
15 May 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

The File Management System: a highly configurable package for the implementation of automatic flows of
files between local and remote machines / Fantino, Gianluca; Cerretto, Giancarlo; Cantoni, ELENA CARLA;
Pollastri, Fabrizio. - (2021).

Original

The File Management System: a highly configurable package for the implementation of
automatic flows of files between local and remote machines.

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/76083 since: 2023-06-30T12:54:58Z

1

Gianluca Fantino1, Giancarlo Cerretto2, Elena Cantoni3, Fabrizio Pollastri4

The File Management System:
a highly configurable package for the implementation of automatic flows of

files between local and remote machines

T.R. 18/2021 July 2021

I.N.RI.M. TECHNICAL REPORT

2

Abstract

At the I.N.Ri.M. Time Laboratory, the need to perform an unmanned management of the
huge amounts of produced data files, at precisely scheduled times, has become more and
more important through the last years. In the present technical report we describe the
context that led to the ideation and realization of the File Management System (FMS)
package, as well as the detailed explanation of the FMS structure and logic, showing how
it can be customizable for the files management needs of indeed any laboratory.
Descriptions of each single script and variables definitions and usage also follow.

About the authors: 1 - Formerly at I.N.Ri.M., now at Tim Laboratories. 2 - I.N.Ri.M. researcher. 3 - I.N.Ri.M.
researcher. 4 - Formerly at I.N.Ri.M., now retired.

3

Index

P4. Introduction: the context

P5. The FMS in its context

P8. The FMS usage explained

- 1. Folders structure

P9. 2. Running a workflow

P10. 2.1 “Incoming” and “outgoing” flows concept

P11. 3. Single flow file configuration

P13. 3.1 Tip

- 4. Global configurations

- 5. The RETRY funtionality

P14. 6. Scheduled and manual runs

P15. 7 Mail alerting & reporting system

P16. 8 Web interface for high level identification of flows (FMS Flows Reporting
Tool)

P17. 9 Scripts summary (in alphabetical order) and usage

P21. Conclusions

P22. Annex A – KEYWORDS

P24. Annex A – GLOBAL VARIABLES (with default values)

P25. Annex A – LIST VARIABLES (with default values)

P26. Annex A – SINGLE FLOW CONFIGURATION VARIABLES (with default values)

P28. References

4

Introduction: the context
The I.N.Ri.M. Time Laboratory, devoted to the generation of the UTC(IT) Italian Standard
Time, has the task to disseminate the UTC(IT) signal to users, granting 24/7 availability.
From the year 2014 on, the I.N.Ri.M. Time Laboratory undertook a deep process of
renewal of the timescale generation process as well as the relative data measurement and
management techniques, to ensure this continuous availability at the best level.
The areas of intervention involved every aspect of the laboratory’s functionalities, in terms
of setting, instruments and software [1], at deep as well as higher level.

To grant the best ambient conditions for the equipment, damping signal instabilities due to
temperature sensitivity, the rooms were provided with a new air conditioning system;
the physical dissemination of the UTC(IT) signal to nearby laboratories was realized by
means of a new generation of Andrew cables;
to grant continuity for the electrical power supply, this included a new system, with three
new Uninterruptible Power Supply (UPS) lines and a new electrical distribution panel with
integrated alerting tools.
A long work was devoted to set up a dedicated protected LAN network fitting fast
connection performances and high security standards.
But most of all, the automatic signal and data generation, measurement and
management processes were completely reviewed, machines renewed and put in
redundancy mode, and software completely rewritten.

The UTC(IT) Timescale automatic generation algorithm is described in [2]. The continuity
of the UTC(IT) physical signal is mandatory, for example, among other tasks, to grant the
reference to the Global Navigation Satellites System (GNSS) receivers fleet of the
RadioNavigation nearby Laboratory. The receivers measurements (i.e. the time phase
UTC(IT) - GPSTime), collected into specifically standardized files, must then be sent on
hourly and daily basis to the international centers accounted for clock calculations (i.e.
International GNSS Center, IGS) and Timescales comparisons (i.e. Bureau International
des Poids et des Mesures, BIPM, as well as other Laboratories). Moreover, GNSS data
files constitute the basis for all the calibration services that the Time Laboratory offers to a
number of other external entities and enterprises.

About the data measurement system (DMS), a detailed description can be found in [3].
This system provides the time phase data (as well as clocks and environment parameters)
in various formats according to the needs.
Each atomic clock, as well as its relative microstepper, participating to the Timescale
generation must, in fact, be constantly measured with respect to the reference UTC(IT)
signal itself and UTC(IT) – CLOCK time phase data must be continuously present and at
disposal for two main reasons:

1) being a prompt reference for the automatic corrections that the UTC(IT) algorithm
applies daily to the timescale.

2) Be sent daily (together with the environment data) to the BIPM for the participation
to the International Atomic Timescale calculation.

In this context, it is clear how, near the Timescale system (providing the signal) and the
DMS system (providing the data measurements files) a file management system (FMS),
accounting for data files 24/7 automatic manipulation, storage, sending and retrieving to
and from a number of destinations and sources, is fundamental for the fulfillment of the
Time Laboratory tasks.

5

It can be seen as if the Time Laboratory has three “hearts”, strongly connected and with
perfectly coordinated procedures, able to operate in a totally unmanned mode: if one of
these “hearts” fails, the Laboratory fails.

The FMS in its context

The Time Laboratory has to deal with a number of tasks that need the presence, in a
particular machine, at a specific time, of a clearly identified set of data. A tool is needed
that, with an easy, standard, repeatable yet highly customizable procedure, is able to
manage data files in space and time, as well as manage their data format and metadata,
assuring unambiguous identification, without any measurement loss or unwanted
modification. There are no commercial tools allowing this level of flexibility, so the FMS
design and realization was completely internal.

The step that brought to the FMS concept was the identification of the tasks, as said, to be
performed on data, that could be associated with a data file/files flow. These tasks are:
data measurement, retrieving, formatting, storage, processing, monitoring,
delivering, and they give rise to the following flows:

1) Data files storage in the Laboratory central NAS archive. Files are incoming from:
- external repositories (data types: external products, e.g. IGS satellites clocks

and orbits calculations)
- RadioNavigation Laboratory receivers workstations (data types: GNSS

measurements)
- Time Laboratory processing servers (data types: algorithm results or monitoring

plots)
- Time Laboratory data measurement server (data types: UTC(IT)-SIGNAL

measurements; clock and environment parameters)

2) Data files external delivery. Files are outgoing from archive to:
- external repositories (data types: DMS measurements, environmental

parameters, formatted GNSS data to be communicated outside)

3) Data files internal delivery. Files going from archive to other internal machines for:
- data processing. Measured data are analyzed with algorithms (e.g. Time

Transfer Technique is performed on GNSS data) to obtain internal products.
- data monitoring. Internal measurements, parameters and products are plotted

and sent to the Laboratory web page on hourly and daily basis to get a
continuous check of their trend to permit a near real time identification of
anomalies.

The previous data files flows can be summarized in the following schema (Fig. 1).

6

Fig. 1: schematic view of the FMS flows

The FMS scripts then deal well with the complex I.N.Ri.M. Time Laboratory scenario,
nevertheless they are designed with a standard that permits a general application, to any
reality dealing with the need of copying/moving at scheduled times a large number of files
of any kind in any place. So it is possible to sketch the following flow chart to summarize
FMS logic (Fig. 2).

It has to be also underlined that not only it is important to have the right files in the right
place at the right time, but also the possibility of software and hardware failures has to be
minimized. Concerning the software failures, there can be for a number of reasons: these
are going to be explained in the next chapter, together with the solutions developed inside
FMS to manage “recoveries” (check especially par. 5 and the “Retry” functionality
algorithm). About hardware failures, they are prevented by the realization in the Laboratory
of the complete hot redundancy of the scheme of Fig. 1 and in particular with the presence
of a hot redundant FMS + NAS “cluster”, so that if the nominal platform breaks down, the
backup is already aligned and implementable.

7

Fig. 2: the FMS base logic.

8

The FMS usage explained

The File Management System (FMS) is a set of bash scripts, running on Linux platforms,
that allows to keep data files coming from heterogeneous sources, organized in a highly
customizable folder structure. It works by means of basic logical blocks called “flows” that
can be put together to form complex workflows called “lists” with easy-to-fill configuration
files and can be work either manually or via scheduled tasks. The files treated by FMS can
be of any kind: data files, reports, plots. I.N.Ri.M. FMS is quoted in [1] and the software
sources are available at INRIM repositories under request to the authors and come with a
MIT license.

1. Folders structure

The FMS package consists of the following folder structure, to be placed in the host
machine that will be devoted to the management of the flows processes. In the following
examples the /opt folder will be used.

/FMS/bin Folder containing the bash scripts. A description of the single scripts and their

usage can be found in annex B of the present document.

/FMS/etc contains the configuration files of the flows, in turn organized in subfolders as

follows:

/FMS/etc/config contains the following files:

• Global configuration files that define the values of the variables loaded by the main
script with a global scope: this means that they can be used in the main script and
also by the subscripts (see par. 4).

• Default configuration files, with the default values for the variables that are called in
a single flow and in a list of flows respectively (see annex A).

• Some specific configuration files read by peculiar FMS scripts or functions (see
par. 8).

/FMS/etc/login Folder containing the credentials of all the target endpoints the FMS

host needs to connect to, each in a separate file. Since at I.N.Ri.M the target data
are publicly available these files are not encrypted but if necessary, it should be
possible to extend FMS capabilities to implement this feature. Tip: They should be
named with some convention that recalls the host location (e.g. “bipm”) and
should have correct permission so that each file can be read only by the FMS
service user. In this way given the origin and destination host filenames in the
configuration file of a flow, the FMS reads the correspondent access credentials in
the respective login files (see par. 3).

/FMS/etc/flows/list It contains the list files of all the flows. Each list can contain one or

more paths to single flow configuration files. For a detailed description of the
flows folder see par. 2.

/FMS/log Here, at each flow run, a folder is created, named with a unique number,

identifying the flow (process identification number PID), in which log messages
related uniquely to a particular flow are placed. If any error occurs, the relative log

http://gnu.org/software/bash/

9

messages can be sent by email to configurable recipients (see par. 7) in the form
of attachments. At the end of the process the folder is deleted.

/FMS/tmp Folder used as staging area where, at each flow run, a subfolder is created,

named with a unique number identifying the flow (process identification number
PID), in which the files to be handled are temporarily placed. Here, according to
the flow configuration, the file can be modified before delivery. For a list of the
possible modifications permitted, see par. 3. At the end of the process the folder is
deleted.

2. Running a workflow

The main concept of the FMS is that a list of flows is the argument any time an FMS
run is launched, in a linux shell, in the following way:

/opt/FMS/bin/main2 /opt/FMS/etc/flows/list/list_name

Tip: a convention should be established for the list names for easier identification. A
possible one could be the following:

list name: <source>_<file type or station name>_<file rate>_2_<DESTINATION>

example: esa_gess_h_2_ARCHIVE
esa: files are being retrieved from some machine hosted at the European Space Agency
gess: the files belong to a GNSS receiver hosted inside a Galileo Experimental Sensor
Station
h: the files are retrieved hourly and/or contain one hour of data
2_ARCHIVE: the files are sent to the local laboratory NAS.

In the following picture the appearance of the list in the example can be seen:

Fig.3: example of list file.

This list file is structured as a .ini file: in the [flows] section there are all the actions that
need to be performed by FMS in that particular order. Each action or flow is defined by its
file name absolute path, which contains the specific configuration to retrieve or send some
kind of file.
The number of flows that can be grouped in a single list is potentially unlimited, being each
process completely independent. Obviously, the CPU capacity of the server dedicated to

10

FMS must be taken into account to avoid overloads as long as the time needed to run the
list grows with the number of flows defined in the list.

Under the [options] section it is possible to override the default values of all the variable
related to an FMS run. For example, one can choose to send via mail the results of a
certain run to a specific set of mail addresses or even to a single person. The complete list
of variables handled by FMS as well as their default values can be found in
/opt/FMS/etc/config/default_list.config and annex A of the present document.

2.1 “Incoming” and “outgoing” flows concept

Under the /opt/FMS/etc/flows folder, files can be organized by the user in such a
way to simplify their identification and consultation. For the I.N.Ri.M. Time Laboratory
server devoted to data flows, the following philosophy was chosen:

/FMS/etc/flows/incoming contains the configuration files for data arriving in the local

archive from external hosts.
/FMS/etc/flows/outgoing contains the configuration files for all the data that, starting

from the local archive, are sent to external hosts.

NOTE: a flow of files is considered “incoming” or “outgoing” with respect to the local
archive (NAS), not only when a machine is owned by an external entity, but also when
the hosting machine is internal to the laboratory.

The “incoming” and “outgoing” folders can be organized dividing them in subfolders,
named according to the different kind of files to manage (corresponding to different kind of
data, following the local and/or general conventions: see Fig. 2). For example, the data
flows referring to files in RINEX (Receiver Independent Exchange Format) format can be
kept in
/FMS/etc/flows/incoming/rinex

Fig. 4: the “incoming” and “outgoing” folders structure.

11

3. Single flow file configuration

As in the previous example, let’s consider the configuration file
~/FMS/flows/incoming/rinex/esa_gien_h_RINEX_O (Figure 3).
Possibly, a naming convention should be chosen and constantly followed also for the
single flow configuration files, for easier reference. In the Time Laboratory the following
rule is kept since a long time, but users can choose their favorite:

flow name: <source>_<station name>_<flow rate>_<file format>_<file rate>.

In the example, the “source” is a host at the European Space Agency (ESA), the “station
name” is GIEN, the flow has an hourly rate (“h”), the file is in RINEX format, with
observation data inside (“O”).

In a flow configuration file, variables names starting with “C_VARNAME” are handled. The
complete list, together with their defaults, is found in
/opt/FMS/etc/config/default.config and annex A of the present document.

Figure 5: example of single flow configuration file.

According to the variable type the assigned value can be 0/1 for Booleans and
alphanumeric for Strings. Then, a specific script of the package called by the main script,
can interpret the variables to execute a certain action.
Let’s comment the configuration variables assignments of Figure 3:
Taking a look to the main variables, we can define the protocol to be used to connect both
to source host C_SOURCE_TYPE and destination C_DEST_TYPE, in this case respectively
SFTP (Secure File Transfer Protocol and FTP (File Transfer Protocol).
C_SOURCE and C_DEST are the names of the files that sit in the /opt/FMS/etc/login
directory so that using this reference the main script has all the information to contact the

12

servers. In our example, source host is “dsf_esa_3” an ESA server while the destination is
the laboratory NAS “archive”. In particular these files are read by the
/opt/FMS/bin/file_transfer script which expects that in the login folder such names
exist, otherwise an error is thrown. A typical login file content is depicted below:

HOST=somehost
USER=someuser
PASSWD=somepassword

The variable C_DEST points to a login folder file name, here “archive”, keeping the
credentials of the local laboratory NAS. The file_transfer script reads the source protocol
type and the source credentials as well as the destination protocol type and credentials
and copies the file from the remote host (here via SFTP) to the local NAS (via FTP). See
par. 8 for the script description as well as the list of the managed interface types.

Since flow files are sourced by FMS, custom variables can be declared inside this kind of
configuration files and can be used to simplify and make more human readable the file
itself. In this case the local variable STATION=GIEN is defined and reused multiple times
below, concatenated with other strings. This method allows also for a simpler reuse of
similar configuration files where managed data types are the same and only some part
changes, i.e. the station name.

In most of the managed cases at I.N.Ri.M., the target data files are archived and named
according to the timestamps of the data set they contain, so that knowing exactly this time
tag is necessary to point to the right file.
Using FMS in automatic mode by means of scheduled tasks using crontab, one can refer
to those timestamp using the execution time of the script as reference. For this reason, the
variables group C_OFFSET_* is very important, constituting one of the central features of
the FMS: they can be used together or individually to define the time offset, with respect to
the execution time of the machine (in days, hours, or with respect to UTC), which the
target file data refers to. The /opt/FMS/bin/Replace has the task to compute the
timestamp from the time offset and express it in the format needed to access the
target file, both in terms of file path and of file name. The Replace script represents time
through the definition of a list of keywords, that can be invoked when needed to
represent: year, month, day, DOY (Day Of Year), MJD (Modified Julian Date), hour, minute,
GPS Week and Day of the execution time and/or the target time (see par. 8 for the script
description, see annex A for the list of the keywords).

Going on with the description of the configuration variables in the example of Figure n. 3,
we find C_UNZIP=0, that means the file does not need to be uncompressed. This is already
the default value for this variable (set 1 to decompress the source file), and in this case is
useless. A redundant declaration in a configuration file is not a problem for the program,
except in a special case that will be explained further (see par. 5).

C_PATH_SOURCE defines the file path at the source. We can see this path is expressed
through the keywords mentioned above.
C_FILENAME_SOURCE defines the file name at the source, with the same method.
C_PATH_DEST, in the same way, defines the file path at the destination.
C_FILENAME_DEST defines the file name at the destination.

https://en.wikipedia.org/wiki/Dot_(command)#Source
https://man7.org/linux/man-pages/man5/crontab.5.html

13

C_COPY_TO_DELIVERY here is set to “0”. If set to “1” the script saves a copy of the
delivered file in the /archive/deliveries folder of the NAS, as a check of the completed
delivery and as a remind. This is used only for outgoing files as an acknowledgement of
the file actually been sent. When someone must accomplish deliveries on a campaign
basis with external laboratories, this option can be very useful. When someone is just
exchanging files between internal entities continuously for institutional purposes this
function is clearly redundant, and it is better not to use it to save space on the NAS.

The complete list of configurable options can be found in annex A, as said. The bash
scripts structure makes it very easy for the user to add new options to upgrade the system.
An example is shown in annex A.

3.1 Tip
Please note that for each flow that appears in a list corresponds the action of copying or
moving one single well determined file, with a specific name. That name usually contains a
time stamp that is computed as the time difference between a defined offset with respect
to the execution time. Stars (*) inside the source file name CAN be used to move similar
files within a single run. But CAUTION must be paid in that case, do not use the
destination file name variable if you don’t want undesired overwrites, but only the
destination path. This allows for multiple files to be copied/moved in a destination folder
without renaming.

4. Global configurations

The list of the global variables with their default assignments is found in
/home/user/FMS/etc/config/GlobalVariables.config and annex A of this document. Most of
them define aliases for the different archive paths to ease the flows files compiling, as in
the example in Fig. 3 where G_ROOT_GNSS represents the path to the GNSS data in the
NAS. Other global variables are related to the RETRY functionality of the FMS, that is
described in the next paragraph and constitutes the other central feature of the FMS,
together with the possibility to easily manage timetags as said before in par. 3.
Finally, it is important to remind that in a flow configuration file, these global variables must
be called within the brackets of the symbol ${}.

5. The RETRY functionality

The reasons of a flow failure can be different:

• file is missing at the source
• file name to point to is wrong
• source machine is not responding
• target machine is not responding
• source or target paths are wrong
• communication protocol is wrong

Failed flows are notified by e-mail. The cause of the failure can be investigated through the
flow log file, sent in attachment. The FMS email functionality is described in par. 7.

14

FMS natively has a feature that tries many times a flow that is failed for any reason. This
functionality is enabled by default in the list variables configuration file in this way:
L_ENABLE_RETRY=1.
In the global variables configuration file, G_RETRY_TIME defines a basic time interval (in
minutes) from which the next flow times are defined (see algorithm explained below), e.g.
G_RETRY_TIME=10.
If the file’s retrieve fails again, the flow is launched repeatedly inside time intervals
exponentially deferred to avoid the overloading of the FMS hosting machine (see main
script, from line 64 to 114).
The maximum number of trials is configurable through the variable G_MAX_RETRIES
in the global variables configuration file.

The exponential algorithm works as follows:

1. For each execution, the n_retry variable (which first value is 1) is updated and the
maximum interval in minutes for the next trial is defined as:

interval = G_RETRY_TIME * 2^n_retry.

2. A random number is then extracted with the bash $RANDOM function between 0 and

32767.
3. The $RANDOM %(modulo) $interval operation then gives the next retry time in

minutes between 0 and $interval.
4. The next retry time is turned to a $next_retry date variable in the

format %Y%m%d%H%M using the $(date) bash function and the name of a retry list to
be used in case of error is then defined as follows:

retry_list=${G_RETRY_PATH}/${list_name}.${n_retry}_${origin_date}_${next_retry}.

If a flow fails because of one of the reasons listed above and the retry functionality is
enabled, the path of the flow’s configuration file is saved in /opt/FMS/etc/flows/limbo.
In crontab, the /opt/FMS/bin/chkRetry “check retry” script is scheduled (e.g. every five
minutes), so that, when launched, it makes the following check:
if in the limbo folder retry list exists that is identified with a next retry date lower
than the current date, then the main script is launched with that retry list as
argument (see line 21 to 37 of the script).

The option L_ENABLE_RETRY=0 in a list disables the retry functionality for that list.
Please be aware that the retry feature has a recognized, still unfixed bug: pay attention
NOT to write in a list a repetition of the default condition L_ENABLE_RETRY=1: this can
throw the system in a loop, driving the server to a crash!

15

6. Scheduled and manual runs

A flows list can be scheduled via crontab or, if needed, can be launched manually. Manual
runs are useful for example if one needs to run FMS to copy/move files covering a certain
time span. It can be run from terminal in the following way:
/opt/FMS/bin/manual /opt/FMS/etc/flows/list/list_name \
 <from date> \
 <to date> \
 <file rate>
This is the format for the three arguments:
<from date> → YYYYMMDDHHMM, e.g.: 202004010000 (April 1st 2020, at midnight)
<to date> → YYYYMMDDHHMM, e.g.: 202004302359 (April 30th 2020, at 23:59)
<file rate> → “daily”, “hourly”, “weekly”, “monthly”.

In this way, FMS will be executed for the selected list N times starting with reference
execution time <from date> at steps of <file rate> where N is the number of steps to
go from starting PIT (Point In Time) to destination PIT with steps large as the file rate.

7 Mail alerting & reporting system

The FMS sends by default the following emails subjects to configurable recipients (see
“G_MAIL_TO” variable in the global variables configuration files, to define recipients that
are going to receive every alert, and “L_MAIL_TO” variable in the list variables
configuration file, to define recipients that are going to receive emails just from that specific
list):
Error log: it alerts that a flow has finished correctly. The log file is attached and it is useful
to troubleshoot the error origin. Moreover, if the error originated from the source machine,
the log file is named “source.log”, otherwise is named “dest.log”.
Success log: when, during a retry cycle a flow succeeds, an email is sent to the relative
list recipients.
Max retries reached: it warns an entire retry cycle has ended, reaching the maximum
number of trials without success.
FMS error log: it notifies that one of the flows in the launched list is not valid, maybe it is
not existing, or the flow name is incorrect. It notifies the user to verify and try again.
Notification log: $list_name (after $n_retry attempts): for a flow that was expected to
contextually deliver a report as email attachment, if the delivery finally succeeds after a
certain number of attempts.
WARNING on return value of mail client: if attachments could not be sent due to client or
server issue.
WARNING at FMS hosting machine reboot.

FMS mail alerting functionality employs SWAKS SMTP tool, calling it from the main script
code. So SWAKS needs to be installed and tested before FMS is used. The command to
be tested and that is used in the script has the following structure:
swaks --to $G_MAIL_TO --h-From: "$SENDER" --server "$SERVER" --port $PORT --auth
LOGIN --auth-user $MAIL_USER --auth-password $MAIL_PASSWD -tls --header "Subject:
FMS error log" --body $error_log
The $SENDER, $SERVER, $PORT, $MAIL_USER, $MAIL_PASSWD variables must be

https://man7.org/linux/man-pages/man5/crontab.5.html
http://www.jetmore.org/john/code/swaks/

16

configured in /home/user/FMS/etc/config/MailSwaks.config and they, in order, refer
to: the email address to be set as sender of the FMS emails, the SMTP server endpoint of
your organization, its port and the service email account used by FMS or any account of
your organization, that will be used to authenticate to the SMTP server for automatic email
sending.

If a notification email must be associated to a certain flow (e.g. if a report or a plot has
to be sent to one or more recipients while saved into NAS) the dedicated list variables
must be configured (see annex A).

8 Web interface for high level identification of flows (FMS Flows Reporting Tool)

An interactive localhost/fms/fmstof.html web page lives on the FMS hosting machine,
giving access to the FMS flows reporting tool ((c) F. Pollastri). This tool gives the
possibility to perform a methodical search through the FMS data flows configuration files,
easing their identification also for a non-operator/developer user (rather than entering the
low level configuration files folders and perform a manual search in alphabetical order
through the hundreds of configuration files FMS manages during typical periods of full
commitment…). A picture of the web page is shown below (Figure 5).

A browse can be done visualizing the main flow features of the configuration files (the
same features described along the present report), combining them together as desired
through the selection/de-selection of the correspondent grey buttons (see Fig. 5). A search
by keywords can be done in parallel in the Search window on the right. More than one
keyword can be inserted, blank space separated.

Figure 6: the FMS Flows Reporting Tool main page

• To enable the web page on the hosting machine, first of all the Apache 2 web

server (https://httpd.apache.org/) must be installed and enabled.
• Then the fmstof.html file must be placed (referring to linux platforms) in the

/var/www/html folder.
• The web page functionalities then point to the fmstof.bash and fmstof.py cgi python

scripts, to be placed in /usr/lib/cgi-bin.

https://httpd.apache.org/

17

• The script must have the execution privileges for the user and group www-data.

The fmstof package comes together with the FMS package. Please refer to the author for
the license agreement (all rights are reserved).

9 Scripts summary (in alphabetical order) and usage

chkRetry
type: bash script
action: checks and launches flows to be retried in the /home/user/FMS/etc/flows/limbo
folder
called scripts: main2
usage:
/home/user/FMS/bin/chkRetry

CRX2RNX
type: executable
action: change file format from Hatanaka to RINEX. It must be downloaded from
https://terras.gsi.go.jp/ja/crx2rnx.html

Warning: this is a third parties software that FMS can manage but it is not part of
FMS itself. For the Hatanaka software licence please consult
https://terras.gsi.go.jp/ja/crx2rnx/LICENSE.txt
called by: main2
usage:
cat ${tmp_path}/$filename_source | ${bin_path}/CRX2RNX - > ${tmp_path}/${filename}.out

file_transfer
type: bash script
action: manages file transfer protocol according to flow configurations
called by: main2
handled protocols: ftp, sftp, tftp, ncftp, http, smbclient, local copy
called scripts according to $C_SOURCE_TYPE: ftpPut, ftpGet, sftpPut, sftpGet, ftpsPut,
ftpsGet, pftpPut, pftpGet, httpGet, smbPut, smbGet
usage (copy file from source to tmp folder for next file manipulation):
$bin_path/file_transfer "$C_SOURCE_TYPE" "${etc_path}/login/${C_SOURCE}" "$
{path_source}" "${filename_source}" "${tmp_path}" "${source_log}"
"$C_DELETE_FROM_SOURCE"
usage (copy file to final destination):
$bin_path/file_transfer "$C_DEST_TYPE" "${etc_path}/login/${C_DEST}" "${tmp_path}" "$
{filename_dest}" "${path_dest}" "${dest_log}" ""

FlowsFromList.awk
type: awk script
action: management of flow list parsing
called by: main2
usage:
awk -f ${bin_path}/FlowsFromList.awk $flow_list_raw > ${tmp_path}/flow_list.tmp

ftpGet
type: bash script

https://terras.gsi.go.jp/ja/crx2rnx.html
https://terras.gsi.go.jp/ja/crx2rnx/LICENSE.txt

18

action: implements lftp file retrieval with File Transfer Protocol
called by: file_transfer
usage:
$bin_path/ftpGet "$USER" "$PASSWD" "$HOST" "${source_path}/${source_filename}" "$
{dest_path}/" "${log_filename}" "$delete_from_source"

ftpPut
type: bash script
action: implements lftp file transfer to remote destination with File Transfer Protocol
called by: file_transfer
usage:
$bin_path/ftpPut "$USER" "$PASSWD" "$HOST" "${source_path}/${source_filename}" "$
{dest_path}/" "${log_filename}"

ftpsGet
type: bash script
action: implements file retrival with FTP over SSL/TLS (ncftpget)
called by: file_transfer
usage:
$bin_path/ftpsGet "$USER" "$PASSWD" "$HOST" "${source_path}/${source_filename}" "$
{dest_path}/" "${log_filename}" "$delete_from_source"

ftpsPut
type: bash script
action: implements file transfer to remote destination with FTP over SSL/TLS (ncftpput)
called by: file_transfer
usage:
$bin_path/ftpsPut "$USER" "$PASSWD" "$HOST" "${source_path}/${source_filename}" "$
{dest_path}/" "${log_filename}"

gpsw
type: bash script
action: converts date to gps week + gps day variables
called by: Replace
usage:
var=$($current_dir/gpsw $yyyy $doy)
example on command line:
>$ gpsw 2014 70
>$ 17832
(where gpsw=1783 and gpsd=2)

GregToMjd
type: bash script
action: converts Gregorian Date to Modified Julian Date
called by: Replace
usage:
mjddd=$(${current_dir}/GregToMjd $yyyy ${mm} $dd $hh ${MM} "00")

httpGet
type: bash script
action: implements wget on http://"${host}""${filepattern}" source
called by: file_transfer

19

usage:
$bin_path/httpGet "$HOST" "${source_path}/${source_filename}" "${dest_path}/" "${log_filename}"

main2
type: bash script
actions: FMS main script. Loops over flows of given list, implementing file retrieve,
transformation (see par. 3: uncompress, gzip, unix2dos, hatanaka/de-hatanaka, file name
change) and final transfer, according to each flow configuration, associating email
notification and alerting (using SWAKS see par. 7)
called scripts: FlowsFromList.awk, OptionsFromList.awk, Replace, file_transfer,
CRX2RNX, RNX2CRX
usage on command line (par. 2):
/home/user/FMS/bin/main2 /home/user/FMS/etc/flows/list/list_name

manual
type: bash script
action: manned launch of list between given datetimes
called scripts: main2
usage on command line (par. 6):
/home/user/FMS/bin/manual /home/user/FMS/etc/flows/list/list_name <from date>
<to date> <file rate>

OptionsFromList.awk
type: awk script
action: parsing of list options
called by: main2
usage:
awk -f ${bin_path}/OptionsFromList.awk $flow_list_raw > ${tmp_path}/flow_list_options.tmp

pftpGet
type: bash script
action: implements lftp file retrieval via File Transfer Protocol with PORT specification
called by: file_transfer
usage:
$bin_path/pftpGet "$USER" "$PASSWD" "$HOST" "$PORT" "${source_path}/${source_filename}"
"${dest_path}/" "${log_filename}" "$delete_from_source"

pftpPut
type: bash script
action: implements lftp file transfer to remote host via File Transfer Protocol with PORT
specification
called by: file_transfer
usage:
$bin_path/pftpPut "$USER" "$PASSWD" "$HOST" "$PORT" "${source_path}/${source_filename}" "${dest_path}/"
"${log_filename}"

Replace
type: bash script
action: defines and manages keywords (see par. 3 and Annex A), at a given time offset
w.r.t. execution time, for the construction of key variables in the main script, such as file

20

name at the source, path to file at the source, file name at destination, path for file
destination
called by: main2
example usage:
filename_dest="$(${bin_path}/Replace "$C_FILENAME_DEST" "$offset_day" "$offset_hour" "$C_OFFSET_UTC"
"$basetime")"

RNX2CRX
type: executable
action: change file format from RIINEX to Hatanaka. It must be downloaded from
https://terras.gsi.go.jp/ja/crx2rnx.html
Warning: this is a third parties software that FMS can manage but it is not part of
FMS itself. For the Hatanaka software licence please consult
https://terras.gsi.go.jp/ja/crx2rnx/LICENSE.txt

called by: main2
usage:
${bin_path}/RNX2CRX ${tmp_path}/$filename_source
extention “d” must be then put to modified rinex for convention
(example: filename_source="${filename_source:0:-1}"d)

sftpGet
type: bash script
action: implements lftp for file retrieval from remote host with Secure File Transfer Protocol
called by: file_transfer
usage:
$bin_path/sftpGet "$USER" "$PASSWD" "$HOST" "${source_path}/${source_filename}" "${dest_path}/"
"${log_filename}" "$delete_from_source"

sftpPut
type: bash script
action: implements lftp for file transfer to remote host with Secure File Transfer Protocol
called by: file_transfer
usage:
$bin_path/sftpPut "$USER" "$PASSWD" "$HOST" "${source_path}/${source_filename}" "${dest_path}/"
"${log_filename}"

smbGet
type: bash script
action: implements smbclient for file retrieval from remote host
called by: file_transfer
usage:
$bin_path/smbGet "$USER" "$PASSWD" "$HOST" "${source_path}" "${source_filename}" "${dest_path}/"
"${log_filename}" "$delete_from_source"

smbPut
type: bash script
action: implements smbclient for file transfer to remote host
called by: file_transfer
usage:
$bin_path/smbPut "$USER" "$PASSWD" "$HOST" "${source_path}" "${source_filename}" "${dest_path}/"
"/dev/null"

21

startup.sh
type: bash script
action: sends email warning operator that the FMS host system has just been rebooted
usage in crontab:
@reboot /opt/FMS/bin/startup.sh

Conclusions

In the present technical report, the File Management System (FMS) package of the
I.N.Ri.M. Time Laboratory was presented. The importance of having a powerful tool for
data files management, developed internally and independently from any already
customized application, was underlined. The scripts were explained in detail, enlightening
the three main features that make FMS a really powerful tool: the file date identification
algorithm, performed with respect to time of script execution, the mail alerting
functionality, and the retry functionality. Furthermore, the FMS Table of Flows web
interface was also presented.

22

Annex A

KEYWORDS

%yearnow% 4-digits year at the time of flow run

%yynow% 2-digits year at the time of flow run

%monthnow% 2-digits month at the time of flow run

%daynow% 2-digits day of month at the time of flow run

%doynow% 3-digits Day Of Year at the time of flow run

MJDDD Modified Julian Date (MJD) calculated from the offset defined in
 the flow with respect to execution time.

MJ.DDD Modified Julian Date (MJD) with point digit, calculated from the
 offset defined in the flow with respect to execution time.

Day 2-digits day of month calculated from the offset defined in
 the flow with respect to execution time.

month 2-digits month calculated from the offset defined in the flow
 with respect to execution time.

year 4-digits year calculated from the offset defined in the flow
 with respect to execution time.

yy 2-digits year calculated from the offset defined in the flow
 with respect to execution time.

doy 3-digits Day Of Year calculated from the offset defined in the
 flow with respect to execution time.

%hour% 2-digits hour calculated from the offset defined in the flow with
 respect to execution time.

minute 2-digits minute calculated from the offset defined in the flow with
 respect to execution time.

%hour_alpha% Hour expressed with lowercase letter (from a to x means from

00:00 to 23:00), calculated from the offset defined in the flow
with respect to execution time.

23

%hour_ALPHA% Hour expressed with uppercase letter (from A to X means from
00:00 to 23:00), calculated from the offset defined in the flow
with respect to execution time.

GPSW GPS Week calculated from the offset defined in the flow with
 respect to execution time.

gpsd GPS Week Day calculated from the offset defined in the flow
 with respect to execution time.

24

GLOBAL VARIABLES (with default values)

G_ROOT = /FMS

G_ARCHIVE_ROOT = "${G_ROOT}/archive"

G_TIMETRANSFER_ROOT = "${G_ARCHIVE_ROOT}/TIME_TRANSFER"

G_ROOT_GNSS = "${G_TIMETRANSFER_ROOT}/GNSS"

G_ROOT_TW = "${G_TIMETRANSFER_ROOT}/TWSTFT"

G_LOG_ROOT = "${G_ARCHIVE_ROOT}/LOG"

G_MONITORING_ROOT = "${G_ARCHIVE_ROOT}/MONITORING"

G_CERTIFICATES_ROOT = "${G_ARCHIVE_ROOT}/CERTIFICATES"

G_PRODUCT_ROOT = "${G_ARCHIVE_ROOT}/PRODUCTS"

G_DELIVERY_TYPE = FTP

G_DELIVERY_ROOT = ${G_ROOT}/deliveries

G_NOT_DELIVERY_TYPE = FTP

G_NOT_DELIVERY_ROOT = ${G_ROOT}/not_delivered

G_RETRY_FOLDER = limbo

G_RETRY_PATH = /home/user/FMS/etc/flows/${G_RETRY_FOLDER}

G_RETRY_TIME = 10 (e.g. Here put integer representing # of minutes of next retry)

G_MAX_RETRIES = 11 (e.g. Here put integer representing # of max retries)

G_MAIL_TO = "someuser@someinstitution.something”
 (e.g. Here put email of main user/operator)

25

LIST VARIABLES (with default values)

L_MAIL_TO = "" (to configure recipients just for that specific list)

L_INFO_REPORT_ENABLE = 0 (if put to 1, then the notification service is active and the other

following options are verified)

L_INFO_REPORT_ATTACHMENTS = 1 (by default, the presence of an attachment is foreseen.

0 for no attachments)

L_INFO_REPORT_MESSAGEBODY = "" (configurable message)

L_INFO_REPORT_SUBJECT = "" (configurable subject)

L_ENABLE_RETRY = 1 (if needed to disable retry at list level, set to 0)

L_ATTEMPTS_BEFORE_ERROR = 1 (# of attempts before getting an error message)

26

SINGLE FLOW CONFIGURATION VARIABLES (with default values)

C_ACTIVE = 1 (put 0 to inactivate a specific flow inside a list)

C_SOURCE_TYPE = "" (explained in par. 3: to be always defined)

C_DEST_TYPE = "" (explained in par. 3: to be always defined)

C_SOURCE = "" (explained in par. 3: to be always defined)

C_DEST = "" (explained in par. 3: to be always defined)

C_OFFSET_DAY = 0 (put integer to define offset to target file w.r.t. time of execution)

C_OFFSET_HOUR = 0 (put integer to define offset to target file w.r.t. time of execution)

C_OFFSET_UTC = 0 (put integer to define offset to target file w.r.t. time of execution in
 UTC. It can be neglected if the hosting machine time is already in
 UTC.)

C_PATH_SOURCE = "" (explained in par. 3: to be always defined)

C_FILENAME_SOURCE = "" (explained in par. 3: to be always defined)

C_DELETE_FROM_SOURCE = 0 (file is copied; if 1, then file is moved)

C_UNZIP = 0 (no action if 0; if 1, file is unzipped)

C_DEHATANAKA = 0 (no action if 0; if 1, file is changed from Hatanaka

http://sopac.ucsd.edu/hatanaka.shtml format to ASCII)

C_HATANAKA = 0 (no action if 0; if 1, file is change from ASCII to Hatanaka format)

C_UNIX2DOS = 0 (no action if 0; if 1, file is change from UNIX to DOS format)

C_ZIP = 0 (no action if 0; if 1, file is zipped)

C_ZIP_EXTENSION = “.gz” (default zipped file extention. The main script uses gzip)

C_ZIP_NEWNAME = "" (no change name for zipped file by default. If it must be changed, put

new name here)

C_PATH_DEST = "" (explained in par. 3, must always be present)

C_FILENAME_DEST = "" (explained in par. 3, must always be present)

C_COPY_TO_DELIVERY = 0 (0 means no copy to “deliveries” folder, default condition. 1

means ok copy to “deliveries” folder)

http://sopac.ucsd.edu/hatanaka.shtml

27

C_COPY_TO_NOT_DELIVERED = 0 (0 means no copy to “not delivered” folder, default
condition. 1 means ok copy to “deliveries” folder)

C_ENABLE_RETRY = 1 (explained in par. 5)

28

References

[1] G. Cerretto et al., "INRIM Time and Frequency Laboratory: an update on the status and
on the ongoing enhancement activities", Proc. of the Precise Time and Time Interval
Systems and Applications (PTTI), Boston, MA, USA, December 1st – 4th 2014.

[2] V. Formichella et al., “The First Months of Fully Automated Generation of the Italian
Time Scale UTC(IT)”, Proc. of the Precise Time and Time Interval Systems and
Applications (PTTI), Virtual Sessions, January 25th – 27th 2021.

[3] F. Pollastri et al., ”The new Data Measurement System - DMS of the INRIM Time
Laboratory”, I.N.Ri.M. Techincal Report 3/2021.

