the
avalanche size, duration [13, 14] and shape [15–18] show the
existence of two universality classes differing in the kind and
range of domain-wall interactions [12, 14]: amorphous mate-
rials with short-range (SR) interactions and polycrystals with
long-range (LR) interactions, consequence of strong dipolar
effects. In 3D magnets, the latter is described by mean-field
models pioneered in 1990 by Alessandro, Beatrice, Bertotti
and Montorsi (ABBM) [19–21], where a domain wall is rep-
resented by a single degree of freedom, its centre of mass,
a.k.a. mean field (MF). For the SR class, key observables as
the avalanche-size exponent τ ' 1.27 differ from their MF
prediction τMF = 3/2, while they are accounted for by field-
theoretic models [22–24].

In view of the solid evidence for exponents, a central ques-
tion is whether experiments can contradict the ABBM model
in a key prediction for LR magnets. We show that this is the
case for the force correlator acting on the domain wall, or
equivalently the correlator of its centre of mass. To under-
stand this, consider the equation of motion of a d-dimensional
interface with SR interactions,

η∂tu(x, t) = ∇2u(x, t) +m2[w − u(x, t)] + F (x, u(x, t)),

w = vt. (1)

Here w is proportional to the external applied field, increased

very slowly, and m2, usually denoted k, is the demagnetiza-
tion factor [12]. Averaging Eq. (1) over x, given w, we get
ηu̇w = m2 [w − uw] +Fw. Most of the time u̇w = 0, and the
position and force correlations are

∆̂v(w − w′) := [w − uw] [w′ − uw′ ]
c
' 1

m4
FwFw′

c
, (2)

where the overbar designates a disorder average and c its con-
nected part. In practice it is taken both over w and runs. ∆̂v

depends on the driving velocity. Its zero-velocity limit

∆̂(w) = lim
v→0

∆̂v(w), (3)

is the central object of the FRG field theory [7, 8, 25–27].
In an experiment, it is impossible to take v → 0. The effect

of v > 0 is to round the cusp |∆̂′(0+)| = σ (see Eq. (6)) in a
boundary layer of size δw ∼ vτ , where τ is the timescale set
by the response function R(t) ' 1

τ e−t/τ (see Fig. 2(c) for an
example). Ref. [28] shows that

∆̂v(w) =

∫ ∞
0

dt

∫ ∞
0

dt′R(t)R(t′)∆̂(w − v(t− t′)) (4)

can be deconvoluted to reconstruct ∆̂(w) from the measured
∆̂v(w) (see App. D). The result is

∆̂(w) = ∆̂v(w) + τ2∆̂u̇(w), (5)

where ∆̂u̇(w) is the auto-correlation function of the measured
u̇w. This allows us to extract ∆̂(w) by plotting the r.h.s. and
finding τ that best eliminates the rounding close to w = 0. As
shown below, Eq. (5) allows us to remove a boundary layer of
size δw = vτ , but it creates a smaller one of size δ′w = vτ ′,
see App. E.

The ABBM model assumes that forces Fw perform a ran-
dom walk, and as a consequence

1

m4

1

2
[Fw − Fw′ ]2 = ∆̂(0)− ∆̂(w − w′) ' σ|w − w′|. (6)

Field theory [8, 30, 31] predicts ∆̂(0) − ∆̂(w) to grow lin-
early as Eq. (6) for small w, and to saturate for large w, with
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FIG. 1. Barkhausen noise in an amorphous FeSiB film (table I). (a) Voltage signal recorded in the experiment (left axis), and corresponding
domain-wall velocity u̇w (right axis), as a function of time (bottom axis) and w (top axis). (b) The connected part of the interface position,
w − uw, obtained by integrating u̇w. w = 1 corresponds to 2.5 ms ≈ 1.5 mm. Physical units are indicated by grey arrows.

distinct shapes in SR and LR systems (see App. C). While
this framework was tested in simulations [28, 32], and experi-
ments on wetting [33] and RNA/DNA peeling [34], only with
magnets we can consider two universality classes, and with a
large statistics.

We analyze our experimental data as follows. We start from
the Barkhausen-noise time series, proportional to the center-
of-mass velocity u̇w (See Fig. 1(a)). The signal is character-
ized by bursts when the domain wall moves forward, and a
vanishing signal when it is pinned i.e. at rest, combined with
background noise (without noise u̇w ≥ 0 [35]). This allows
us to reconstruct the position of the center of mass uw (see
Eq. (2)), as depicted in Fig. 1(b). It is characterized by lin-
early increasing parts with slope 1, corresponding to an in-
creasing magnetic field (i.e. w), followed by drops in w − uw
when the wall moves forward. This allows us to reconstruct
the unknown scale between u̇w and the voltage induced in the
pickup coil, reducing the scales in the experiment to a single
one (see App. B).

We analyse ∆̂(w) in different materials, summarised in Ta-
ble I. We also consider data where eddy currents (EC) play
a noticeable effect [9, 12, 15, 16], an aspect experimentally
tunable by varying the sample thickness [9, 15, 16]. Details
on samples are given in App. A, and on the data analysis in
App. F, including conversion of our units of w to physical
space and time.

SR interactions without ECs. Our first sample is an amor-
phous 200-nm-thick FeSiB film. Fig. 2(a) shows that the
raw data for ∆̂(w) are rounded in a boundary layer of size
δw ≈ 0.6, due to the finite driving velocity. To obtain ∆̂(w),

sample
interactions /
eddy currents correlation length ρ

amorphous FeSiB film SR / no 7.5 ms ≈ 495 µm
amorphous FeCoB ribbon SR / yes 0.1 s ≈ 67.5 µm
polycrystalline NiFe film LR / no 12.5 ms ≈ 500 µm
polycrystalline FeSi ribbon LR / yes 35 ms ≈ 0.9695 µm

TABLE I. Short-range (SR) and long-range (LR) samples, with and
without eddy currents (ECs).

we use Eq. (5) with τ = 0.17. This reduces the boundary
layer (non-straight part) from δw ≈ 0.6 to δw ≈ 0.1, allow-
ing us to extrapolate to w = 0 (grey in Fig. 2(a,b)). The
measured values for ∆̂(0) and ∆̂′(0+) are then used to fix
all scales in the theory predictions we wish to compare to
on Fig. 2(b). These are from bottom to top (analytic expres-
sions are in App. C): 1-loop FRG (relevant for d = dc, i.e.
LR elasticity), 2-loop FRG in d = 2 (relevant for SR elastic-
ity) [30, 31], the d = 0 solution [28, 36] and an exponential,
the latter, not realized in magnets, given as reference. The
data agree best, and within error bars, with the 2-loop FRG
prediction for d = 2. From Fig. 2(b) we extract a correlation
length ρ := ∆̂(0)/∆̂′(0) ≈ 3. This agrees with the scale on
which ∆̂u̇(w) decays to 0 (see Fig. 10(a) in App. G).
SR interactions with ECs. Our second sample with SR elas-
ticity is an amorphous FeCoB ribbon where ECs are non-
negligible. A range of different driving velocities is at our
disposal. As ECs are more relevant as v increases, we focus
on v = 1, 2, 3. There is additional (white) noise contribut-
ing to u̇. After integration this contributes a linear function to
∆̂(w), s.t.

∆̂raw
v (0)− ∆̂raw

v (w) = ∆̂v(0)− ∆̂v(w) + σnoise|w|, (7)

necessitating to subtract a linear term σnoise|w| (see Fig. 8
in App. F 2). Fig. 2(c) shows ∆̂v(w) after this subtraction.
The inset zooms into the boundary layer with deconvolution
by Eq. (5) in the same color code. Having data at different v
allows us to test that

(i) the boundary layer scales linearly in v, i.e. δw ∼ vτ .

(ii) ∆̂v(w) for v = 1, 2, 3 unfold to the same ∆̂(w).

Both conditions are satisfied using τ = 0.025. Comparison
to the theory proceeds as before, and is shown in Fig. 2(d),
combining v = 1 and v = 2 to improve the statistics. Al-
though error bars are non-negligible, the data is in agreement
with the predicted 2-loop result in d = 2, as for FeSiB with
SR elasticity without ECs in Fig. 2(b). For w > 0.7 the data
slightly deviate from the 2-loop result, albeit well within error
bars. Either this is a statistical fluctuation, or due to ECs.
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FIG. 2. (a) Construction of ∆̂(w) for the FeSiB film (SR, no ECs). In red the raw data. In blue dashed, the result from Eq. (5) using τ = 0.17.
In dotted gray the extrapolation to w = 0. (b) Comparison of ∆̂(w) using the dotted gray curve of (a), to theory candidates, fixing scales by
∆̂(0) and ∆̂′(0+). The latter are from top to bottom: exponential (red, dotted), solution in d = 0 [28, 36] (blue, dashed), 2-loop FRG via Padé
for d = 2 (orange, dotted), 1-loop FRG (black, dot-dashed). Error bars in green for 1-σ confidence intervals. The inset shows theory minus
data in the same color code, favoring d = 2 FRG at two loops (with error bars for this curve only). (c) Check of deconvolution Eq. (5), for
the FeCoB ribbon (SR, noticeable ECs), at different driving velocities v, using the same time scale τ = 0.025; magnified in the inset. Apart
from a small deviation for v = 3 they extrapolate to the same function. (d) Comparison of ∆̂(w) from (c) to the theory, using the color code
of Fig. (b). The data is consistent with 2-loop FRG in d = 2. w = 1 corresponds to 2.5 ms ≈ 1.5 mm for (a)-(b), and to 0.2 s ≈ 135µm for
(c)-(d), see grey arrows.

LR interactions without ECs. LR elasticity arises in mate-
rials, here a polycrystalline 200-nm-thick NiFe film, due to
strong dipolar interactions between parts of the domain wall.
For long-range elasticity the upper critical dimension dc = 2
coincides with the dimension of the wall. The common be-
lief is that then MF theory, i.e. the ABBM model, is suffi-
cient to describe the system. A glance at Fig. 3(a) shows
that the experimental result is in contradiction to the pre-
diction (6) of ABBM. While the latter holds at small w, at
larger w the correlator ∆̂(w) decays to zero. Field theory pre-

dicts [30, 31, 37, 38] that fluctuations are relevant at the upper
critical dimension, and that ∆̂(w) is given by 1-loop FRG.
Fig. 3(a) shows that this is indeed the case.

LR interactions with ECs. Our fourth sample is a polycrys-
talline FeSi ribbon where the elasticity is LR and ECs are non-
negligible. Fig. 3(b) shows a comparison of ∆̂(w) to the four
theory candidates. As for the NiFe film with LR elasticity and
no ECs, the agreement is excellent with 1-loop FRG, and in-
consistent with ABBM. We refer to App. F 4 and Fig. 9 for
details on the data analysis for this sample.
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FIG. 3. The measured function ∆̂(w) for our two LR samples: (a) a polycrystalline 200-nm-thick NiFe film (negligible ECs), and (b) a
polycrystalline FeSi ribbon (with ECs). They agree with 1-loop FRG relevant here. w = 1 corresponds to 2.5 ms ≈ 100µm for (a), and
50 ms ≈ 1.385µm for (b), see grey arrows.
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FIG. 4. Anticorrelation of avalanches as a function of w as defined
in Eq. (8), for the two samples with ECs (red dots), (a) FeCoB with
SR elasticity and (b) FeSi with LR elasticity. The solid line is the
prediction −∆̂′′(w) of Eq. (8) from the experiment. The dashed
lines are bounds on the maximal reduction from the field-theory (9),
with error bars in cyan. w = 1 corresponds to 200 ms ≈ 135µm for
(a) and 50 ms ≈ 1.385µm for (b).

In experiments, force correlations are ounded, and do not
grow indefinitely as in MF models such as ABBM [19–21],
see Eq. (6). As a consequence (Ref. [8] section 4.20, or [39],
Eq. (8)), avalanches are anti-correlated

〈Sw1
Sw2
〉

〈S〉2
− 1 = −∆̂′′(w1 − w2). (8)

Here Sw is the size of an avalanche at w, and 〈Sw〉 = 〈S〉.
The numerator 〈Sw1

Sw2
〉 is the expectation of the product of

avalanche sizes, given that one is triggered at w = w1, and
a second at w = w2; depends on |w1 − w2|, and is aver-
aged over the remaining variable. The experimental verifica-
tion of this relation is shown on Fig. 4. Despite large statis-

tical fluctuations, both the functional form as the amplitude
agree. Since ∆̂(w) is convex, ∆̂′′(w) ≥ 0. On the other hand,
〈Sw1

Sw2
〉 ≥ 0, thus ∆̂′′(w) ≤ 1. This bound is impossible

to reach, as the toy-model (C6) in d = 0 has ∆̂′′(0+) = 0.5.
The field theory [8] gives

∆̂′′(0+) ≤ 2

9
+ 0.107533ε+O(ε2), (9)

which evaluates to 0.437 for SR (ε = 2), and 0.222 (ε = 0) for
LR correlations. Fig. 4 shows that this bound is saturated, both
for the SR and LR sample. This is surprising as both systems
have multiple domain walls, estimated to be around five for
the samples on Fig. 4. So either all but one domain wall are
pinned, or these multiple walls are so highly correlated that
they effectively behave as a single wall.

In this paper, we measured the effective force or center-of-
mass correlations showing that they have a universal form,
predicted by the FRG, both for SR and LR elasticity and
mostly independent of ECs. We prove that FRG, an alter-
native to replica symmetry breaking, correctly models subtle
details such as the dependence on dimension and the range
of interactions. We hope this work inspires the experimen-
tal community to look beyond commonly studied observables
and beyond MF. Further experimental systems to explore are
sheered colloids or foams, DNA unzipping, and earthquakes.
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Supplementary Material for “Force Correlations in Disor-
dered Magnets” by C. ter Burg, F. Bohn, G. Durin, R.L.
Sommer, and K.J. Wiese

Appendix A: Samples and experiments

In this work, we analyze force correlations in soft magnetic
materials. We employ two thin films and two ribbons to per-
form our Barkhausen-noise experiments. The thin films con-
sist of an amorphous Fe75Si15B10 (FeSiB) film and a poly-
crystalline Ni81Fe19 (NiFe) film, both with a thickness of
200 nm. The films are prepared by magnetron sputtering
onto glass substrates, with dimensions 10 mm × 4 mm, us-
ing the parameters given in Refs. [9]. Detailed information on
the structural and magnetic characterizations is provided in
Refs. [9, 16, 40]. Our ribbons are an amorphous Fe64Co21B15

(FeCoB) and a polycrystalline FeSi alloy with Si=7.8%. Both
ribbons have dimensions of about 20 cm ×1 cm, with thick-
ness of∼ 20µm. Further information on the ribbons and their
magnetic behavior are given in Refs. [12, 14].

Regarding the Barkhausen experiments, we record noise
time series using the traditional inductive technique in an open
magnetic circuit, in which one detects voltage pulses with a
pickup coil wound around a ferromagnetic material submit-
ted to a smooth, slow-varying external magnetic field. In our
setup, sample and pickup coils are inserted in a long solenoid
with compensation for the borders to ensure an homogeneous
applied magnetic field on the sample. The sample is driven
by a triangular magnetic field, applied along the main axis of
the sample, with an amplitude high enough to saturate it mag-
netically. The pickup coil is wound around the central part of
the sample. A second pickup coil, with the same cross section
and number of turns, is used to compensate the signal induced
by the magnetizing field. The Barkhausen signal is then am-
plified, filtered, and finally digitalized.

For the thin films, the Barkhausen experiments are per-
formed in Brazil. The measurements are carried out using
a pickup coil with 400 turns, 3.5 mm long and 4.5 mm wide,
and under similar conditions, i.e., 50 mHz triangular magnetic
field, 100 kHz 12-dB/octave low-pass filter set in the pream-
plifier (SR560 Stanford Research Systems) and signal acqui-
sition taken with an analog-to-digital converter board (PCI-
DAS4020/12 Measurement Computing) with sampling rate
of 4× 106 samples per second [9]. At a preanalysis stage, we
employ a Wiener deconvolution [16], which optimally filters
the background noise and removes distortions introduced by
the response functions of the measurement apparatus in the
original voltage pulses, thus providing reliable statistics de-
spite the reduced intensity of the signal.

For the ribbons, the experiments are performed in Italy.
They are carried out using a pickup coil with 50 turns, 1 mm
long and 1 cm wide, a triangular magnetic field with frequency
between 3-50 mHz, and a low-pass preamplifier filter cho-
sen in the 3-20 kHz range, roughly half of the sampling rate.
Specifically, we consider sampling rate of 50 × 103 samples
per second for FeCoB, and 20 × 103 samples per second for
FeSi [12, 14]. For the FeCoB ribbon, the sample is submitted

FIG. 5. Distribution P (u̇) (blue, solid) with fit (green, dashed) to
all data points above the dashed line. It is obtained from the optimal
parabolic fit for lnP (u̇), as shown in the inset. The u̇-value at the
maximum of the fit is used as the position for the zero of u̇.

to a small tensile stress of 2 MPa during the measurement in
order to enhance the signal-to-noise ratio.

All time series for films and ribbons are acquired around
the central part of the hysteresis loop, near the coercive field,
where the domain wall motion is the main magnetization
mechanism and the noise achieves the condition of station-
arity [12]. For each experimental run, the statistical properties
are obtained from at least 150 measured time series.

While the central issue in this work is to explore the
force correlations from the Barkhausen-noise time series, the
classification into the different universality classes reposes
on earlier work, where we identified the universality class
of Barkhausen avalanches by measuring the distributions of
avalanche sizes and durations, the average size as a function of
the avalanche duration, their power spectrum, and the average
avalanche shape. The results for the thin films can be found in
Refs. [9, 16], the ones for the ribbons in Refs. [12, 14].

Appendix B: Subtraction of the baseline, measurement of ∆̂(w),
and error estimates

1. Correcting the baseline

Here we present the methods used to obtain the correlator
∆̂v(w) defined in Eq. (2) from the experimental data for the
change in flux u̇w=vt ≡ u̇(t). As the magnetic field is in-
creased at a rate v

uw − w =

∫ w/v

0

dt [u̇raw(t)− v]. (B1)

We found that there are strong run-to-run fluctuations for
the mean vi := 〈u̇raw〉i in run i, due to a drift in the am-
plifier baseline. If the estimate for v in (B1) is not cor-
rect, this adds a term of the form cw to uw − w, with c a
random number. If we suppose that c is Gauss-distributed
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FIG. 6. The correlator ∆̂v(w) as given by Eq. (B5) for the FeSiB film
(black) with SR elasticity and no ECs. Shaded in the background are
the averagesMi over a single sweep from (B4) which show strong
run-to-run fluctuations.

with mean 0, integration leads to a parabolic contribution, i.e.
∆̂v(w)→ ∆̂v(w)+ 1

2

〈
c2
〉
w2. To correct this, we proceed as

follows: For each run i we consider the distribution P (u̇) (see
Fig. 5), and fit a Gaussian to its peak. This is done by choos-
ing the data points which satisfy P (u̇) > 0.25 maxu̇ P (u̇),
and then fitting a parabola to ln[P (u̇)]. Finally, u̇ is shifted
so that the maximum of the parabola lies at u̇ = 0. Our best
estimate for the driving velocity is then the average over N
runs

v =
1

N

N∑
i=1

〈u̇〉i. (B2)

This allows us to construct the interface position uw − w for
run i as

uiw − w =

∫ w/v

0

dt [u̇i(t)− v]. (B3)

The experimental setup makes appear an additional numerical
prefactor on the r.h.s. of Eq. (B3). It is eliminated by demand-
ing that the linearly increasing parts of Fig. 1 have slope 1.

2. Error bars

The connected two-point correlations of the center of mass
for run i are

Mi(w − w′) :=
1

2

〈
[(uw − w)− (uw′ − w′)]2

〉
i
. (B4)

Whereas the Mi show strong fluctuations (see Fig. 6), their
mean (black)

∆̂v(0)− ∆̂v(w) =
1

N

N∑
i=1

Mi(w), (B5)

is much more stable. Statistically, the small-w region is more
robust than the large-w tail.

Given Mi(w), we need to achieve two goals: (i) extract
the plateau height ∆̂(0) = limw→∞ ∆̂(0) − ∆̂(w) for large
w (see Fig. 6), and (ii) estimate the statistical error. Due to
the large fluctuations between runs, the distribution ofMi is
not a Gaussian, and standard tools for error analysis fail. The
key to solve this problem is to observe that the central limit
theorem still applies: partial means over n < N runs have a
statistics which increasing n gets closer and closer to that of
a Gaussian. As we have always at least N = 150 runs, this
improvement is substantial, as we can take n up to n = N/2.
This procedure is known as the statistical resampling method:
One randomly divides all datasets into two parts and computes
the variance of the partial means. Averaging this over 100 ran-
dom partitions gives a robust estimate for the variance. This is
formalized in appendix A of [34]. To obtain the error bars for
the shape shown in the main text, all partial means have been
rescaled such that their derivative at w = 0 equals the mean
of ∆̂′(0+) over all runs. Only then statistical resampling is
applied. This takes out amplitude fluctuations and reduces the
error bars to errors of the shape. To summarize, our experi-
ment for given w can be modeled as

∆̂exp(w) = ∆̂(w) + σ(w)η, (B6)

where η is a Guassian random variable with mean zero and
variance 1.

3. Estimate of the total error

In section B 2 we obtained error-bars of the shape ∆̂(w).
We still need to put a number on how large the deviations of
the measured ∆̂(w) and the theory are. If Eq. (B6) holds and
the (a priori unknown) ∆̂(w) = ∆̂th(w), then we can define a
measured η via

η :=
∆̂exp(w)− ∆̂th(w)

σ(w)
. (B7)

We can turn this into a test: Using η defined by Eq. (B7),
it should have variance

〈
η2
〉
≈ 1. If we measure a (much)

larger
〈
η2
〉
, then η has a mean, and theory and experiment do

not agree.
The problem of this procedure is that for a givenw, we only

have one sample. Our statistics can be improved by taking
the joint measure for all w. However, the measured values
of ∆̂(w) are correlated, and we cannot simply add up their
variances. We propose the following global error estimator

σ2 =
1

ρ

∫ wmax

0

dw

[
∆̂th(w)− ∆̂exp(w)

]2
σ(w)

2 . (B8)
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σ SR No EC SR EC LR No EC LR EC
1-loop FRG 1.07 1.24 0.28 0.56
2-loop FRG 0.45 0.77 0.76 1.11
d = 0 1.89 0.96 2.85 2.03
exponential 3.20 2.95 1.55 3.83

TABLE II. Estimation of σ defined in Eq. (B8) for all combinations
of theory and experimental data.

This is best thought of as a discrete sum over all w, divided by
the correlation length in the same discretized units. Stated dif-
ferently, this is the sum of the mean variances per correlation-
length segments, equivalent to demanding that the function be
satisfied simultaneously in each of the wmax/ρ independent
segments.

Let us stress that this is the best we can do, and that the vari-
ance of the true error may differ by a numerical factor, such
as 0.5, 2 or 3. Values for this expression, or more precisely
its square root σ are given in table II. One sees that for the
SR samples the agreement is best with the resummed 2-loop
FRG. For LR samples the best agreement is with the 1-loop
FRG. We also see that the measured variances σ2 for the best
matching theory are in general about four times smaller than
the next best one. This corroborates our statements made in
the main text.

Appendix C: Theory predictions for the different classes

The extracted fixed-point function ∆̂(w) can be compared
to results from the functional renormalization group (FRG)
sketched below. As we cannot give more than a short sum-
mary here, we refer to sections 2 and 3 of the recent review [8]
for a pedagogic introduction.

Contrary to conventional RG, where one considers the flow
of a single coupling constant, the FRG follows the flow of
an entire function, here the disorder-force correlator ∆(w) in-
troduced in Eq. (2). Writing ε = dc − d for the expansion
parameter around the upper critical dimension dc, the FRG
fixed-point equation for the rescaled (dimensionless) correla-
tor ∆̃(w) reads at 1-loop order (leading order in ε)

∂l∆̃(w) =(ε− 2ζ)∆̃(w) + ζu∆̃′(w)

− d2

dw2

1

2

[
∆̃(w)− ∆̃(0)

]2
+ . . . (C1)

with the dots representing higher-order contributions [30, 31]
in an expansion in ε. This equation has solutions which de-
cay at least exponentially fast only for selected values of the
roughness exponent ζ. For the RF disorder present in the ex-
periment, the appropriate solution of the fixed-point equation
∂`∆̃(w) = 0 associated to Eq. (C1) is (see e.g. Ref. [8])

∆̃1-loop(w) = −ε
3
W

(
− exp

(
−w

2

2
− 1
))

+O(ε2), (C2)

ζ =
ε

3
+O(ε2). (C3)

Here W (z) is the product-log function, the principle solution
for x in z = xex. The observable in Eq. (2) is obtained from

∆̂(w)
∆̂(0)∆̂′′(0)

∆̂′(0+)2
∆̂′′(0)

Exponential 1 1
d = 0, Eq. (C6) 0.822 1

2
2-loop FRG for d = 2 (SR) 0.75 ≤ 0.437
1-loop FRG, Eq. (C2) (LR) 2

3
≤ 2

9
SR elasticity without ECs 0.73(3) 0.37(2)
SR elasticity with ECs 0.65(10) 0.41(2)
LR elasticity without ECs 0.58(10) 0.17(5)
LR elasticity with ECs 0.65(10) 0.24(4)

TABLE III. Comparison of theoretically and experimentally obtained
amplitudes and amplitude ratios. Theory values are obtained by
Taylor-expanding Eqs. (C2) (1-loop) and (C6) (d = 0). The 2-loop
results can be found in [8, 31].

the (scale-free) fixed-point solution ∆̃(w) as

∆̂(w) = Aρ̂2∆̃(w/ρ̂), (C4)

ρ̂ := ρ
|∆̃′(0)|
∆̃(0)

. (C5)

The amplitudeA is a number (depending onmL), whereas the
correlation length ρ of Eqs. (C7) and (C4) scales as ρ ∼ m−ζ .
The fixed point (C2)-(C3) gets corrected at 2-loop order [30,
31] as more terms appear in Eq. (C1). In principle, it allows us
to predict ∆̂(w) for domain-wall dimensions between d = 4
down to d = 0. The bulk magnets used here have d = 2
(ε = 2), whereas a thin magnetic film has d = 1 (ε = 3).
Dimension d = 0 (ε = 4) is realized in the DNA/RNA peeling
experiment of Ref. [34]. The precision of the approximation
decreases with d, since the expansion parameter ε = 4 − d
increases. We are in the fortunate position to have an analytic
solution in d = 0 [28, 36],

∆̃d=0(w) =
w2

2
+ Li2(1− ew) +

π2

6
. (C6)

This allows us to choose a Padé approximant for the 2-loop
result, optimized for agreement with the solution (C6). A
summary of properties for ∆̂(w) for the different classes is
presented in table III.

In the experiment, each function contains two scales, the
amplitude ∆̂(0) and a correlation length ρ in the w-direction.
The latter is defined by

ρ :=
∆̂(0)

|∆̂′(0+)|
. (C7)

It enters into the scaling form (C4) as indicated. Rescaling
the theory candidates to have the same ∆̂(0) and ∆′(0+) en-
sures that one compares the shape without any fitting parame-
ter. This is the form used in the main text.

Finally let us mention that the normalization in Eq. (2) is
different from the one used in the field theory [25], which con-
tains an additional factor of m4Ld, with L the system size, on
the r.h.s. Our choice is motivated by a lack in the knowledge
of m2 and L, and by the reduction of scales in ∆̂v(w) to a
single one, namely the correlation length ρ := ∆̂(0)/∆̂′(0+)
in the w-direction.
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(a) (b)

raw data

6

deconvoluted data�������)

extrapolation of deconvoluted data������) boundary layer extrapolation���)
boundary layer deconvolution��)

raw data

6

deconvoluted data�������)

extrapolation of deconvoluted data�����) secondary deconvolution����)

FIG. 7. Comparison of three different deconvolution procedure for the 200-nm-thick FeSiB film with SR elasticity and no ECs (raw data in
solid, red): deconvolution via Eq. (D7) as discussed in the main text (blue dashed), time scale τ = 0.175, and extrapolation (grey, dotted).
In (a) is shown in addition deconvolution via the boundary layer given by Eqs. (D7)-(D8) (black, solid) using the same τ = 0.175, and
its extrapolation (cyan, dotted). In (b) is shown the result of secondary deconvolution using Eq. (E1) (green, dotted), with τ = 0.175 and
τ ′ = 0.0024.

FIG. 8. Subtraction of a linear noise contribution (grey dotted, fitting
region in green dashed) ∆(0) +σnoise|w| for the FeCoB ribbon with
SR elasticity and ECs at v = 2.

Appendix D: Deconvolution of ∆̂v(w).

Suppose the response function decays exponentially with
time scale τ ,

R(t) =
1

τ
e−t/τΘ(t). (D1)

Then it satisfies the differential equation

(1 + τ∂t)R(t) = δ(t), (D2)

and is normalized, ∫ ∞
0

R(t)dt = 1. (D3)

This allows us to invert Eq. (4) as [28]

∆̂(w) = (1 + vτ∂w)(1− vτ∂w)∆̂v(w)

= (1− (vτ)2∂2w)∆̂v(w). (D4)

Taking derivatives of the measured function ∆̂v(w) is noisy,
but we are in the fortunate position to have direct access to the
velocity correlation function ∆̂u̇(w),

∆̂u̇(w − w′) := u̇wu̇w′ = −v2∆̂′′v(w − w′). (D5)

Using this in Eq. (D4) we get Eq. (5) of the main text,

∆̂(w) = ∆̂v(w) + τ2∆̂u̇(w). (D6)

In the small-v limit Eq. (4) can be approximated by a
boundary-layer ansatz [8, 28], which gives an alternative, ro-
bust, albeit less precise, deconvolution procedure,

∆̂v(w) = ∆̂(w̃), (D7)

w̃ :=
√
w2 + (vτ)2. (D8)

Our second strategy to reconstruct ∆̂(w) is to plot ∆̂v(w)
vs. w̃, and determine τ which gives the straightest curve at
small w̃. An example is shown in Fig. 7(a).
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FIG. 9. Subtraction of the noise contribution ∆̂(0) + σnoise|w| +
aw2 with a small parabolic contribution (grey dotted, fitting region
in green dashed) for the FeSi ribbon with LR elasticity and ECs at
v = 1. The parabolic term with a ≥ 0 results from small errors in
the procedure of App. B to estimate the baseline of u̇w.

Appendix E: Higher-order deconvolution

We showed that application of Eq. (D6) to the measured
∆̂v(w) removes part of the boundary layer δw = vτ , but that
it creates a new smaller boundary layer of size δ′w. On a phe-
nomenological level, we found that inclusion of an additional
term substantially improves the accuracy,

∆̂(w) = ∆̂v(w) + τ2
[
1 + vτ ′∂w + ...

]
∆̂u̇(w). (E1)

Such a term may arise for a non-exponentially decaying re-
sponse function R(t). In principle, the procedure can be im-
proved using a second-order derivative in the square brackets.
While a single derivative of ∆̂u̇(w) still gives a signal rela-
tively free of noise, adding a second derivative is not possible
for our data. In Fig. 7(b) we show for the FeSiB film the result
of the deconvolution (D6) compared to the improved decon-
volution (E1).

Appendix F: Details for the four samples

1. FeSiB film: SR interactions without ECs

For the amorphous FeSiB film with thickness of 200 nm, we
show in Fig. 6 the meansMi for a single run (in color), com-
pared to the mean N−1

∑N
i=1Mi over all N runs (in black).

∆̂v(0) is extracted from the plateau value at large w. Sub-
tracting ∆̂v(0) gives the curve reported in the main text in
Fig. 2. In Fig. 7 we show for the same sample comparison
of deconvolution via Eq. (5) discussed in the main text, de-
convolution via the boundary layer (D7)-(D8) and secondary
deconvolution via Eq. (E1). All procedures are in quantitative
agreement. In our chosen units, w = 1 corresponds to 2.5 ms,
assuming a single wall to estimate the driving velocity. Due
to the high level of correlation between the walls, we believe
this estimation is justified. The number of domain walls is
estimated to be around 3000 [9]. This implies that w = 1
corresponds to approximately 1.5 mm.

2. FeCoB ribbon: SR interactions with ECs

For the amorphous FeCoB ribbon, Fig. 8 shows the sub-
traction of ∆̂(0) plus an additional linear contribution due to
white noise as given in Eq. (7). All data presented in the main
text are after this subtraction. In our chosen units, w = 1 cor-
responds to 0.2 s ≈ 135µm. The number of domain walls is
estimated to be around 5.

3. NiFe film: LR interactions without ECs

deconvolution as presented in Fig. 3(a) for the polycrys-
talline NiFe film having thickness of 200 nm is done using
τ = 0.39. In our chosen units, w = 1 corresponds to 2.5 ms
≈ 100µm. The number of domain walls is estimated to be
around 5000 [40].

4. FeSi ribbon: LR interactions with ECs

Fig. 9 shows the subtraction of a linear term plus a small
parabolic contribution for the polycrystalline FeSi ribbon.
The latter parabolic contribution arises if our estimate for the
baseline of u̇ for run i still contains a small error, see the dis-
cussion after Eq. (B1). The deconvolution shown in the main
text in Fig. 3(a) has been done using τ = 0.055. In our chosen
units, w = 1 corresponds to 50 ms ≈ 1.385µm. The number
of domain walls is estimated to be around 5.

Appendix G: Velocity correlations ∆̂u̇(w)

Measurements of the velocity correlations ∆̂u̇(w) for our
samples are shown in Fig. 10. The scale on which ∆̂u̇(w)

decays to zero is the same as the correlation length ρ of ∆̂(w)
defined in Eq. (C7).
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(a) (b) (c) (d)

FIG. 10. The correlation function ∆̂u̇(w) of the domain wall velocity u̇. The scale on which ∆̂u̇(w) decays to 0 is the correlation length ρ of
∆̂(w). Plots are ordered, as in the main text, for (a) FeSiB film (SR elasticity, no ECs). (b) FeCoB ribbon (SR elasticity, ECs). (c) NiFe film
(LR elasticity, no ECs). (d) FeSi ribbon (LR elasticity, ECs).
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