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ABSTRACT
Recent advances regarding the interplay between ab initio calculations and metrology are reviewed, with particular emphasis on gas-based
techniques used for temperature and pressure measurements. Since roughly 2010, several thermophysical quantities – in particular, virial
and transport coefficients – can be computed from first principles without uncontrolled approximations and with rigorously propagated
uncertainties. In the case of helium, computational results have accuracies that exceed the best experimental data by at least one order of
magnitude and are suitable to be used in primary metrology. The availability of ab initio virial and transport coefficients contributed to the
recent SI definition of temperature by facilitating measurements of the Boltzmann constant with unprecedented accuracy. Presently, they
enable the development of primary standards of thermodynamic temperature in the range 2.5–552 K and pressure up to 7 MPa using acoustic
gas thermometry, dielectric constant gas thermometry, and refractive index gas thermometry. These approaches will be reviewed, highlighting
the effect of first-principles data on their accuracy. The recent advances in electronic structure calculations that enabled highly accurate
solutions for the many-body interaction potentials and polarizabilities of atoms – particularly helium – will be described, together with
the subsequent computational methods, most often based on quantum statistical mechanics and its path-integral formulation, that provide
thermophysical properties and their uncertainties. Similar approaches for molecular systems, and their applications, are briefly discussed.
Current limitations and expected future lines of research are assessed.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156293
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1. Introduction

On May 20, 2019, the base SI units of mass (kilogram), elec-
tric current (ampere), temperature (kelvin) and amount of substance
(mole) were redefined by assigning fixed values to fundamental
constants of nature: the Planck constant, the electron charge, the
Boltzmann constant, and the Avogadro constant, respectively.1–3 By
decoupling the base units from specific material artifacts, this new
redefinition is expected to lead to improved scientific instruments,
reducing the degradation in accuracy when measuring quantities at
larger or smaller magnitudes than a predefined unit standard. Addi-
tionally, the most accurate experimental technique available at each
scale can be used to implement a primary standard, resulting in
easier calibrations, increased accuracies of measuring devices, and
further technological advancements.

At many conditions, gas-based techniques provide unparal-
leled performance for primary measurements of temperature and
pressure. These involve acoustic, dielectric, or refractivity measure-
ments, because frequency and electromagnetic measurements can be
made with very high accuracy. A model, typically expressed as the
ideal-gas behavior with a series of corrections in powers of density,
is used to relate the measured quantity to the temperature or pres-
sure; in the case of dielectric or refractivity measurements, one set of
corrections relates the measured quantity to the gas density and the
familiar virial expansion is used to relate the density to the pressure
and temperature.

These gas-based methods have been greatly facilitated in
recent years by the ability to perform ab initio calculations of
the thermophysical properties (such as the polarizability and
the density, dielectric, and refractivity virial coefficients) of the
working gases with no uncontrolled approximations and rigor-
ously defined uncertainties. These calculated properties often have
much smaller uncertainties than the best experimental determi-
nations, especially when the gas considered is helium. These
techniques have been successfully applied for pressures up to
7 MPa and for thermodynamic temperatures in the range (2.5–552)
K (with extension to 1000 K or more progressing4).

These achievements have been facilitated by the increase in
supercomputing power and advances in numerical techniques for
electronic structure calculations. For example, state-of-the-art calcu-
lations for up to three He atoms even include relativistic and quan-
tum electrodynamics effects. In particular, these numerical investi-
gations produce pair and three-body potentials, as well as single-
atom, pair, and three-body polarizabilities, with unprecedented
accuracy.

Building on these results, the exact quantum statistical mechan-
ics formulation enabled rigorous calculations of the coefficients
appearing in the density (virial) expansion of the equation of state,
the speed of sound, the dielectric constant, and the refractive index.
The path-integral Monte Carlo (PIMC) method has been shown to
provide sufficient accuracy for these quantities. As a consequence,
it has been possible to devise a fully first-principles chain of cal-
culations with rigorous uncertainty propagation to compute virial
coefficients of helium gas.

As a result of these endeavors, since about 2010 thermophysical
properties of gaseous helium have been known from theory with an
accuracy that in most cases surpasses that of the most precise exper-
imental determinations. Currently, the uncertainties of the ab initio

second and third virial coefficients of helium are at least one order
of magnitude smaller than the experimental ones. The situation is
similar for the density dependence of the speed of sound, the dielec-
tric constant, and the refractive index, where it leads to improved
accuracy in Acoustic Gas Thermometry (AGT), Dielectric Constant
Gas Thermometry (DCGT), and Refractive Index Gas Thermometry
(RIGT), respectively.

Section 2 describes these gas-based experimental techniques for
temperature and pressure measurement, including their operating
principles, temperature and pressure ranges, recent technological
improvements, and the sources of uncertainty. We highlight the
ways in which theoretical knowledge, in the form of ab initio polar-
izabilities and virial coefficients, has improved these measurements
by reducing significant components of the uncertainty.

First-principles calculations of virial coefficients involve two
steps: the ab initio electronic structure calculation of interatomic
potentials and/or polarizabilities, followed by the solution of the
exact quantum statistical equations describing virial coefficients.

We therefore present in Sec. 3 a critical review of the state
of the art of non-relativistic, relativistic, and quantum electrody-
namic electronic structure calculations, with particular emphasis on
the determination of uncertainties. Our primary focus will be on
helium – which is currently the only substance for which compu-
tations can be performed that consistently exceed the accuracy of
the best experiments – but other noble gases will be briefly covered
due to their importance in metrology. For the sake of complete-
ness, we will recall the hierarchy of physical theories involved in
quantum chemical calculations, with particular emphasis on the Full
Configuration Interaction (FCI) approach, which is exact within a
given orbital basis set and is currently feasible for systems with up
to ten electrons. Relativistic and quantum electrodynamic effects
(expressed as expansions in powers of the fine-structure constant)
have been crucial for achieving the extremely low uncertainty of
the latest helium calculations, and are also progressively important
in describing larger atoms (notably, neon and argon). Additionally,
the evaluation of electronic polarizabilities and magnetic suscepti-
bilities will be discussed. All of these theoretical advances will be
exemplified for the case of helium, where we will present the cur-
rent state of the art regarding interaction potentials and many-body
polarizabilities.

Knowledge of interaction potentials and polarizabilities enables
calculation of the coefficients appearing in the virial expansion
of the equation of state, the speed of sound, the dielectric con-
stant, and the refractive index, which are crucial ingredients
in the uncertainty budgets of AGT, DCGT, and RIGT. In the
past 15 years, the path-integral approach to quantum statistical
mechanics has been successfully applied in calculating virial coef-
ficients without uncontrolled approximations. The main features
of this method are reviewed in Sec. 4, with particular attention
to the question of uncertainty propagation from the potentials
and the polarizabilities. In the case of pair properties, an alter-
native method based on the solution of the Schrödinger equation
is available and provides mutual validation of the path-integral
results, as well as enabling the calculation of transport properties.
Most of this review is focused on thermodynamic properties, but
ab initio calculations also provide viscosity and thermal conductiv-
ity. We briefly review how this leads to improvements in flow-rate
measurements.
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Although most efforts have been devoted to noble gases,
highly accurate theoretical calculations are also available for molec-
ular systems and have the potential to enable a similar paradigm
shift in some metrological applications. We describe in Sec. 5
the present situation in the first-principles calculation of molec-
ular properties, and point out a few areas where computational
contributions are expected to have an increasing impact in the
near future, namely humidity metrology, measurements of very
low pressures, and atmospheric science. We end our review in
Sec. 6, where future perspectives and an overview of the sta-
tus of highly accurate ab initio property calculations will be
presented.

2. Primary Metrology and Thermophysical Properties
2.1. Paradigm reversal in temperature metrology

Traditionally, accurate measurements of temperature-
dependent thermophysical properties of gases [such as: second
density virial coefficient B(T), viscosity η(T), thermal conductivity
λ(T)] have been used to determine parameters in evermore-
refined models for interatomic and intermolecular potentials.
This tradition/paradigm can be traced back to the 18th century
when “. . . Bernoulli had proposed that in Boyle’s law the specific
volume v be replaced by (v − b), where b was thought to be the
volume of the molecules.”5 During the past 25 years, the accuracy
of the calculated thermophysical properties of the noble gases
(particularly helium) has increased dramatically. An example is
shown in Fig. 1, which shows how the accuracy of the second virial
coefficient B(T) of 4He improved with time. The data plotted are
for temperatures near TNe. (TNe ≡ 24.5561 K is the defined temper-
ature of the triple point of neon on the international temperature
scale, ITS-90.6) Since the year 2012, the uncertainty of B(TNe), as
calculated ab initio, has been smaller than the uncertainty of the best
measurements of B(TNe).

The paradigm reversal (replacing measured thermophysi-
cal properties of helium with calculated thermophysical proper-
ties) applies to zero-density values of the viscosity η(T), thermal

FIG. 1. The standard uncertainty of both the measured and the calculated values
of the second density virial coefficient of 4He decreased with time. After 2012,
u(Bcalc) < u(Bmeas). Both Bcalc and Bmeas are evaluated near 24.5561 K, which
is the defined ITS-90 temperature of the triple point of neon. Calculated values
(circles): Aziz et al.;7 Hurly and Moldover;8 Hurly and Mehl;9 Cencek et al.;10

Czachorowski et al.11 Measured values (squares): White et al.;12 Berry;13 Kemp
et al.;14 Gaiser and Fellmuth;15 Gaiser and Fellmuth;16 Madonna Ripa et al..17

conductivity λ(T), and 3He–4He mutual diffusion coefficient as well
as to the density and acoustic virial coefficients, relative dielectric
permittivity (dielectric constant) εr(p, T), relative magnetic permit-
tivity μr(p, T), and refractive index n(p, T) =√εrμr. For many of
these properties, the values calculated for helium are standards that
are used to calibrate apparatus that measures the same properties for
other gases.

The paradigm reversals for εr(p, T) and n(p, T) have been com-
bined with technical advances in the measurement of εr(p, T) and
n(p, T) to develop novel pressure standards. One standard operat-
ing at optical frequencies and low pressures (100 Pa ≤ p ≤ 100 kPa)
is more accurate than manometers based on liquid columns (see
Sec. 2.3.1 and Ref. 18). Other standards operating at audio and
microwave frequencies and higher pressures (100 kPa ≤ p ≤ 7 MPa)
have enabled exacting tests of mechanical pressure generators based
on the dimensions of a rotating piston in a cylinder (see Sec. 2.3.2
and Refs. 19 and 20). At still higher pressures (up to 40 MPa), the
values of helium’s density calculated from the virial equation of state
(VEOS) have been used to calibrate magnetic suspension densime-
ters.21 A more accurate high-pressure scale may result. In Sec. 2.5,
we will comment on ab initio calculations of transport properties
and their contribution to improved flow metrology.

During the past 25 years, the accurate calculations of the
thermophysical properties of the noble gases have strongly inter-
acted with gas-based measurements of the thermodynamic temper-
ature T. To put this in context, we compare in Fig. 2 the evolu-
tion of “consensus” temperature metrology with “thermodynamic”
temperature metrology.22

In Fig. 2, the squares represent estimates of the relative uncer-
tainties ur(Tscale) of the consensus temperature scales disseminated
by National Metrology Institutes (NMIs). We plot the values of
ur(Tscale) near the boiling point of water at intervals of roughly
20 years. Most of the points are at years when the NMIs agreed to

FIG. 2. Comparison over time of the standard uncertainty of the Boltzmann con-
stant to the reproducibility of the consensus temperature scale. Circles represent
the relative uncertainty of measurements of the Boltzmann constant, mostly from
evaluations by groups such as CODATA. Squares represent the relative uncer-
tainty of internationally accepted consensus temperature scales in the vicinity of
the normal boiling point of water. Adapted from Ref. 22.
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disseminate a new consensus scale that was either a better approxi-
mation of thermodynamic temperatures and/or an extension of the
consensus scale to higher and lower temperatures. The most recent
scale is the “International Temperature Scale of 1990” (ITS-90), and
temperatures measured using ITS-90 are denoted T90.6 The data
underlying ITS-90 are constant-volume gas thermometry (CVGT)
and spectral radiation thermometry linked to CVGT.23 The pre-
1990 CVGT was based on the ideal-gas equation of state, as corrected
by virial coefficients either taken from the experimental literature
or measured during the CVGT. Post-1990 thermometry, together
with ab initio calculations of virial coefficients, revealed that the
authors of ITS-90 were unaware that errors in ITS-90 exceeded their
expanded (k = 2) uncertainty by roughly a factor of two. (See Fig. 3
and the discussion at the end of Sec. 2.2.1).

In Fig. 2, the circles represent the relative uncertainty of deter-
minations of the Boltzmann constant ur(kB). To determine kB, one
measures the mean energy kBT per degree-of-freedom of a sys-
tem in thermal equilibrium at the thermodynamic temperature T.
During the interval 1960–2019, the thermodynamic temperature of
the triple point of water was defined as TTPW ≡ 273.16 K, exactly.
Thus, measurements of kBT that were conducted near TTPW had a
negligible uncertainty from T and ur(kBT) was an excellent proxy
for ur(T), the uncertainty of measurements of T under the most
favorable conditions.

As displayed in Fig. 2, ur(Tscale) decreased from ∼10 to ∼2 ppm
(1 ppm ≡ 1 part in 106) during the 20th century. Also during the
20th century, the relative uncertainty ur(kB) decreased from ∼20 000
to ∼2 ppm. Thus, ur(kB)≫ ur(Tscale) for most of the 20th cen-
tury, even though kB was a “fundamental” constant and, therefore,
a worthy challenge for metrology.

Between 1973 and 2017, AGT measurements decreased the
uncertainty of ur(kB) 100-fold from ∼40 to ∼0.4 ppm.24,25 By 2017,
DCGT achieved the uncertainty ur(kB) = 1.9 ppm and Johnson
noise thermometry achieved ur(kB) = 2.7 ppm.25

FIG. 3. Post-1990 acoustic measurements of T − T90. The shaded area encloses
1990 estimates of the relative standard uncertainties of ITS-90. The acoustic mea-
surements indicate that ITS-90 has an error of ∼25 × 10−6T near water’s boiling
point and ∼ −35 × 10−6T near 173 K. The solid arrows indicate some ITS-90 fixed
points. (The boiling point of water is not a fixed point on ITS-90.) Data sources:
USA: Refs. 31, 39, and 50; U. Kingdom: Refs. 51 and 52; Italy: Refs. 49 and 53;
France + USA: Ref. 54; China: Ref. 55. Adapted from Xing et al., J. Phys. Chem.
Ref. Data 52, 031501 (2023) with the permission of AIP Publishing.431

In 1995, Aziz et al.7 argued that the values of the ther-
mal conductivity λ(T), viscosity η(T), and second density virial
coefficient B(T) of helium, as calculated using ab initio input,
were more accurate than the best available measurements of
these quantities. Subsequently, helium-based AGT measurements
of kB relied on ab initio values of λ(T) to account for the
thermoacoustic boundary layer. Just before the Boltzmann con-
stant was defined in 2019, the lowest-uncertainty measurements
of kB used either the ab initio value of thermal conductivity
of helium λHe(273.16 K) or the value of λAr(273.16 K) that
was deduced from ratio measurements using λHe(273.16 K) as a
standard.26,27

In 2019, the unit of temperature, the kelvin, was redefined by
assigning the fixed numerical value 1.380 649 × 10−23 to the Boltz-
mann constant, kB, when kB is expressed in the unit J K−1.2,3 Thus,
the Boltzmann constant can no longer be measured. However, the
thermodynamic temperature of the triple point of water now has an
uncertainty of a few parts in 107, although the best current value is
still 273.16 K.20

As discussed in the next section, the techniques for measuring
thermodynamic temperatures are evolving rapidly. They are becom-
ing more accurate and easier to implement. We anticipate NMIs
will disseminate thermodynamic temperatures instead of ITS-90 at
temperatures below 25 K. This would not be possible without the
accurate ab initio values of the thermophysical properties of helium.

2.2. Gas thermometry
2.2.1. Acoustic gas thermometry

During the past two decades, AGT has emerged as the most
accurate primary thermometry technique over the temperature
range 7–552 K, achieving uncertainties as low as 10−6T. AGT exper-
iments were instrumental in measuring the Boltzmann constant for
the redefinition of the kelvin,28 and have revealed small, system-
atic errors in the ITS-90.20,23 The construction of ITS-90 and the
definition of kB force T90 and T to be essentially equal at the tem-
perature of the triple point of water TTPW; however, the derivative
dT90/dT ≈ 1.0001 at TTPW. Figure 3 provides evidence that ITS-90
has errors of ∼25 × 10−6T near water’s boiling point and ∼ −35 ×
10−6T near 173 K. This section is necessarily brief; for an in-depth
review of AGT, the reader is referred to Ref. 29.

The underlying principle of AGT is the relationship between
thermodynamic temperature, T, and the thermodynamic speed of
sound, w, in a gas:30

w2
=

γ0kBT
m
[1 +

βa

RT
p +

γa

RT
p2
+ ⋅ ⋅ ⋅ ], (1)

where kB is the Boltzmann constant, R = kBNA is the molar gas con-
stant, NA is the Avogadro constant, m is the average molecular mass
of the gas, γ0 is the limiting low-pressure value of cp/cv where cp and
cv are the isobaric and isochoric heat capacities, respectively (this
ratio is exactly 5/3 for a monatomic gas), p is the gas pressure, and
βa and γa are the temperature-dependent acoustic virial coefficients.
Helium-4 or argon gas is typically used, as these are considerably less
expensive than other noble gases and available in ultra-pure forms,
although xenon has also been used.31

Most modern realizations of primary AGT determine the speed
of sound from the resonance frequencies of the acoustic normal
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modes in a cavity resonator of fixed and stable dimensions. Res-
onators have been manufactured from copper, aluminum, and
stainless steel, with internal volumes between 0.5 and 3 l. Cavity
shapes have either been spherical, quasi-spherical (with smooth,
deliberate deviations from sphericity), or cylindrical. The use of dia-
mond turning to produce quasi-spherical resonators (QSRs) with
extremely accurate forms (∼1 μm) and smooth surfaces (average sur-
face roughness on the order of 3 nm) has significantly improved
performance.32 In spherical geometries, the best results are obtained
from the radially symmetric acoustic modes, since these possess high
quality factors and are relatively insensitive to imperfections in the
cavity shape. In cylindrical geometries, the longitudinal plane-wave
modes are typically favored.

Two distinct methods of primary AGT exist: absolute and rel-
ative. In the absolute method, T is determined by using the defined
value of kB and by fitting Eq. (1) to measurements of w2

(p, T) to
obtain T and βa, γa, . . .. Alternatively, when accurate, ab initio values
of βa, γa, . . . are available, T can be determined from Eq. (1) using
a measurement of w2

(p, T) at a single pressure. The terms γ0 and
kB are known exactly; m must be determined by an auxiliary experi-
ment; and w is calculated from the radial acoustic mode frequencies,
fa, of the QSR:

w =
fa − Δ fa

za
(6π2V)1/3, (2)

where za are the acoustic eigenvalues, Δ fa is the sum of the acoustic
corrections, and V is the cavity volume. If the longitudinal mode
frequencies of a cylindrical cavity are used, the term proportional to
V1/3 is replaced with a multiple of the cylinder length.

Improvements in QSR volume measurements are perhaps the
most significant innovation in AGT in the last two decades, and
were driven by efforts to redetermine the Boltzmann constant for
the redefinition of the kelvin. Modern AGT systems measure the fre-
quency fm of microwave resonances in the cavity, which are related
to the volume through the equation

c
n
=

fm − Δ fm

zm
(6π2V)1/3, (3)

where c is the speed of light in vacuum, n in the refractive index of
the gas in the cavity, Δ fm is the sum of the electromagnetic correc-
tions, and zm are the microwave eigenvalues. The microwave modes
do not occur in isolation, being at least three-fold degenerate in per-
fectly spherical cavities. The smooth deformations of the QSR shape
lift these degeneracies, enabling accurate measurement of the indi-
vidual mode frequencies. A key theoretical result is that (to first
order) the mean frequency of these mode groups is unaffected by
volume-preserving shape deformations.33

In diamond-turned QSRs, the relative uncertainty in V from
the microwave method can be less than 1 × 10−6.34 This was made
possible by improvements in theory,35 resonator shape accuracy, and
studies of small perturbations due to probes.34 Recently, it has been
demonstrated that comparable uncertainties can be achieved with
low-cost microwave equipment.36,37 Accurate microwave dimen-
sional measurements have also been performed in cylindrical
acoustic resonators.38

Relative primary AGT measures thermodynamic temperature
ratios:

T
Tref
=

w2

w2
ref

, (4)

where wref is the measured speed of sound at a known reference
temperature Tref. Most AGT determinations of (T − T90) use the
relative method. The main advantages are that the molecular mass
term, m, cancels in the ratio, and that only the relative volume V/Vref
need be measured. Also, many small perturbations to the acoustic
and microwave frequencies (e.g., due to shape deformations) either
fully or partially cancel in the ratio. As a result, excellent results
can be obtained using resonators with modest form accuracies that
would be unsuited to absolute AGT. The disadvantages are that rel-
ative AGT propagates underlying errors and uncertainty in Tref, and
can require the apparatus to operate over a wide temperature range
when no suitable reference points are nearby.

In both absolute and relative primary AGT, maintaining gas
purity is of critical importance. Impurities will shift the average
molecular mass of the gas, and hence the speed of sound, by an
amount that depends on the mass contrast between the bulk gas and
impurity. For example, the speed of sound in helium is ∼16 times
more sensitive to water vapor than it is in argon. Impurities can
either be present in the gas source or arise from outgassing or leaks
in the apparatus itself.

Relative AGT requires only that m remain unchanged between
the measurements at T and Tref. Temperature dependence in m can
arise through several mechanisms: impurities such as water, hydro-
carbons, or heavy noble gases can be condensed out at low temper-
atures; higher temperatures (>500 K) cause significant outgassing
from the walls of steel resonators.39 Gas purity is vastly improved
by maintaining a flow of gas (typically <50 μmol/s) through the
resonator and supply manifold.

Absolute AGT has more stringent requirements on gas purity
than relative AGT. To determine an accurate value for m, both the
isotopic abundance of the gas and any residual impurities must be
quantified. Reactive impurities, including water, can be removed
from the source gas using gas purifiers, and noble gas impurities
can be removed from helium using a cold trap.26 The isotopic ratios
36Ar/40Ar and 38Ar/40Ar in argon, and 3He/4He in helium, have
been determined by mass spectrometry, and vary significantly from
source to source.40 Alternatively, isotopically pure 40Ar gas can be
used, although this is only available in small quantities and at great
expense.41

The low uncertainty of the AGT technique arises from the
excellent agreement between acoustic theory and experiment. The
simplicity of Eq. (2) hides a number of temperature-, pressure-,
and mode-dependent corrections that constitute the term Δ fa. The
largest of these are the thermoacoustic boundary layer corrections,
which arise from an irreversible heat exchange between the oscillat-
ing gas and resonator walls.41,42 This effect both lowers the frequency
of the acoustic resonances and broadens them; a valuable cross-
check of experiment and theory can be made by comparing the
predicted and measured resonance widths. The radial-mode bound-
ary layer correction in QSRs is approximately proportional to the
square root of the gas thermal conductivity – in cylinders, the gas
viscosity also features in the correction.43 For most temperature
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ranges, the uncertainty in these parameters can be considered neg-
ligibly small for both helium and argon due to improved ab initio
calculations (see Sec. 2.5).

AGT measurements are typically conducted on isotherms in a
pressure range between 25 and 500 kPa, with the optimum pressure
range depending on several factors such as the type of gas, tempera-
ture, and particular details of the apparatus.44 At low pressures, the
accuracy in determining fa is compromised by weak acoustic signals,
interference from neighboring modes due to resonance broadening,
and the need to account for details of the interaction of the gas with
the resonator’s walls.45 At high pressures, higher-order virial terms
are required to account for molecular interactions, and the elastic
recoil of the resonator walls becomes increasingly significant. The
shell recoil effect, which shifts fa in proportion to gas density,46

is difficult to predict in real resonators47,48 because of the com-
plex mechanical properties of the joint(s) formed when the cavity
resonator is assembled.

For this and other reasons, it is not common practice to use
Eq. (1) to determine T from w; instead, the measured data are fitted
to low-order polynomials that account for the virial coefficients and
perturbations that are proportional to pressure. Isotherm measure-
ments have the advantage of data redundancy and reduced uncer-
tainty, but are very slow to execute, with each pressure point taking
several hours. Single-state AGT,49 which utilizes low-uncertainty
ab initio calculations of βa and γa in helium, offers a much faster
means of primary thermometry.

Figure 3 compares AGT measurements from five countries with
ITS-90. The AGT data indicate that ITS-90 has an error of ∼25 ×
10−6T near water’s boiling point and ∼ −35 × 10−6T near 173 K.
Near TTPW, the derivative dT90/dT ≈ 1 + 1.0 × 10−4. This implies
that heat-capacity measurements made using ITS-90 will generate
values of the heat capacity that are 0.01% larger than the true heat
capacity. However, we are not aware of heat capacity measurement
uncertainties as low as 0.01%.

Prior to the AGT publications shown in Fig. 3, Astrov et al.
corrected an estimate used in their CVGT. They had used measure-
ments of the linear thermal expansion of a metal sample to estimate
the thermal expansion of the volume of their CVGT “bulb.” Using
additional expansion measurements, Astrov et al. corrected their
T − T90 results. They now agree, within combined uncertainties,
with the AGT data.56 (Because AGT uses microwave resonances to
measure the cavity’s volume in situ, it is not subject to errors from
auxiliary measurements of thermal expansion.)

2.2.2. Dielectric constant gas thermometry
DCGT, developed in the 1970s in the U.K.57,58 and later

improved by PTB,59,60 is now a well-established method of primary
thermometry. The basic idea of DCGT is to replace the density in
the equation of state of a gas by the relative permittivity (dielectric
constant) εr and to measure it by the relative capacitance changes at
constant temperature:

ΔCc

Cc
≡

Cc(p) − Cc(0)
Cc(0)

= εr − 1 + εrκeffp. (5)

In Eq. (5), Cc(p) is the capacitance of the capacitor at pres-
sure p and Cc(0) that at p = 0 Pa, and κeff is the effective isothermal
compressibility which accounts for the dimensional change of the

capacitor due to the gas pressure. In the low-pressure (ideal gas)
limit, the working equation can be simply derived by combining the
classical ideal-gas law and the Clausius–Mossotti equation:

p =
RT
Aε

εr − 1
εr + 2

, (6)

with the molar polarizability Aε. For a real gas in a general for-
mulation including electric fields, both input equations are power
series:

p
ρRT

= 1 + B(T)ρ + C(T)ρ2
+D(T)ρ3

+ ⋅ ⋅ ⋅ , (7)

where B(T), C(T), and D(T) are the second, third, and fourth
density virial coefficient, respectively, ρ is the molar density, and

εr − 1
εr + 2

= Aερ(1 + bρ + cρ2
+ dρ3

+ ⋅ ⋅ ⋅ ) (8)

= ρ(Aε + Bερ + Cερ2
+Dερ3

+ ⋅ ⋅ ⋅ ). (9)

In the literature, the quantities b, c, d and Bε, Cε, Dε are both called
the second, third, and fourth dielectric virial coefficient, respectively.
The form used in Eq. (8) comes from the tradition of DCGT57,59 of
factoring out Aε so that b, c, and d have the same units as B, C, and
D. Conversely, ab initio calculations naturally provide the quantities
Bε, Cε, and Dε.

The DCGT working equation is obtained by eliminating the
density using Eqs. (7) and (8) and substituting εr with the relative
capacitance change corresponding to Eq. (5). This leads to a power
expansion in terms of Ξ = (ΔCc/Cc)/(ΔCc/Cc + 3):

p = (
Aε

RT
+

κeff

3
)
−1
[Ξ + Ξ2

(
Aε

RT
+

κeff

3
)
−1
[

B − b
RT

−
κeff

3
(1 +

B
Aε
)]

+ Ξ3
(⋅ ⋅ ⋅ )]. (10)

The higher-order terms contain combinations of both the
dielectric and density virial coefficients and the compressibility.
Equation (10) up to the fourth order can be found in Ref. 61.

DCGT works as a primary thermometer if the molar polariz-
ability Aε and virial coefficients contained in Eq. (10) are known
from fundamental principles or independent measurements with
sufficient accuracy. The effective compressibility κeff is also required.
For classical DCGT, where isotherms are measured and the data
are extrapolated to zero pressure via least-squares fitting, only Aε
and κeff are mandatory. This was the way thermodynamic temper-
ature was determined for decades.57,59,60 Consequently, in classical
DCGT, ab initio data on virial coefficients serve as a consistency
check or conversely DCGT is used for determination of virial coef-
ficients to check theory.61 Since the theoretical calculations of the
virial coefficients for helium improved drastically, it is now possi-
ble to use higher-order virial coefficients from theory to reduce the
number of fitting coefficients or even to use the working equation
directly without fitting and to determine temperature at each pres-
sure point via the rearranged working equation. Recently, all three
approaches have been tested and compared.62 Especially, the point-
by-point evaluation is a shift of paradigm and at the moment only
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possible for helium, where the uncertainty of the ab initio calcu-
lations, especially of the second density virial coefficient, is small
enough. Nevertheless, for other gases not only the virial coefficients
but also the molar polarizabilities determined via DCGT have com-
parable or smaller uncertainties than ab initio calculations.63 This
is a field of potential improvement of theory already started with
calculations of Aε for neon64,65 and for argon.66

DCGT was operated in the temperature range from 2.5 K to
about 273 K using helium-3, helium-4, neon,67 and argon.68 All
noble gases have the advantage that the molar polarizability is inde-
pendent of temperature at a level of precision far beyond that of
state-of-the-art experiments.69

Besides the use of dielectric measurements in primary ther-
mometry, accurate determinations of polarizability and virial coef-
ficients of noble gases and molecules using gas-filled capacitors have
a much longer tradition. These setups, very similar to DCGT, use
thermodynamic temperature as one of the input parameters. A com-
plete overview of measurements cannot be given here. Already a
very broad overview of existing data, partly at radio frequencies,
was summarized by NBS in the 1950s.70 In the following decades,71

different institutes with changing teams performed measurements
until the early 1990s.72 In the year 2000, NIST started measure-
ments on gases using capacitors resulting in the most accurate
values for the measured molecules.73,74 Very recently, PTB estab-
lished a setup for separate measurement of dielectric and density
virial coefficients using a combination of Burnett expansion tech-
niques and DCGT.75 The focus of this setup is the determination
of properties of energy gases such as hydrogen-methane mixtures
in the context of the transition to renewable energy. The setup
will also provide lower-uncertainty tests of the ab initio calcula-
tions of the dielectric and density virial coefficients of the noble
gases.

For primary thermometry, most significant recent improve-
ments in DCGT have been achieved by independent determination
of κeff using resonant ultrasound spectroscopy around 0 ○C and an
optimal choice of capacitor materials.76 For the Boltzmann exper-
iment with measuring pressures of up to 7 MPa, tungsten carbide
was the ideal choice, while at low temperatures beryllium copper
was used together with an extrapolation method. Relative uncer-
tainties for κeff in terms of temperature on the level of 1 ppm near
0 ○C have been achieved. Equally important are the improvements
in pressure measurement. In contrast to AGT, where pressure is a
second-order effect, in DCGT εr is directly linked to pressure. There-
fore, the relative uncertainty in pressure is transferred to a relative
uncertainty in temperature. The major steps here are discussed in
Sec. 2.3.2 regarding the mechanical pressure standard developed at
PTB in the framework of the Boltzmann constant determination.77

These systems with relative uncertainties on the level of 1 ppm at
pressures up to 7 MPa have been used to calibrate commercially
available systems for pressures up to 0.3 MPa with relative uncer-
tainties between 3 and 4 ppm. The dominant uncertainty component
in DCGT measurements is the standard deviation of the capacitance
measurement. The typical relative uncertainty in terms of tempera-
ture connected to this component is on the order of 5 ppm for the
low temperature range but was reduced to the 1 ppm level in the case
of the Boltzmann experiment at about 0 ○C.78 Finally, one problem
in DCGT using helium is the very small molar polarizability com-
pared to all other gases and molecules. Therefore, special care must

be taken concerning impurities and here an especially severe issue is
contamination with water.

The polarizability of water at frequencies of capacitance bridges
and microwave resonators (see Sec. 5.1.2) is about a factor of 160
larger than that of helium. At cryogenic temperatures, water con-
tamination in the gas phase is naturally reduced by outfreezing, but
especially at room temperature the whole measuring setup as well
as the gas purifying system must be highly developed. Furthermore,
pollution with other noble gases must be treated carefully because
they cannot be extracted by getters and filters. Ideally, a mass-
spectrometer should be used for the detection of noble gas impurities
to allow for an upper estimate of the uncertainty due to gas purity.
In summary, with DCGT in the low temperature range from 4 to
25 K uncertainties near 0.2 mK for thermodynamic temperature
are achievable. At around 0 ○C, the smallest uncertainty for DCGT
was achieved during the determination of the Boltzmann constant.78

Converted to an uncertainty for thermodynamic temperature, this
becomes about 0.5 mK.

In the intermediate range, the uncertainties are larger (between
1 and 2 mK at 200 K68). The main restriction of the present low-
temperature setup is the limited pressure range at intermediate
temperatures. A measurement of high-pressure isotherms in this
range is planned. Together with improved ab initio calculations for
the second virial coefficients of argon and neon, a single-state ver-
sion of DCGT might be possible, in analogy with single-state AGT.
This could result in a significant reduction in both uncertainty and
measurement time.

2.2.3. Refractive index gas thermometry
Both DCGT and RIGT are versions of polarizing gas ther-

mometry. Both rely on virial-like expansions of either the dielectric
constant εr or of the refractive index n in powers of the molar den-
sity ρ, that is Eq. (9) in the case of DCGT, and the Lorentz–Lorenz
equation

n2
− 1

n2
+ 2
= ρ(Aε + Aμ + BRρ + CRρ2

+ ⋅ ⋅ ⋅ ), (11)

in the case of RIGT. In the limit of zero frequency, Aμ/Aε ≈

−1.53 × 10−5 for He, Bε = BR, Cε = CR, etc.79 Except for the small
magnetic-permeability term Aμ (which is well-known from the-
ory for helium80), low-frequency measurements of n and of εr are
analyzed using the same ab initio constants. RIGT determines the
thermodynamic temperature T by combining measurements of the
pressure p with the density virial equation of state, Eqs. (7) and (11).
The density is eliminated from both equations, either numerically or
by iteration, to obtain

T =
p(Aε + Aμ)

R
n2
+ 2

n2
− 1
+ ⋅ ⋅ ⋅ (12)

The constants B, BR, C, CR, etc. that appear in the higher-order
terms of Eq. (12) are obtained either from theory or from fitting
measurements of n2

(p) on isotherms. [DCGT determines T using
a version of Eq. (12) in which εr replaces n2.]

Here, we focus on RIGT conducted at microwave frequen-
cies as developed by Schmidt et al.81 and as recently reviewed by
Rourke et al.82 These authors determined n from measurements
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of the microwave resonance frequencies fm of a gas-filled, metal-
walled, quasi-spherical cavity. Typical frequencies ranged from 2.5
to 13 GHz; for this range, the frequency dependence of n in the noble
gases is negligible. As discussed in Sec. 2.3.1, RIGT has also been
realized at optical frequencies in the context of pressure standards.83

For helium, the corrections of Aε and BR from zero frequency to
optical frequencies have been calculated ab initio.79,84

A working equation for measuring n is:

n =
√

μrεr =
⟨ fm + g⟩vacuum

⟨ fm + g⟩pressure(1 − κeffp)
, (13)

where the brackets “⟨⟩” indicate averaging over the frequencies of
a nearly degenerate microwave multiplet and g accounts for the
penetration of the microwave fields into the cavity’s walls. Usually,
g is determined from measurements of the half-widths of the res-
onances; its contribution to uncertainties is small. The term κeffp
accounts for the temperature-dependent change of the cavity’s vol-
ume in response to the gas pressure p. Often, the uncertainty of κeff
is the largest contributor to the uncertainty of RIGT. To make this
explicit, we manipulate Eqs. (12) and (13) to obtain:

T =
3p
R
(

Aε + Aμ

n2
− 1
)(1 −

2κeffRTn2

3(Aε + Aμ)
) + ⋅ ⋅ ⋅ , (14)

where the term 2κeffRTn2
/[3(Aε + Aμ)] ≈ 0.007 for a copper-walled

cavity immersed in helium near TTPW. (This estimate assumes
that the cavity’s walls are homogeneous and isotropic; therefore,
κeff = κT/3 where κT is the isothermal compressibility of copper.)
Thus, a relative uncertainty ur(κeff) = 0.01 contributes the rela-
tive uncertainty ur(TTPW) = 70 × 10−6 to a RIGT determination of
TTPW. In the approximation n2

≈ 1, this uncertainty contribution is a
function of T × κeff(T), but it is not a function of the pressures mea-
sured on an isotherm. Because T × κeff(T) decreases with T, RIGT is
more attractive at cryogenic temperatures than near or above TTPW.

Recently, two independent groups explored a two-gas method
for measuring κeff of assembled RIGT resonators.17,85 Ideally, two-
gas measurements would replace measurements of κT of samples
of the material comprising the resonator’s wall and also models
for the cavity’s deformation under pressure. Both groups relied
on new, accurately measured and/or calculated values of the den-
sity and refractivity virial coefficients of neon or argon.61,79 Using
helium and argon, Rourke determined κeff at TTPW with the remark-
ably low uncertainty ur(κeff) = 9.6 × 10−4.85 Madonna Ripa et al.
combined helium and neon data to reduce the uncertainty contri-
bution from κeff to their determinations of T at the triple points
of O2 (≈54 K), Ar (≈84 K), and Xe (≈161 K).17 They reported
“partial success” and suggested that a revised apparatus using
both gases and operating at higher pressures (p > 500 kPa) would
obtain lower-uncertainty determinations of T. They also noted
that the two-gas method requires twice as much RIGT data, accu-
rate pressure measurements, and dimensional stability between gas
fillings.

Rourke’s review of RIGT82 noted five groups implementing
RIGT using microwave technology. In contrast, we are aware of
only one group (at PTB) implementing DCGT.62 The relative pop-
ularity of RIGT results from the commercial availability of vector
analyzers that can measure microwave frequency ratios with res-
olutions of 10−9. To our knowledge, using commercially available

capacitance bridges, the best attainable capacitance ratio resolution
is 70 × 10−9.86 To attain higher resolution for DCGT, PTB developed
a unique bridge that measures capacitance ratios with a resolution of
order 10−8 in a 1 s averaging time. To achieve this specification, the
PTB bridge must operate at 1 kHz and both the standard (evacuated)
capacitor and the unknown (gas-filled) capacitor must have identical
construction and be located in the same thermostat.87

Figure 4 illustrates the several strategies being explored for
acquiring RIGT data. Absolute RIGT acquires many (p, n) data
on an isotherm and determines T via Eq. (14). This method
requires state-of-the-art, absolute pressure measurements; therefore,
the pressure gradient between the gas-filled cavity and the manome-
ter (normally at ambient temperature) is required.88 Uncertainty
budgets for absolute RIGT can be found in Refs. 17 and 85.

Relative RIGT (rRIGT) comes in several flavors, each designed
to simplify some aspect of absolute RIGT. Each flavor requires mea-
surements on at least two isotherms: (1) a reference isotherm Tref for
which the thermodynamic temperature is already well known, and
(2) an unknown isotherm for which T will be determined. As sug-
gested in the lower panel of Fig. 4, one flavor of rRIGT determines
T/Tref by determining the low-pressure limit of the ratio of slopes81

T
Tref
= lim

p→0
(

n2
T − 1

n2
Tref
− 1
). (15)

If Tref and T are low temperatures, where the pressure deformation
of the cavity κeffp is small, this strategy circumvents the problem of
accurately determining κeff.

Single-pressure RIGT (spRIGT) measures (p, n, T) and
(p, n, Tref) and determines T from T/Tref ≈ (n2

T − 1)/(n2
Tref
− 1).

This strategy entirely avoids accurate pressure measurements;
instead, the pressure in the cavity is required to be identical when

FIG. 4. Measurement trajectories for RIGT in the variables pressure (p) and
refractive index (n). Blue dashed lines represent isotherms. Top: Absolute RIGT
takes many data points on an isotherm at the unknown temperature T . Bottom:
Relative rRIGT takes several measurements on a reference isotherm T ref and on
an unknown isotherm T . Single pressure (spRIGT) uses data at one pressure.
Constant frequency (cfRIGT) uses data at one value of the refractive index n.
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n is measured at T and Tref and the pressure (actually, the density
of the gas) must be sufficiently low that an approximate pressure is
adequate for making the virial corrections. This strategy was used
by Gao et al. for RIGT between the triple point of neon (Tref ≈ 24.5
K) and 5 K.89 After establishing Tref by acoustic thermometry, they
claimed the uncertainties of this implementation of RIGT were
smaller than the uncertainties of ITS-90.90

When constant-frequency RIGT (cfRIGT) is implemented,
the pressure in the cavity is changed to keep the refractive
index constant as the temperature is changed from Tref to T. In
this case, T/Tref ≈ p(T, n)/p(Tref, n).91 This scheme minimizes the
frequency-dependent effects of the coaxial cables on the microwave
determination of T/Tref.

To economically search for measurement or modeling errors,
one can obtain three redundant values of T/Tref by measuring
microwave frequencies at four judiciously chosen values of (p, n).
Two measurements are made on the isotherm Tref at the values
(p1, n1) and (p2, n2). Two other measurements are on the isotherm
T at (p2, n3) and (p3, n1). spRIGT connects the points (p2, n2) and
(p2, n3). cfRIGT connects the points (p1, n1) and (p3, n1). All four
points are used to approximately implement rRIGT via Eq. (15).

Compared with other forms of gas thermometry, relative RIGT
has significant advantages at low temperatures. We have already
emphasized the availability of microwave network analyzers and
the possibility of avoiding state-of-the art pressure measurements.
By measuring several microwave resonance frequencies at each
state, certain imperfections of the measurements and modeling can
be detected. Comparisons of the frequencies of transverse elec-
tric (TE) and transverse magnetic (TM) microwave modes might
detect the presence of dielectric films such as oxides, oil deposits,
or adsorbed water on the cavity’s walls.92 Because relative RIGT
relies on microwave frequency ratios, the precise shape of the cav-
ity is unimportant. Cavity shapes other than quasispheres may be
advantageous in particular applications.

RIGT is simpler and more rugged than relative AGT (rAGT)
because RIGT requires neither delicate acoustic transducers nor
acoustic ducts. However, RIGT is unlikely to replace rAGT at ambi-
ent and higher temperatures because RIGT is more sensitive to the
cavity’s dimensions than rAGT by the factor 1/(εr − 1), which typ-
ically ranges from 200 to 20 000. Furthermore, microwave RIGT is
especially sensitive to polar impurities. Adding 1 ppm (mole frac-
tion) of water vapor to dilute argon gas at 293 K will increase the
dielectric constant of the gas by 18 ppm and increase the square of
the speed of sound by 0.12 ppm. If the water vapor were undetected,
these changes would reduce argon’s apparent RIGT temperature by
18 ppm and increase argon’s apparent rAGT temperature by 0.12
ppm. For helium, the corresponding temperatures are reduced by
145 ppm and 4 ppm.

2.2.4. Constant volume gas thermometry
The website of the International Bureau of Weights and Mea-

sures includes a document (“Mise en pratique. . .”) that indicates
how the SI base unit, the kelvin, may be realized in practice using
four different versions of gas thermometry.93 Surprisingly, this doc-
ument omits CVGT, the version of gas thermometry that was the
primary basis of ITS-90. In this section, we briefly describe the oper-
ation of a particular realization of CVGT and the inconsistent results
it generated. This may explain why CVGT was omitted from the

Mise en pratique. We mention the post-1990 theoretical and exper-
imental developments that suggest an updated realization of CVGT
might generate very accurate realizations of the kelvin.

CVGT at NBS/NIST began in 1928 and concluded in 1990. We
denote the most-recent realization of NBS/NIST’s relative CVGT by
“CVNIST90.” The heart of CVNIST90 was a metal-walled, cylindrical
cavity (“gas bulb”; V ≈ 407 cm3) attached to a “dead space” com-
prised of a capillary leading from the bulb to a constant-volume valve
at ambient temperature. The valve separated the gas bulb from a
pressure-measurement system. A typical temperature measurement
using CVNIST90 began by admitting Nr ≈ 0.0023 mol of helium into
the gas bulb at a measured reference pressure (pr ≈ 13 kPa) and a
measured reference temperature (Tr ≈ TTPW).94,95 Then, the valve
was closed to seal the helium in the gas bulb and dead space. The
bulb was moved into a furnace that was maintained at the unknown
temperature T to be determined by CVGT. After the gas bulb equi-
librated, the valve was opened to measure the pressure p again.
The temperature ratio T/Tr was determined by applying the virial
equation at each temperature:

T
Tr
=

pVT

NTR(1 + (BN/V)T + ⋅ ⋅ ⋅ )

NrR(1 + (BN/V)r + ⋅ ⋅ ⋅ )

prVr
(16)

Thus, T/Tr is determined, in leading order, by the three ratios: p/pr,
VT/Vr, and Nr/NT . For CVNIST90, Nr/NT ≠ 1 because a tiny quan-
tity of helium flows from the bulb into the capillary when the bulb is
moved into the furnace. This quantity was calculated using the mea-
sured temperature distribution along the capillary. For CVNIST90,
VT/Vr was calculated using auxiliary measurements of the linear
thermal expansion of samples of the platinum–rhodium alloy com-
prising the gas bulb. These samples had been cut out of the gas bulb
after completing all the CVGT measurements.

The simplicity of Eq. (16) hides the many complications of
CVGT. We mention three examples. (1) During pressure measure-
ments, helium outside the gas bulb was maintained at the same
pressure as the helium inside the gas bulb. (2) Thermo-molecular
and hydrostatic pressure gradients in the capillary were taken into
account. (3) At high temperatures, creep in the gas bulb’s volume
was detected by time-dependent pressure changes; the pressure was
extrapolated back in time to its value when the bulb was placed in
the furnace.

We denote the second most recent realization of NBS/NIST’s
relative CVGT by “CVNBS76.”96 Both CVNIST90 and CVNBS76 shared
apparatus and many procedures. However, Ref. 94 lists 11 signifi-
cant changes. Here, we mention only one. CVNIST90’s two cylindrical
gas bulbs had been fabricated entirely from sheets of (80 wt. % Pt
+ 20 wt. % Rh) alloy. The sides and bottom of CVNBS76’s gas bulb
were fabricated from the same alloy; however, the top of the bulb
was inadvertently fabricated from (88 wt. % Pt + 12 wt. % Rh) alloy.
Perhaps the slight differences in thermal expansions of these alloys
led to an anomalous thermal expansion of the volume of CVNBS76’s
gas bulb.

Unfortunately, the results from CVNIST90 and CVNBS76 were
inconsistent, within claimed uncertainties, in the range of temper-
ature overlap (505 K ≤ T ≤ 730 K). An approximate expression
for the differences is: TNIST90 − TNBS76 ≈ 0.090 × (T/K − 400) mK.
This inconsistency was not explained by the authors of CVNIST90
nor by the authors of CVNBS76. Furthermore, the authors did not
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assert the more recent CVNIST90 results were more accurate than the
earlier CVNBS76 results. The working group that developed ITS-90
had no other data, from NIST or elsewhere, that were suitable for
resolving the inconsistency. Therefore, the working group required
ITS-90 to be the average of TNIST90 and TNBS76 in the overlap
range.97

In the range 2.5–308 K, ITS-90 relied, in part, on another real-
ization of CVGT that had a troubled history. Astrov et al. deduced
the thermal expansion of their copper gas bulb’s volume from mea-
surements of the linear thermal expansion of copper samples taken
from the block used to manufacture their bulb.98 However, the ther-
mal expansion data were inconsistent with other data for copper.
Astrov’s group repeated the thermal expansion measurements using
another (better) dilatometer. The more recent expansion data, pub-
lished in 1995, changed the values of T by more than 50 × 10−6T
in the range 130 K < T < 180 K, where the uncertainties had been
estimated as ≤ 26 × 10−6T.56

Recently, a working group of the Consultative Committee
for Thermometry reviewed primary thermometry below 335 K.20

Astrov’s revised CVGT values are close to the current consen-
sus, which is primarily based on AGT and DCGT. The work-
ing group retained three other low-temperature realizations of
CVGT. Post-1990 AGT measurements of T − T90 near 470 and
552 K indicate that CVNIST90 is indeed more accurate than
CVNBS76.50 Despite the fact that CVGT was the primary basis
for the ITS-90, the Mise en pratique does not include CVGT.
We speculate that no temperature metrology group is pursu-
ing CVGT because: (1) CVGT is complex, (2) Astrov et al.’s
thermal expansion problem, (3) unexplained problems with
NBS/NIST’s CVGT, and (4) rapid advances in other versions of gas
thermometry.

We now ask: is CVGT a viable method of primary thermom-
etry today? The gas bulb of a modern CVGT would incorporate
feedthroughs to enable measuring microwave resonance frequen-
cies of the bulb’s cavity. The resonance frequencies would determine
the bulb’s volumetric thermal expansion, thereby avoiding auxil-
iary measurements of linear thermal expansion and also avoiding
the assumption of isotropic expansion. If the bulb incorporated
a valve and a differential-pressure-sensing diaphragm, the dead-
space corrections would vanish. (The diaphragm’s motion could
be detected using optical interferometry.) Today, the ab initio
values of B(T) would reduce the uncertainty component from
B(T) to near zero. A contemporary CVGT could operate at
∼5× higher helium densities than published experiments without
generating significant uncertainties from either the virial coeffi-
cients or from pressure-ratio measurements. The higher density,
together with simultaneous pressure and microwave measurements,
might enable separation of the bulb’s creep from contamination by
outgassing. Most outgassing contaminants affect helium’s dielec-
tric constant, refractivity, and speed of sound much more than
they affect helium’s pressure, an advantage of CVGT. However,
CVGT inherently uses fixed aliquots of gas. Therefore, CVGT
cannot benefit from flowing gas techniques that have been used,
for example, in high-temperature AGT.50 In summary, contem-
porary CVGT could be competitive with other forms of primary
gas thermometry, with a possible exception at the highest tem-
peratures, where flowing gas might be required to maintain gas
purity.

2.3. Pressure metrology
Traditionally, standards based on the realization of the mechan-

ical definition of pressure, the normal force applied per unit area
onto the surface of an artifact, include pressure balances and liq-
uid column manometers. The combined overall pressure working
range of these instruments extends over seven orders of magnitude,
roughly between 10 Pa and 100 MPa. Liquid column manometers
achieve their best performance, with relative standard uncertainty
as low as 2.5 ppm, near their upper working limit at a few hundred
kPa.99 With a few notable exceptions, the typical relative standard
uncertainty of pressure balances spans between nearly 1 × 10−3 at
10 Pa, the lowest end of their utilization range, down to 2–3 ppm
in the range between 100 kPa and 3 MPa.99,100 One such exception
is the remarkable achievement of a relative standard uncertainty as
low as 0.9 ppm for the determination of helium pressures up to 7
MPa,77 though this achievement required the extensive dimensional
characterization, and the cross-float comparison, of the effective
areas of six piston–cylinder sets manufactured to extraordinarily
tight specifications, with a research effort lasting several years. In
spite of this outstanding result, the accurate characterization of
pressure balances is challenging, due to the complexity of the dimen-
sional characterization of the cross-sectional area of piston–cylinder
assemblies, which includes finite-element modeling of their defor-
mation under pressure.101,102 International comparisons periodically
provide realistic estimates of the average uncertainty of realization
of primary standards among NMIs. In 1999, a comparison of pri-
mary mechanical pressure standards in the range 0.62 MPa < p < 6.8
MPa, involving five NMIs leading in pressure metrology exchang-
ing a selected piston–cylinder set, was completed.103 The resulting
differences ΔAeff ≡ 106

(Aeff/⟨Aeff⟩ − 1) of the effective area Aeff of
the piston from the reference value ⟨Aeff⟩ spanned beyond their
combined uncertainties with such significant spread to show that
the pressure standards realized by different NMIs were mutually
inconsistent.

These inconsistencies strengthened the motivation for the
development of standards realizing a thermodynamic definition of
pressure by the experimental determination of a physical property
of a gas having a calculable thermodynamic dependence on density,
combined with accurate thermometry. This possibility was initially
proposed in 1998 by Moldover,104 who envisaged, already at that
time, the potential of first-principles calculation to accurately pre-
dict the thermodynamics and electromagnetic properties of helium
and the maturity of experiments determining the dielectric constant
using calculable capacitors. The metrological performance of ther-
modynamic pressure standards has continuously improved over the
last two decades to become increasingly competitive in terms of
accuracy, providing important alternatives that may test the exact-
ness of the mechanical standards discussed above and eventually
replace some of them. Also, due to their reduced complexity and
bulkiness, simplified versions of thermodynamics-based standards
may be more flexibly adapted to specific technological and scien-
tific applications of pressure metrology. The best-performing recent
realizations of gas-based pressure standards include measurements
of the dielectric constant using capacitors and of the refractive
index at microwave and optical frequencies, respectively using res-
onant cavities and Fabry–Pérot refractometers. In Secs. 2.3.1 and
2.3.2, we separately discuss the most notable of these developments
depending on the pressure range of their application.
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2.3.1. Low pressure standards (100 Pa to 100 kPa)
In the low vacuum regime, several experimental methods are

available which may provide alternative routes for traceability to the
pascal. For the cases involving optical measurements, these methods
include: (1) refractometry (interferometry), implemented in vari-
ous configurations that employ single or multiple cavities or cells
with fixed or variable path lengths; (2) line-absorption methods. The
achievements and perspectives of all these methods were recently
reviewed.105

At present, Fabry–Pérot refractometry with fixed length opti-
cal cavities (FLOC) has demonstrated the lowest uncertainty for
the realization of pressure standards near atmospheric pressure and
down to 100 Pa. In principle, the uncertainty of this method is
limited by several optical and mechanical effects, most importantly
by the change in the length of the cavity due to compression by
the test gas, with the same sensitivity to the imperfect estimate
of the compressibility κT that affects RIGT. However, this major
uncertainty contribution may be drastically reduced, though not
completely eliminated, by measuring the pressure-induced length
change of a second reference FLOC monolithically built on the
same spacer, which is kept continuously evacuated. In 2015, a dual-
cavity FLOC achieved an extremely accurate determination of the
refractive index of nitrogen at λ = 632.9908 nm, T = 302.9190 K and
100.0000 kPa by reference to the pressure realized by a primary stan-
dard mercury manometer, and using refractive index measurements
in helium to determine the compressibility.106 A comparison of the
pressures determined by the nitrogen refractometer with the mer-
cury manometer below the primary calibration point at 100 kPa
down to 100 Pa showed relative differences within 10 ppm. A direct
comparison between laser refractometry with nitrogen and a mer-
cury manometer was realized one year later also at NIST.18 The
comparison showed relative differences between these instruments
within 10 ppm over the range between 100 Pa and 180 kPa. The
laser refractometer outperforms the precision and repeatability of
the liquid manometer and demonstrates a pressure transfer standard
below 1 kPa that is more accurate than its current primary realiza-
tion. Such remarkably low uncertainty also favorably compares to
the best dimensional characterization and modeling of non-rotating
piston–cylinder assemblies.107

In 2017, more accurate measurements in helium and nitrogen
were performed between 320 and 420 kPa using a triple-cell het-
erodyne interferometer referenced to a carefully calibrated piston
gauge, showing relative differences within 5 ppm with uncertain-
ties on the order of 10 ppm.83 Some pressure distortion errors
affecting FLOC might in principle be eliminated by refractive index
measurement with a variable length optical cavity (VLOC). The
realization of this technique requires extremely challenging dimen-
sional measurements, with displacements on the order of 15 cm
that must be determined with picometer uncertainty.108 Gas mod-
ulation techniques, with the measuring cavity frequently and repeat-
edly switched between a filled and evacuated condition, have been
recently developed,109,110 aiming at the reduction of the effects of
dimensional instabilities and other short- and long-term fluctua-
tions that affect Fabry–Pérot refractometers. A novel realization
of an optical pressure standard, based on a multi-reflection inter-
ferometry technique, has also been recently developed, demon-
strating the possible realization of the pascal with a relative

standard uncertainty of 10 ppm between 10 and 120 kPa.111 Optical
refractometry for pressure measurement is also being pursued at
other NMIs.112,113

With accurate pressure measurement, these optical meth-
ods can yield the thermodynamic temperature, becoming another
approach to RIGT. This was demonstrated in Ref. 83, where a refrac-
tometer was used to measure the Boltzmann constant (albeit with
higher uncertainty than AGT and DCGT measurements) prior to
the 2019 SI redefinition.

At microwave frequencies, the realization of a low-pressure
standard requires a substantial enhancement in frequency resolu-
tion. Recently, it was demonstrated by Gambette et al. that by coat-
ing the internal surface of a copper cavity with a layer of niobium,
and working at temperatures below 9 K where niobium becomes
superconducting, pressures between 500 Pa and 20 kPa can be real-
ized very precisely.114,115 The overall relative standard uncertainty of
this method is currently 0.04%, with the largest contribution from
non-state-of-the-art thermometry, which is likely to be substantially
reduced in future work.

2.3.2. Intermediate pressure standards (0.1–7 MPa)
Differently than initially envisaged, the first realization of a

thermodynamic pressure standard was not obtained by capacitance
measurements, but using a microwave resonant cavity working in
the GHz frequency range, i.e., by a RIGT method. A main motivation
for this choice was the development of quasi-spherical microwave
resonators, whose internal triaxial ellipsoidal shape slightly deviates
from that of a perfect sphere.92 This particular geometry resolved
the intrinsic degeneracy of microwave modes, allowing enhanced
precision in the determination of resonance frequencies.

By 2007, Schmidt et al.81 demonstrated a pressure standard
based on the measurement of the refractive index of helium to
achieve overall relative pressure uncertainty ur(p) within 9 × 10−6

between 0.8 and 7 MPa. At the upper limit of the pressure range,
the uncertainty was dominated by the uncertainty of the isothermal
compressibility κT of maraging steel, which was determined using
resonance ultrasound spectroscopy (RUS).76 Recently, Gaiser et al.19

realized Moldover’s original proposal of a capacitance pressure stan-
dard using DCGT techniques that they had refined during their mea-
surements of the Boltzmann constant. They achieved the remark-
ably low uncertainty ur(p) = 4.4 × 10−6 near 7 MPa. Recently, the
same experimental data were re-analyzed to take advantage of the
increased accuracy of the ab initio calculation of the second density
virial coefficient B of He,11 reducing the overall uncertainty of the
capacitance pressure standard to ur(p) = 2.2 × 10−6.116

At pressures below 1 MPa, the uncertainty of the realization
of a pressure standard based on DCGT or RIGT with helium is
limited by the resolution of relative capacitance or frequency mea-
surements. This limit would be immediately reduced by up to one
order of magnitude by using, instead of helium, a more polarizable
gas like neon or argon. However, while a significant improvement
of the interaction potential, and hence of the ab initio calculated B,
has recently been achieved for neon117 and for Ar,118 it is not likely
that the best available calculations of the molar polarizability Aε of
neon65 or argon66 can be improved sufficiently to replace experi-
ment in the near future. However, an experimental estimate of Aε of
both neon and argon was obtained by comparative DCGT measure-
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ments relative to helium, with relative uncertainty of 2.4 ppm,63 and
may now be used for the realization of pressure standards with other
apparatus. For similar purposes, the ratio of the refractivity of sev-
eral monatomic and molecular gases, namely Ne, Ar, Xe, N2, CO2,
and N2O, to the refractivity of helium was determined at T = 293.15
K, λ ∼ 633 nm, with standard uncertainty within 16 × 10−6, using
interferometry.119 At pressures higher than a few MPa, the imper-
fect determination of the deformation of the cavity under pressure
would impact the overall uncertainty of a pressure standard based on
RIGT or DCGT. One way to overcome this limit would be to mea-
sure the refractivity of two gases at identical values of an unknown
pressure using a single apparatus at a known temperature. If the
refractivity of both gases were known (either from ab initio calcu-
lations or reference measurements), the two measurements would
determine both the effective compressibility κT of the apparatus and
the unknown pressure. The same strategy is also applied to increase
the upper pressure range where refractometry methods like FLOC
can be applied, though use of helium for the determination of distor-
tion effects requires correcting for diffusion within the glasses used
for the construction of these apparatuses.120

2.4. High pressures and equation of state
Up to this point, we have considered interactions between

temperature and pressure standards and the rigorously calculated,
low-density properties of the noble gases including the polarizabil-
ity and second and third density and dielectric virial coefficients. We
now compare ab initio calculations with measurements at pressures
above 7 MPa and at correspondingly higher densities. The literature
includes temperature-dependent values of 6 density virial coeffi-
cients of helium,121 7 acoustic virial coefficients of krypton,122 and
6 density virial coefficients of argon.123 These calculations used the
best ab initio two-body and nonadditive three-body potentials that
were available at the time of publication. Many-body non-additive
potentials involving four or more bodies, which are needed for the
exact calculation of virial coefficients from the fourth onwards, are
not available and are generally neglected, resulting in an uncon-
trolled approximation. Here, we compare measurements of the
density of helium ρmeas(p, T) with values calculated ab initio. This
comparison avoids fitting ρmeas(p, T) to the VEOS because such
fits yield highly correlated values for the separate virial coefficients,
each with large uncertainties. Later in this section, we comment on
comparisons using speed-of-sound data.

Measurements of gas densities with uncertainties below 0.1%
are expensive and rare because they are not required for chemi-
cal and mechanical engineering. The uncertainties of most process
models are dominated by imperfect models of equipment (heat
exchangers, compressors, distillation columns, etc.) and/or imper-
fect knowledge of the composition of feedstocks and products. An
example of a demanding application of gas density and composition
measurements is custody transfer of natural gas as it flows through
large pipelines near ambient temperature and at high pressures (e.g.,
7 MPa). An international comparison among NMIs achieved a k = 2
volumetric flow uncertainty of only 0.22%.124 In this context, den-
sity and composition measurements with uncertainties of order 0.1%
are satisfactory for converting volumetric flows into mass flows and
heating values.

In Fig. 5, the remarkable data of McLinden and Lösch-Will
are used to test the ab initio VEOS of helium in the ranges 1 MPa

< p < 38 MPa and 223 K < T < 323 K.125 These data were acquired
using a magnetic suspension densimeter. A weigh scale determined
the buoyant forces on two “sinkers” immersed in the helium. The
data are precise, well-documented, and traced to SI standards with
a claimed, k = 2, density uncertainty of 0.015% + 0.001 kg/m3 at
the temperature extremes and at the highest density. These features
attracted previous comparisons with theory.21,121,126

For the present comparison, where recently published theo-
retical values of the virial coefficients are used, we converted the
measured temperatures from the ITS-90 to thermodynamic temper-
atures using Ref. 20 and we converted the measured mass densities to
molar densities using the defined value of the universal gas constant
and the molar mass for McLinden and Lösch-Will’s helium sample.
At densities below ∼4000 mol/m3, the uncertainties and the values of
(ρmeas/ρcalc − 1) diverge on isotherms as ρ−1 and/or p−1. (See Fig. 5.)
These low-density divergences result from time-dependent drifts in
the zeros of the densimeter and/or pressure transducer. Because
the divergences contain more information about the apparatus than
about helium’s VEOS, we do not discuss them.

At densities above 4000 mol/m3, we compared the ρmeas(p, T)
data of McLinden and Lösch-Will125 with the values of ρ∗calc(p, T)
that are implicitly defined by the truncated VEOS:

p
ρ∗calcRT

= 1 + Bcalcρ∗calc + Ccalcρ∗calc
2
+Dcalcρ∗calc

3 (17)

The fully quantum-mechanical values of Bcalc, Ccalc, and Dcalc (the
latter computed neglecting four-body interactions) were taken from
Refs. 11, 127, and 126, respectively. The top panel of Fig. 5 shows that
the differences trend downward as the densities increase above about
4000 mol/m3. This trend, as a function of (p, T), was noted in Ref.
126, together with the suggestion “there may have been a small error
in the calibration for the sinkers. . . .” However, the trend (Fig. 5,
top) plotted as a function of density suggests that ρmeas is sensitive
to some of the truncated virial coefficients. The truncation sugges-
tion is confirmed by the middle panel of Fig. 5, which includes in
ρcalc(p, T) the two additional terms Ecalc(T)ρ4 and Fcalc(T)ρ5 calcu-
lated semi-classically in Ref. 121. Additional terms [e.g., Gcalc(T)ρ6

from Ref. 121] are less than 1.3 ppm, too small to be visible
in Fig. 5.

The claimed k = 2 uncertainty of ρmeas is 150 ppm;125 the span
of the upper panels of Fig. 5 is ±150 ppm. The dashed curves (- -) in
the middle panel of Fig. 5 represent upper bounds to the uncertainty
of ρcalc(T, ρ) at 223 K. For these upper bounds, we used the k = 2
uncertainties of the virial coefficients U(B), U(C), . . . provided by
their authors. In Eq. (17) we replaced B with B +U(B); we replaced
C with C +U(C), etc. The uncertainties of ρcalc(T, ρ) are smaller at
higher temperatures. We conclude that ρcalc agrees with ρmeas well
within combined uncertainties.

At densities above ∼4000 mol/m3, the differences (ρmeas/ρcalc
− 1) are nearly independent of the density; however, the average
densities are 34 ppm larger than their expected values ρcalc. These
offsets are well within the claimed measurement uncertainties (k = 2,
∼150 ppm). However, as shown in the lower panel of Fig. 5, the
offsets have both a random and a systematic dependence on the tem-
perature. The systematic temperature dependence can be treated as
a correction to the calibration of the sinkers’ densities ρsinker(p, T).
Such a correction does not remove the spread (±14 ppm) among the
four isotherms at 273 K. Possible causes of this spread are changes
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FIG. 5. Top: Differences (in parts per million) on isotherms between measured densities and the densities calculated using the ab initio terms Bρ, Cρ2, Dρ3, in the truncated
VEOS. Middle: Same as top with additional theoretical terms: Eρ4, Fρ5. All data with ρmeas > 4000 mol/m3 are within 80 ppm of ρcalc. The claimed (k = 2) uncertainty of
ρmeas is the span of the figure: ±150 ppm. The dashed curves (- -) bound the estimated uncertainty of ρcalc at 223 K. Bottom: Averaged deviations from ρcalc for each isotherm
in the high-pressure range 10 MPa < p < 40 MPa. The dashed line fitted to the points corresponds to calibrating the temperature dependence of the sinker’s density using
the helium VEOS. The symbol ◻ identifies an anomalous isotherm that was measured with helium of lesser purity.

between runs of temperature (±3.8 mK) and/or of impurity content
(e.g., ±2.3 ppm of N2). In any case, the offsets are smaller than the
claimed uncertainties of ρmeas(p, T).

Moldover and McLinden21 extended McLinden and Lösch-
Will’s data125 to 500 K. The extended data are a less-stringent test
of the VEOS than Fig. 5 because they span the same pressure range
(p < 38 MPa) at higher temperatures; therefore, they span a smaller

density range. If McLinden’s data could be extended to lower tem-
peratures with comparable uncertainties, they would test helium’s
VEOS in greater detail and they might reach a regime where
U(ρmeas) < U(ρcalc). Schultz and Kofke conducted much more
detailed tests of McLinden and Lösch-Will’s data.121 We agree
with their conclusion that the data are consistent with the VEOS
calculated ab initio.
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It may be possible to significantly reduce the uncertainty of
ρmeas by improving magnetic suspension densimeters, as suggested
by Kayukawa et al.128 They fabricated sinkers from single crystals
of silicon and germanium because these materials have outstand-
ing isotropy, stability, and well-known physical properties. Also,
they refined the model and the functioning of their magnetic sus-
pension so that it was independent of the magnetic properties
of the fluid under study at the level of 1 ppm. They measured
the density of a liquid near ambient temperature and pressure
with a claimed k = 1 relative uncertainty of 5.4 × 10−6. To date,
they have not demonstrated this uncertainty far from ambient
temperature and pressure. Even if ρmeas achieved such low uncer-
tainties, tests of the VEOS would have to solve problems arising
from impure gas samples and imperfect temperature and pressure
measurements.

Alternative methods of measuring equations of state have been
reviewed by McLinden.129 Several methods require filling a con-
tainer of known volume Vcont(p0, T0) with a known quantity of
gas and then measuring the pressure as the temperature is changed.
These methods resemble the CVGT method discussed in Sec. 2.2.4.
Like CVGT, they require accurate values of Vcont(p, T); however,
unlike CVGT, testing a VEOS requires much higher pressures.
Determining Vcont(p, T) over wide ranges is complex because: (1)
containers comprised of metal alloys have anisotropic elastic and
thermal expansions; (2) containers have seals and joints or welds
which have complicated mechanical properties; (3) alloys creep
and/or anneal under thermal and mechanical stresses. In summary,
volumetric methods are unlikely to replace Archimedes-type den-
simeters because Vcont(p, T) is an assembled object subjected to
complicated stresses; in contrast, the densimeter’s sinkers are single
objects subjected to hydrostatic pressure.

Remarkably, the Burnett method130 of measuring the equa-
tion of state requires neither determining Vcont(p, T) nor measuring
quantities of gas. This method uses two pressure vessels with sta-
ble volumes Va and Vb. On each isotherm, gas is admitted into Va
and the pressure is measured. The gas is allowed to expand so that
it fills both Va and Vb and the pressure is measured again. Vb is
evacuated and the process is repeated several times. The measured
pressures on each isotherm are fitted to the VEOS and an apparatus
parameter: the volume ratio at zero pressure (Va,0 + Vb,0)/Va,0. The
pressure dependences of Va and Vb must also be known. Usually,
they are estimated from elastic constants and models of the pressure
vessels; therefore, precise estimates encounter complications of esti-
mating Vcont(p, T). Perhaps this explains the large scatter in Burnett
determinations of D(T).126 A fairly recent Burnett measurement of
the equations of state of nitrogen and hydrogen (353–473 K; 1–100
MPa) claimed k = 2 uncertainties of ρmeas ranging from 0.07% to
0.24%.131

In addition to ρmeas, measurements of the squared speed of
sound w2

(p, T) in gases have been used to critically test either the
VEOS122 of Eq. (7) or its acoustic analog, Eq. (1). Accurate values
of w2

(p, T) in gases are readily available. At the low gas pressures
used for acoustic thermometry, the relative expanded uncertain-
ties Ur(w

2
(p, T)) measured using quasi-spherical cavity resonators

are a few parts in 106 and are dominated by thermometry prob-
lems and/or impurities. However, uncertainties grow approximately
linearly in pressure because of imperfect models of the recoil of
the cavity’s walls in response to the resonating gas. In one study

of argon, Ur(w
2
) ≈ 1.2 × 10−4

(p/20 MPa) except near the critical
point.132 At pressures above ∼5 to ∼10 MPa, pulse-echo techniques
achieve uncertainties comparable to or smaller than resonance
techniques.122,133 Remarkably, w2 from the two techniques agreed
within 60–200 ppm within a range of overlap (argon, 250–400 K,
∼10 to ∼20 MPa133).

It is more complex to compare w2
meas(p, T) to a calculated

VEOS than to compare ρmeas to the same VEOS. To calculate the
n-th acoustic virial coefficient from the n-th density virial coeffi-
cient, one also needs the first and second temperature derivatives
of the n-th virial coefficient as well as all the lower-order density
virial coefficients and their temperature derivatives. There are sev-
eral routes to conduct such a comparison, which are completely
equivalent. First, the temperature derivatives of the density virial
coefficients can be calculated from ab initio potentials using, e.g.,
the Mayer sampling Monte Carlo (MC) method. Second, the tem-
perature derivatives can be obtained from fits of the theoretically
calculated temperature-dependent density virial coefficients. Third,
the virial equation of state can be transformed by thermodynamic
identities into an acoustic virial equation of state or it can be inte-
grated to formulate a Helmholtz energy equation, from which the
speed of sound can be calculated. Speeds of sound calculated by
either of the two resulting equations contain contributions from
terms with higher acoustic virial coefficients than those used in
the density virial equation of state, i.e., it can be expected that
the region of convergence of this virial equation of state for the
speed of sound extends to higher pressures than that of the acous-
tic virial equation of state with virial coefficients derived directly
from density virial coefficients. These terms describe contributions
of configurations of particles which are contained in the low-order
density virial coefficients to the higher-order acoustic virial coeffi-
cients. Fourth, densities can be calculated from w2

meas(p, T) by the
method of thermodynamic integration134 and directly compared to
the density virial equation of state. As initial conditions for the
integration, the density and heat capacity on an isobar must be
known. There are subtleties to integrating w2

meas(p, T).135 In the
first method the uncertainties of the virial coefficients and their
temperature derivatives follow from the MC simulation and can
be propagated into an uncertainty of the acoustic virial equation
of state, while in the other methods the uncertainty of the density
virial coefficients or the experimental speeds of sound can be propa-
gated into the acoustic virial equation of state or calculated densities,
respectively.

For helium, Gokul et al.136 calculated the acoustic virial coef-
ficients through the seventh order by the second method outlined
above from density virial coefficients. They used the second density
virial coefficients reported by Czachorowski et al.,11 which are based
on the pair potential reported in the same work. The higher virial
coefficients were taken from the work of Schultz and Kofke.121 They
are based on the pair potential of Przybytek et al.137 and the three-
body potential of Cencek et al.138 Uncertainties in the density virial
coefficients were propagated into uncertainties in the acoustic virial
coefficients by the MC method recommended in Supplement 1 to
the “Guide to the Expression of Uncertainty in Measurement.”139

Gokul et al.136 formulated the acoustic virial equation of state as
expansion in terms of density or pressure. The uncertainty of speeds
of sound calculated with the acoustic VEOS was estimated from the
uncertainty of the acoustic virial coefficients.
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The density expansion of Gokul et al. was compared to the
experimental data of Gammon,140 Kortbeek et al.,141 and Plumb
and Cataland.142 The data of Gammon were measured with a
variable-path interferometer operating at 0.5 MHz. They cover the
temperature range between 98 and 423 K with pressures up to
15 MPa, and according to the author have an uncertainty of 0.003%
of w2. For these data, we estimated the expanded (k = 2) relative
uncertainty Ur(w

2
) = 0.000 09 by adding uncertainties of 0.003%

(for the distance between the crystals), 0.001% (for the preci-
sion), and 0.005% (for sample impurities and/or temperature errors,
based on the inconsistencies among the 14 isotherms). Gammon’s
data agree with the acoustic virial equation of state within 0.01%
with a few exceptions. The data of Kortbeek et al. were mea-
sured with a double-path-length pulse-echo technique, cover the
temperature range from 98 to 298 K at pressures between 100
MPa and 1 GPa, and, according to the authors, have an uncer-
tainty of 0.08%. They deviate from the acoustic VEOS between
a few tenths of a percent at 100 MPa up to about 4% at 298 K
and 1 GPa. These rather large deviations are due to the fact
that the acoustic virial equation of state is not converged at such
high pressures. The measurements of Plumb and Cataland cover
the low temperature range between 2.3 and 20 K at pressures
up to 150 kPa. They agree with the acoustic virial equation of
state of Gokul et al. to within 0.05% except at the lowest mea-
sured pressures of about 1.5 kPa, where the deviations reach up
to 0.18%. Gokul et al. also assessed the pressure range in which
the acoustic VEOS is more accurate than the available experimen-
tal data for the speed of sound. At low pressures, they observed
that speeds of sound calculated with the acoustic VEOS are more
accurate than the experimental data of Gammon. Gokul et al.
further noticed that speeds of sound calculated with the acous-
tic VEOS are more accurate than the experimental data of Kort-
beek et al. up to about 300 MPa depending on temperature. At
higher pressures, they considered the experimental data of Kort-
beek et al. to be more accurate than the computed virial equation
of state. This conclusion appears to be too optimistic in light of
the low uncertainty of 0.08% in the experimental data and the
rather large deviations of up to 2% from the virial equation of state
below 300 MPa.

Gokul et al. also examined the convergence behavior of the
acoustic virial equation of state more closely for the expansions
in density and pressure. They considered a virial equation of state
converged if the value of the speed of sound calculated with it
agrees with all higher orders of the expansion within a certain toler-
ance. They observed that the pressure range in which the expansion
in density converges is extended when the tolerance is increased.
However, the expansion in pressure hits a pressure limit in the
supercritical region, above which increasing the tolerance does not
extend the region of convergence farther. Above this pressure limit,
the expansion in pressure completely fails. Recently, Wedler and
Trusler measured the speed of sound in supercritical helium with
a dual-path pulse-echo technique in the temperature range between
273 and 373 K up to 100 MPa with an expanded uncertainty (k = 2)
of 0.02%–0.04%.143 Their data agree with the seventh-order acous-
tic VEOS in density of Gokul et al.136 with a few exceptions in
the whole range of the measurements within 0.025%, which shows
that this form of the VEOS is converged in the region of the
measurements.

The first calculation of the third virial coefficient of argon using
a first-principles three-body potential was performed by Mas et al.144

using the empirical pair potential developed by Aziz.145 The results
agreed almost to within combined uncertainties with the third virial
coefficients extracted from experimental data (with theoretical con-
straints) by Dymond and Alder.146 Jäger et al. calculated density
virial coefficients up to seventh order for argon with their pair and
nonadditive three-body potentials.123 The calculated virial coeffi-
cients were fitted by polynomials in temperature. The seventh-order
VEOS was compared with the very accurate (p, ρ, T) data of Gilgen
et al.,147 which were measured with a magnetic suspension densime-
ter. These data are characterized by a relative uncertainty (k = 2)
in density of 0.02%. Pressures calculated with the theoretical virial
equation of state agree with these data at the highest temperature of
the measurements, 340 K, within 0.01%.

In further work, Jäger148 used thermodynamic identities to cal-
culate several properties of argon including the speed of sound
from the virial equation of state and compared the results with the
accurate experimental data of Estrada-Alexanders and Trusler132

and Meier and Kabelac.133 The data of Estrada-Alexanders and
Trusler132 were measured with a spherical resonator and cover the
temperature range between 110 and 450 K at pressures up to 19
MPa, while the data of Meier and Kabelac were measured with a
dual-path-length pulse-echo technique and cover the temperature
range between 200 and 420 K with pressures between 9 and 100 MPa.
The expanded (k = 2) uncertainty of these datasets was estimated
to be 0.001%–0.007% and 0.011%–0.036%, respectively. At 300 and
400 K, the calculated speeds of sound agree with both experimen-
tal datasets up to 100 MPa within 0.04% and 0.08%, respectively. At
the near-critical temperature 146 K and supercritical temperature
250 K, the deviations of the calculated values from the experimen-
tal data of Ref. 132 increase with pressure from essentially zero
in the ideal-gas limit to about 0.3% at 3.7 MPa and about 0.02%
at 12.2 MPa.

In another paper, Jäger et al. presented calculations of the
second and third density virial coefficient of krypton.149 They devel-
oped a very accurate pair potential for the krypton dimer, and
nonadditive three-body interactions were described by an ab initio
extended Axilrod–Teller–Muto potential, which was fitted to quan-
tum chemical calculations of the interaction energy of equilateral
triangle configurations of three krypton atoms. El Hawary et al.122

calculated density virial coefficients from the fourth to the eighth
using the pair potential and extended Axilrod–Teller–Muto poten-
tial of Jäger et al. The calculated virial coefficients were fitted to
polynomials in temperature, and the virial equation of state was inte-
grated to formulate it as a fundamental equation of state in terms of
the Helmholtz energy. Furthermore, El Hawary et al. measured the
speed of sound in liquid and supercritical krypton between 200 and
420 K at pressures from 6.1 to 100 MPa with an uncertainty (k = 2)
of 0.005%–0.018%. At 240, 320, and 420 K, the seventh-order and
eighth-order virial equations of state agree with each other within
0.02% up to 7, 17, and 38 MPa, respectively. In the region where
the virial equation of state is sufficiently converged, the calculated
speeds of sound are systematically about 0.08% lower than the exper-
imental data. This small difference is probably due to the uncertainty
of the pair potential and the simplified treatment of nonadditive
three-body interactions with the extended Axilrod–Teller–Muto
model.
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At high density in the supercritical region where the virial
equation of state does not converge and in the liquid region, thermo-
dynamic properties can be calculated by MC or molecular-dynamics
(MD) simulations.150 Since the generation of Markov chains in MC
simulations avoids some of the numerical errors of algorithms used
to integrate the equations of motion in MD simulations, MC simu-
lations are the preferred method for calculating accurate values for
thermodynamic properties. In statistical mechanics, there are eight
basic ensembles for performing MC or MD simulations,151 which
are characterized by a thermodynamic potential, three independent
variables, and a weight factor, which describes the distribution of
systems in the ensemble, in which MC simulations of fluids can be
performed. Ströker et al.152 pointed out that the NpT ensemble, in
which the number of particles, the pressure, and the temperature
are the independent variables, is best suited for the calculation of
thermodynamic properties because only ensemble averages involv-
ing the enthalpy and volume, but no derivatives of the potential
energy with respect to volume, appear in the equations for thermo-
dynamic properties. This means that no derivatives of the potentials
are needed in a simulation.

The argon calculations of Mas et al.144 described above were
later extended by performing NVT, NpT, and Gibbs ensemble MC
simulations153 along the vapor–liquid coexistence curve. The para-
meters of the critical point agreed with experiments within 0.8% or
better.154

Ströker et al.152 carried out semiclassical MC simulations of
thermodynamic properties of argon in the NpT ensemble at the
subcritical isotherm 100 K and the supercritical isotherm 300 K at
pressures up to 100 MPa. The interactions between argon atoms
were described by the pair potential of Jäger et al.155 and the non-
additive three-body potential of Jäger et al.123 Quantum effects were
accounted for by the Feynman–Hibbs corrections to the pair poten-
tial. Calculated densities agree with the accurate data measured by
Gilgen et al.147 and Klimeck et al.156 within less than 0.01%, while
calculated speeds of sound agree within less than 0.1% with the accu-
rate experimental data of Estrada-Alexanders and Trusler132 at low
pressure in the supercritical region and Meier and Kabelac133 at high
pressure in the liquid and supercritical region.

Ströker et al.157 also performed MC simulations for liquid and
supercritical krypton. They employed the accurate pair potential
and an extended Axilrod–Teller–Muto potential of Jäger et al.149 to
account for nonadditive three-body interactions. Quantum effects
were again accounted for semiclassically. Since the potential mod-
els for krypton are not as accurate as those for argon, the deviations
of the results for the density and speed of sound from experimental
data were larger than for argon, about 0.2% and 0.36%, respectively.

2.5. Transport properties and flow metrology
In this section, we describe the impact of the ab initio calcu-

lations of the zero-density limit of helium’s thermal conductivity
λHe and viscosity ηHe. First, we mention the impact of λHe and λAr
on temperature metrology. Then, we describe how accurate values
of ηHe have been used as standards to reduce the uncertainty of
viscosity measurements of many gases by a factor of 10. We con-
clude by briefly considering the impact of accurate viscosity data
on metering process gases, for example, during the manufacture of
semiconductor chips.

As discussed in Sec. 2.2.1, AGT requires accurate values of λ
of the working gas at low densities to account for the effect of the
thermo-acoustic boundary layer on the measured resonance fre-
quencies. For example, in 2010, Gavioso et al. used helium at ∼410
kPa in a single-state, AGT determination of the Boltzmann constant
kB prior to its definition in 2019.158 They reported that a relative
standard uncertainty ur(λHe) = 0.015 generated a relative standard
uncertainty of the Boltzmann constant ur(kB) = (1–3) × 10−6.

Today, an uncertainty of (1–3) × 10−6 would be the largest con-
tributor to a state-of-the-art determination of the thermodynamic
temperature T near 273 K. At low temperatures, the uncertainty of
measured values of λHe is much larger. Below 20 K, the λHe data span
a range on the order of ±6%.159 This large an uncertainty would lead
to ur(T) > 10−5 for acoustic determinations of T. Fortunately, the
values of λHe calculated ab initio have extraordinarily small uncer-
tainties, e.g., ur(λHe) = 9.6 × 10−6 at 273 K and ur(λHe) = 7.3 × 10−5

at 10 K.10 In essence, the calculated values of λHe removed ur(λHe)

from the uncertainty budgets of acoustic thermometers based on
helium-filled quasi-spherical cavities.

Cylindrical, argon-filled cavities are being developed for high-
temperature acoustic thermometry.4,55 These projects require low-
uncertainty values of both λAr and ηAr. Low-uncertainty values of ηAr
were generated from accurate measurements of the ratios ηAr/ηHe in
the range 200–653 K and the ab initio values of ηHe. Then λAr(T)
was obtained by combining the ratio-deduced values of ηAr(T)
with values of the Prandtl number PrAr calculated from model
pair potentials. (Pr = Cpη/λ, where Cp is the constant-pressure heat
capacity per mass. For the noble gases, Pr is only weakly sensitive to
the potential.)160–162 The measured ratios ηAr/ηHe were consistent,
within a few tenths of a percent, with highly accurate measurements
made with an oscillating-disk viscometer163 and with calculations of
ηAr based on ab initio Ar–Ar potentials.164 Thus, the needs of argon-
based acoustic thermometry are now met at all useable temperatures.
To put this achievement in context, we note that measuring the ther-
mal conductivity of dilute gases is difficult, even for noble gases
near ambient temperature and pressure. Evidence for this appears in
Lemmon and Jacobsen’s correlation of the “best” measurements of
λAr and ηAr near ambient temperature (270–370 K) and pressure.165

The average absolute deviations of selected measurements from their
correlation ranged from 0.24% to 1.0%. Lemmon and Jacobsen esti-
mated the uncertainty of the correlated values of λAr was 2% and
the uncertainty of ηAr was 0.5%. (With the benefit of ab initio cal-
culations and ratio measurements, we now know their correlation
overestimated λAr by 0.54% at 270 K and by 0.45% at 370 K.)

In 2012, Berg and Moldover reviewed measurements of the vis-
cosity of 11 dilute gases near 25 ○C.166 These measurements were
made using 18 different instruments that used five different operat-
ing principles and produced 235 independent viscosity ratios during
the years 1959–2012. Using the ab initio value of ηHe at 25 ○C as a
reference, the viscosities of the ten other gases (Ne, Ar, Kr, Xe, H2,
N2, CH4, C2H6, C3H8, SF6) were determined with low uncertainties
ur(η) ranging from 0.000 27 to 0.000 36. These ratio-derived uncer-
tainties are less than 1/10 the uncertainties claimed for absolute
viscosity measurements, such as the measurements of ηAr correlated
by Lemmon and Jacobsen.165 Now, any one of these gases can be
used to calibrate a viscometer within these uncertainties. Such ratio-
based calibrations have reduced uncertainties of η for many other
gases167 and they have been extended to a wide range of tempera-
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tures.168 During their study of viscosity ratios, Berg and Moldover
observed that the viscosity ratios determined using one instrument
(a magnetically suspended, rotating cylinder) were anomalous. Their
observation led to an improved theory of the instrument, thereby
illustrating the power of combining a reliable standard ηHe(T) with
precise ratio measurements.169

Accurate measurements of gas flows are required for tightly
controlling manufacturing processes (e.g., delivery of gases to semi-
conductor wafers for doping). In general, gas flow meters are cal-
ibrated using a benign, surrogate gas over a range of flows and
pressures, but only near ambient temperature. However, calibrated
meters are often used to measure/control flows of reactive process
gases [e.g., Ga(CH3)3, WF6] under conditions differing from the
calibration conditions. An accurate transition between gases and
conditions can be made using laminar flow meters for which there
is a physical model (similar to the model of a capillary tube). Also
needed are data for the virial coefficients of the process gas and the
viscosity ratio170

ηprocess(pprocess, Tprocess)

ηsurrogate(psurrogate, Tsurrogate)
.

Thus, there is a need for viscosity-ratio data for many difficult-to-
measure gases over a moderate range of densities. The acquisition
of such data would be facilitated by a reliable model for the density
dependence of the viscosity of surrogate gases such as SF6.

The initial density expansion of the viscosity has the form
η/η0 = 1 + η1ρ, where the low-density limit of the viscosity η0
depends entirely on pair interactions and the virial-like coefficient
η1 depends on the interactions among two and three molecules.
Unfortunately, unlike the density and dielectric virial coefficients
and η0, no rigorous theory exists for η1(T). An approximate the-
ory was developed by Rainwater and Friend,171,172 who presented
quantitative results based on the Lennard-Jones potential. It was
later extended with more accurate pair potentials for noble gases.173

While the results from the Rainwater–Friend model are in reason-
able agreement with the limited experimental data available for the
initial density dependence of the viscosity for noble gases,173 the
error introduced by its approximations is unknown. We note that
it is a classical theory, which introduces another source of error
for light gases (such as helium) where quantum effects might be
important, even at ambient temperatures.

3. Ab Initio Electronic Structure Calculations
3.1. Methodology of electronic structure calculations

In principle, solutions of the equations of relativistic quantum
mechanics, possibly including quantum electrodynamics (QED)
corrections, can predict all properties of matter to a precision suf-
ficient for thermal metrology applications. In practice, if the goal is
to match or exceed the accuracy of experiments, the range of sys-
tems reduces to few-particle ones. The first quantum mechanical
calculations challenging experimental measurements for molecules
appeared only in the 1960s (e.g., Ref. 174), while the first calcula-
tions relevant to metrology were published in the mid-1990s.7,175,176

Currently, the branches of metrology discussed in this review are
becoming increasingly dependent on theoretical input, as discussed
in Sec. 2.

Theory improvements leading to results with decreased uncer-
tainties proceed along three main, essentially orthogonal directions:
level of physics, truncation of many-electron expansions, and basis
set size. There exists an extended hierarchy of approaches in each
direction. For the first direction, there exists a set of progressively
more accurate physical theories that can be used in calculations rel-
evant for metrology, from Schrödinger’s quantum mechanics for
electrons’ motion in the field of nuclei fixed in space to relativistic
quantum mechanics and to QED. The second direction is relevant
for any many-electron system: one has to choose a truncation of the
expansion of the many-electron wave function in terms of virtual-
excitation operators at the double, triple, quadruple, etc. level or,
equivalently in methods that use explicitly correlated bases (depend-
ing explicitly on interelectronic distances), to take into account only
correlations of two, three, four, etc. electrons simultaneously. Third,
for any given theory and many-electron expansion level, there are
several methods of solving quantum equations specific for this level;
in particular different types of basis sets are used to expand wave
functions, resulting in different magnitudes of uncertainties from
such calculations.

The lowest theory level is Schrödinger’s quantum mechanics
for electrons moving in the field of nuclei fixed in space, i.e., quan-
tum mechanics in the Born–Oppenheimer (BO) approximation. At
the next level, one usually first accounts for the relativistic effects.
Post-BO treatment of the Schrödinger equation can be limited to
computations of the so-called diagonal adiabatic correction, which
is the simplest method of accounting for couplings of electronic and
nuclear motions, or it can fully include nonadiabatic effects, i.e.,
account for the complete couplings of these two types of motion. The
highest level of theory applied in calculations relevant to metrology
is QED, and it can be implemented at several approximations labeled
by powers of the fine-structure constant α.

The many-electron expansion starts at the independent-
particle model, i.e., at the Hartree–Fock (HF) approximation, but
this level is never used alone in calculations for metrology purposes.
For systems with a few electrons (the current practical limit is about
10), one can use the FCI expansion that potentially provides exact
solutions of Schrödinger’s equation (provided the orbital basis set is
close to completeness). In FCI, the wave function for an N-electron
system is represented as a linear combination of Slater determinants
constructed from “excitations” of the ground-state HF determinant
∣Φ0⟩

∣Ψ⟩ = c0∣Φ0⟩ +∑
r,a

cr
a∣Φ

r
a⟩ + ∑

r<s,a<b
crs

ab∣Φ
rs
ab⟩

+ ∑
r<s<t,a<b<c

crst
abc∣Φ

rst
abc⟩ + ⋅ ⋅ ⋅ , (18)

up to N-tuple excitations, where ∣Φr
a⟩ represents a singly excited

Slater determinant formed by replacing spinorbital ϕa with ϕr . Simi-
larly, ∣Φrs

ab⟩ represents a doubly excited Slater determinant formed by
replacing spinorbital ϕa with ϕr and spinorbital ϕb with ϕs, and so on
for higher excited determinants. The linear coefficients (CI ampli-
tudes) are computed using the Rayleigh–Ritz variational principle.
While the FCI method is conceptually straightforward, the compu-
tation time it requires scales with the number of electrons as N!,
and therefore it is computationally very costly. One can limit the
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expansion in Eq. (18) to a subset of excitations (for example, retain-
ing only single and double excitations leads to a method denoted
CISD), but truncated expansions are not size extensive. This means
that the CISD energy computed for very large separations between
two monomers (atoms or molecules) is not equal to the sum of
monomers’ energies computed at the CISD level. Only FCI is free
of this problem. Thus, truncated CI expansions are not appropriate
for calculations of interaction energies.

Another potentially exact approach is to expand the wave func-
tion in an explicitly correlated all-electron basis set. The set most
often used in metrology-related applications is the basis set of explic-
itly correlated Gaussian (ECG) functions. If basis functions involve
all electrons (AEs), expansions in this basis approximate solutions
of Schrödinger’s equation in the BO approximation. For He2, a
four-electron system, the expansion can be written as177

Ψ = A4 Ξ00
4 P̂ {c0ϕ0 +

K

∑
k=1

ck ϕk(r1, r2, r3, r4)}, (19)

where A4 is the four-electron antisymmetrizer, Ξ00
4 = (αβ −

βα)(αβ − βα) is the standard four-electron singlet spin function, P̂
is the point-group symmetry projector, P̂ = 1

2(1 + ı̂)with ı̂ inverting
the wave function through the geometrical center, ck are variational
parameters, and ϕk, k > 0 are ECG basis functions. The function ϕ0 is
the product of ECG functions for the two helium atoms. The explicit
form of ϕk, k > 0, functions is

ϕk(r1, r2, r3, r4) =
4

∏
i=1

e−αki ∣ri−Aki ∣
2 4

∏
i>j=1

e−βkij ∣ri−r j ∣
2

, (20)

where αki, βkij, and Aki = (Xki, Yki, Zki) are nonlinear variational
parameters. For a given set of nonlinear parameters, the linear para-
meters are obtained using the Rayleigh–Ritz variational method. The
simplest way to optimize the nonlinear ones is to use the steepest-
descent method, recalculating the linear parameters in each step
of this method. In actual applications, significantly more advanced
optimization methods are used.

Currently, the standard approach to account for electron corre-
lation effects is the coupled cluster (CC) method with single, double,
and noniterative triple excitations [CCSD(T)]. To reduce uncertain-
ties of CCSD(T), one can use the CC methods that include full triple,
T, noniterative quadruple, (Q), and full quadruple, Q, excitations.
The CC method represents the wave function in an exponential form

∣ΨCC⟩ = eT̂
∣Φ0⟩, (21)

where the operator T̂ is the sum of excitation operators

T̂ = T̂1 + T̂2 + T̂3 + ⋅ ⋅ ⋅ + T̂N. (22)

The operators Ti can be written in terms of pairs of creation r̂ †, ŝ †

and annihilation â, b̂ operators replacing the occupied spinorbitals
ϕa and ϕb by the virtual ones ϕr and ϕs. For the two lowest ranks, we
have

T̂1 =∑
ar

tr
a r̂ †â (23)

T̂2 =
1
(2!)2∑

abrs
trs
ab r̂ † ŝ †b̂â. (24)

The excitation operators r̂ †â, r̂ † ŝ †b̂â, etc. acting on the ground-
state determinant produce the same excited determinants as those
appearing in Eq. (18). For example,

r̂ † ŝ †b̂â∣Φ0⟩ = ∣Φrs
ab⟩. (25)

However, the amplitudes t are different from the amplitudes
c. The former amplitudes are obtained by using the expansion
(21) in the Schrödinger equation and projecting this equation with
subsequent determinants from Eq. (18). Since the resulting set of
equations is nonlinear, the solution is obtained in an iterative way.
If all the excitation operators are kept in Eq. (22), the method is
equivalent to the FCI method, but this expansion is almost always
truncated. The simplest CC approach is that of CC doubles (CCD),
in which T̂ is truncated to

T̂CCD = T̂2. (26)

The simplest extension of this model is obtained by including also
single excitations (CCSD), i.e.,

T̂CCSD = T̂1 + T̂2. (27)

The CCSD method is most often used with orbital basis sets, but can
also be used with ECGs, which are then used to expand two-electron
functions resulting from the actions of T̂2 and are called in this con-
text Gaussian-type geminals (GTGs). Higher-rank approximations
are

T̂CCSDT = T̂1 + T̂2 + T̂3, (28)

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4. (29)

An approximation to CCSDT is a method denoted as CCSD(T),
where the coefficients t of single and double excitations in Eqs. (23)
and (24) are computed iteratively while those for triple excitations
are evaluated using perturbation theory. A similar approximation,
denoted CCSDT(Q), can be made for the CCSDTQ method. In
contrast to the truncated CI expansions, the truncated CC expan-
sions are always size extensive. This results from the fact that the
exponential ansatz of Eq. (21) can be factored for large separa-
tions between subsystems into a product of exponential operators
for subsystems. The CC method is applied to interatomic or inter-
molecular interactions in the supermolecular fashion, i.e., subtract-
ing monomers’ total energies from the total energy of a cluster.
Due to size extensivity, the resulting potential-energy surface (PES)
dissociates correctly.

Another option for computing interaction energies at theory
levels similar to truncated CC is symmetry-adapted perturbation
theory (SAPT).178–181 The basic assumption of SAPT is the parti-
tioning of the total Hamiltonian H of a cluster into the sum of the
Hamiltonians of separated monomers

H0 = HA +HB + ⋅ ⋅ ⋅ (30)

and of the perturbation operator V that collects Coulomb interac-
tions of the electrons and nuclei of a given monomer with those of
the other monomers:

V = VAB + VAC + VBC + ⋅ ⋅ ⋅ (31)
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The solution of the zeroth-order problem, i.e., of the
Schrödinger equation with H0

H0Φ0 = E0Φ0, (32)

is then the product of the wave functions of free, noninteracting
monomers. This product is not fully antisymmetric since permuta-
tions of electrons between different monomers do not result only
in a change of the sign of the wave function, i.e., Φ0 does not sat-
isfy Pauli’s exclusion principle. For large intermonomer separations
R, one can ignore this problem and use the Rayleigh–Schrödinger
perturbation theory (RSPT), the simplest form of intermolecu-
lar perturbation theory. Unfortunately, RSPT leads to unphysical
behavior of the interaction energy at short R as it fails to predict the
existence of the repulsive walls on potential-energy surfaces. This
failure is the result of the lack of correct symmetry of the wave func-
tion under exchanges of electrons between interacting monomers.
Thus, to describe interactions everywhere in the intermonomer
configuration space, one has to perform symmetry adaptation, i.e.,
antisymmetrization, and this is the origin of the phrase “symmetry-
adapted.” There are several ways to do it, but the simplest is to
(anti)symmetrize the wave functions of the RSPT method. This
leads to the symmetrized Rayleigh–Schrödinger (SRS) approach,182

which is the only SAPT method used in practice. For a dimer,
the interaction energy is then expressed as the following series in
powers of V :

ESAPT
int = E(1)elst + E(1)exch + E(2)ind + E(2)exch−ind + E(2)disp + E(2)exch−disp + ⋅ ⋅ ⋅ ,

(33)

where the superscripts denote the powers of V (orders of per-
turbation theory) and different terms of the same order can be
identified as resulting from different physical interactions: electro-
static (elst), exchange (exch), induction (ind), and dispersion (disp).
When SAPT is applied to many-electron systems, monomers can be
described at various levels of electronic structure theory: from the
HF level to the FCI level. This leads to a hierarchy of SAPT levels
of approximations depending on treatment of intramonomer elec-
tron correlation. If the monomers are approximated at an order n
of many-body perturbation theory (MBPT) with the Møller–Plesset
(MP) partition of the Hamiltonians HA and HB, denoted as MPn, we
can write

E(i) ≈
n

∑
j=0

E(i j), (34)

which becomes an equality when n→∞.
The third direction determining the accuracy of electronic

structure calculations involves the size of the basis sets used to
expand wave functions. In the CC and CI approaches, the stan-
dard technique is to use products of orbital (one-electron) basis
sets. Many such basis sets are available; the ones most often used
in metrology-related calculations are the correlation consistent (cc)
basis sets introduced by Dunning.183 These basis sets are denoted by
cc-pVXZ: cc polarized Valence (i.e., optimized using a frozen-core
approximation), X-Zeta, where X = D, T, Q, 5, . . . is the so-called
cardinal number determining the maximum angular momentum of
orbitals. Such basis sets can be augmented by an additional set of dif-
fused functions and are then denoted as aug-cc-pVXZ, or two such

sets: daug-cc-pVXZ. Another option is to use explicitly correlated
basis sets in the CC method or to expand the whole many-electron
wave function in such a basis set. Explicitly correlated basis sets
provide a much faster convergence than products of orbital basis
sets, but in most cases require optimizations of a large number of
nonlinear parameters.

In order to achieve some target size of uncertainties, one has
to choose a proper level in each of the three hierarchies defined ear-
lier. For example, it is possible to perform an FCI calculation for
a ten-electron system such as Ne. However, since FCI calculations
scale factorially with the number of orbitals, only very small basis
sets can be used, resulting in a large uncertainty of the results. Con-
sequently, a better strategy is to use the CCSD(T) method which
allows applications of the largest orbital bases available for a sys-
tem like Ne2. The computed interaction energy will be accurate to
about four significant digits relative to the CCSD(T) limit, but will
have a fairly large error, of the order of 1%–2%, with respect to
the exact interaction energy at the non-relativistic BO level. In con-
trast, FCI calculations for Ne2 employing the smallest sensible basis
set of augmented double-zeta size, which would be extremely dif-
ficult to perform, would have an error of the order of 40% (such
calculations might still be useful in hybrid approaches discussed
below).

The orbital basis sets consist of families of bases of vary-
ing size. One usually carries out calculations in two or more
such basis sets and then performs approximate extrapolations to
the complete basis set (CBS) limit. In addition to the standard
extrapolations, which assume the X−3 decay of errors, extrapo-
lations using very accurate ECG results can be performed.184–186

CCSD(T)/CBS results may have sufficiently small uncertainties to
make calculations of relativistic and diagonal adiabatic correc-
tions necessary, i.e., these corrections may be of the same order
of magnitude as the uncertainties of the CCSD(T)/CBS results.
To reduce the errors resulting from the truncation of the many-
electron expansion, one can follow CCSD(T)/CBS calculations by
CCSDT(Q) or FCI ones in smaller basis sets. These effects are
then included in an incremental way, i.e., by adding the difference
between FCI and CCSD(T) energies computed in the same (small)
basis set.

Accurate solutions of quantum equations are followed by esti-
mates of uncertainties, absolutely necessary for metrology purposes.
The latter step is often more time-consuming than the former. One
should emphasize that theoretical estimates of uncertainties are dif-
ferent from statistical estimates of uncertainties of measurements
and in particular one cannot assign a rigorous confidence level
to them, although for purposes of metrology one usually assumes
that theoretical uncertainties are equivalent to k = 2 expanded
uncertainties (95% confidence level).

A theoretical estimate of uncertainty consists of several ele-
ments. The most rigorous and reliable estimates are those of basis set
truncation errors derived from the observed patterns of convergence
in basis set. Much more difficult are estimates of uncertainties result-
ing from truncations of many-electron expansions. Such estimates
can sometimes be made by performing higher-level calculations at a
single point on a PES, but one most often uses analogy to similar sys-
tems for which higher-level calculations have been performed. The
same approach can be used to estimate the neglected physical effects,
for example, to estimate the uncertainty due to relativistic effects.
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Solutions of the electronic Schrödinger equation for a given
nuclear configuration of a dimer or a larger cluster, providing accu-
rate quantum mechanical descriptions of such systems, are only
the first step in theoretical work of relevance to metrology, as
most measured quantities discussed in this review are either bulk
properties or response properties of atoms and molecules. In the
former case, i.e., to predict properties of gases or liquids relevant
for metrology, one needs to know energies of such systems for a
large number configurations, i.e., for different geometries of clus-
ters. This issue is approached by using the many-body expansion,
where here the bodies are atoms or molecules forming the cluster,
starting from two-body (pair) interactions, followed by three-body
(pairwise nonadditive) interactions. The approach can be continued
to higher-level many-body interactions, but so far this has not been
done. The ab initio energies are usually fitted to analytic forms only
for the two- and three-body interactions.

In addition to energies, metrology applications often require
knowledge of accurate values of various properties of atoms and
molecules, mainly the static and dynamic polarizabilities and mag-
netic susceptibilities. These quantities can be computed as analytic
energy derivatives with respect to appropriate perturbations. Prop-
erties of a single atom or molecule change in condensed phases
and the so-called interaction-induced corrections to properties of
isolated atoms or molecules are of interest to metrology.

As already mentioned above, although Schrödinger’s quantum
mechanics at the BO level provides the bulk of the physical values of
interest to metrology, computations of various effects beyond this
level are often needed to reduce uncertainties of these properties
to the magnitude needed for metrology standards. We will refer to
these as post-BO effects. It should be stressed that we really have in
mind here the post-nonrelativistic-BO level, since both the relativis-
tic and QED corrections for molecules are usually computed using
the BO approximation. One goes beyond this approximation when
computing adiabatic and nonadiabatic corrections. Any reasonably
detailed description of methodologies used in post-BO calculations
would be too voluminous for the present review. Therefore, we refer
the reader to the original papers, in particular Refs. 10, 11, 84, 137,
177, and 187–192.

Systems of interest to thermodynamics-based precision metrol-
ogy are mainly noble-gas atoms and their clusters, and this section
will be restricted to such systems, with the majority of text devoted
to helium. Apart from being the substance whose behavior is clos-
est to the ideal gas, it is also the only system where theory can
currently provide values of physical quantities that are generally
more accurate than the measured ones. Nevertheless, neon and
argon are also of significant interest since they may be used in sec-
ondary standards to improve instrument sensitivity or ease of use.
Although for most properties computations for neon and argon have
larger uncertainties than the best measurements, such results are
still useful as independent checks of experimental work and to guide
extrapolation beyond the measured range.

3.1.1. Importance of explicitly correlated basis sets

The current theoretical results for helium owe their very small
uncertainties mostly to the use of explicitly correlated basis sets.
The calculations involving helium atoms are probably one of the
best examples where an important science problem was solved using

these bases. To clearly show where this field would be without
the use of such basis sets, we discuss in this subsection numerical
comparisons of ECG and orbital calculations for He2, performed
recently in Ref. 193. The majority of molecular electronic struc-
ture calculations are carried out using orbital basis sets. This means
that many-electron wave functions are expanded in products of
orbitals. The simplest example is the CI method discussed earlier,
where the wave function is a linear combination of Slater deter-
minants built of orbitals that are usually obtained by solutions of
HF equations. However, expansions in orbital products converge
slowly due to the difficulty of reproducing the electron cusps in wave
functions.

A way around this difficulty is to use bases that depend explic-
itly on r12 = ∣r2 − r1∣, the distance between electrons. Bases of this
type are called explicitly correlated. For few-electron systems, such
bases are mostly used to directly expand the N-electron wave func-
tions of the nonrelativistic BO approximation. The explicitly corre-
lated bases are also often used for many-electron systems within a
perturbative or CC approach.194,195 For two-electron systems, one
uses Hylleraas bases196 with polynomial-only dependence on r12 or,
recently more frequently, expansions in purely exponential func-
tions of r12, called Slater geminals.84,192 Bases combining both types
of dependence on r12 are also sometimes employed.197 For more
than two electrons, integrals needed for such bases become very
expensive and bases involving Gaussian correlation factors e−γr2

i j , i.e.,
ECG bases, are mostly used. For a review of the ECG approach, see
Refs. 194 and 198.

Since expansions in explicitly correlated bases of the type
described above approach solutions of the Schrödinger equation, the
equivalent orbital calculations should be performed at the FCI level.
As already mentioned, FCI calculations scale as N! with the num-
ber of electrons and therefore are the most expensive of all orbital
calculations. Even for He2, FCI calculations cannot be performed
using the largest available orbital basis sets. Therefore, the optimal
orbital-based strategy is a hybrid one consisting of performing calcu-
lations in the largest basis sets at a lower level of theory, for example,
at the CCSD(T) level, and adding to these results FCI corrections
computed in smaller basis sets.

The BO energies computed in ECG basis sets in Ref. 177 estab-
lished a new accuracy benchmark for the helium dimer; see the
description of these calculations in Sec. 3.3.1. These ECG inter-
action energies were compared in Ref. 193 to those computed in
orbital bases at the hybrid CCSD(T) plus FCI level. The largest avail-
able basis sets were applied. For most points, the CCSD(T)+ΔFCI
approach gives errors nearly two orders of magnitude larger than
the ECG estimated uncertainties. For a couple of points, the
CCSD(T)+ΔFCI results are fairly close to the ECG results, but this
is mainly due to the former method overestimating the magni-
tude of the interaction energy at small R and underestimating at
large R. Since these points are near the van der Waals minimum,
some previous evaluations of the performance of orbital methods
restricted to this region might have been too optimistic. When
the whole range of R is considered, CCSD(T)+ΔFCI is no match
for the ECG approach. One should also realize that any improve-
ments of accuracy of the CCSD(T)+ΔFCI approach would require
a huge effort; in particular, one would have to develop quadruple-
precision versions of all needed orbital electronic structure
codes.
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3.2. Helium atom polarizability
One of the properties of helium required by precision mea-

surement standards199–201 is the helium atom polarizability, both
static and dynamic (frequency-dependent). Nonrelativistic calcula-
tions of the static polarizability date back to the 1930s and reached
an accuracy of 0.1 ppb in 1996 calculations using Hylleraas basis
sets.202 However, the relativistic correction, which is proportional
to α2, could be expected to contribute at the 60 ppm level relative
to the total polarizability. Unfortunately, the values of these correc-
tions published before 2001 differed significantly from one another.
These discrepancies were resolved by accurate calculations of Refs.
187 (using GTGs) and 203 (using Slater geminals) with uncertain-
ties of 20 ppb relative to the total polarizability. This work used
the Breit–Pauli operator,204 whose expectation values were com-
puted with the ground-state wave function for the nonrelativistic
Hamiltonian.

The authors of Ref. 203 also computed the QED correction of
order α3, which turned out to be significant, amounting to about
20 ppm relative to the total polarizability. However, a part of the
α3 QED correction to the polarizability, resulting from the so-called
Bethe logarithm, was only roughly estimated due to the very diffi-
cult to compute second electric-field derivative of a second-order-
type perturbation theory expression involving the logarithm of the
Hamiltonian. The first complete calculation of Bethe-logarithm con-
tribution to helium polarizability was reported in Ref. 188. As such
a calculation had never been done before, the algorithms and their
numerical implementations had to be developed from scratch. The
term containing the electric-field derivative of Bethe’s logarithm
turned out to be unexpectedly small, representing only about 0.6%
of the total α3 QED correction. Thus, this correction still makes a
contribution of about 20 ppm to the total polarizability.

Further improvement of the accuracy of helium’s static polar-
izability was achieved in Ref. 192, which concentrated on the second
derivative of the Bethe logarithm with respect to the electric field.
This quantity can be obtained in a couple of ways, with completely
different algorithms. The goal was to achieve agreement between two
such approaches and also with Ref. 188. This goal was met, providing
a reliable cross-validation for both approaches. The results of Ref.
192, providing currently the most accurate theoretical determina-
tion of the polarizability of helium, are shown in Table 1. The value

TABLE 1. Static polarizability of 4He (in a3
0, where a0 is the Bohr radius) including

relativistic and QED corrections. When no uncertainty is given, the last digit is certain.
m is the mass of the helium nucleus. ∂2

ϵ ln k0 denotes the second derivative of the
Bethe logarithm with respect to the electric field

Contribution Reference 192

Nonrelativistic 1.383 809 986 4
α2 relativistic −0.000 080 359 9
α2
/m relativistic recoil −0.000 000 093 5(1)

α3 QED − ∂2
ϵ ln k0 term 0.000 030 473 8

∂2
ϵ ln k0 term 0.000 000 182 2

α3
/m QED recoil 0.000 000 011 12(1)

α4 QED 0.000 000 56(14)
Finite nuclear size 0.000 000 021 7(1)
Total 1.383 760 78(14)

of the α3 QED contribution computed in Ref. 188 differs from the
current one by only 0.03% or 7 ppb relative to the total polarizabil-
ity. This error is much smaller than the current uncertainty of the
α4 QED contribution, which is estimated to amount to 0.1 ppm; see
Table 1.

Calculations of Refs. 187 and 188 were extended to frequency-
dependent polarizabilities.84,191 This polarizability was expanded in
inverse powers of the wavelength λ up to λ−8. Different levels of
theory were used for each power of λ: up to α4 for the static term,
α2 for inverse powers 2 through 6 (only even powers contribute),
and nonrelativistic for 8. The dynamic polarizability at the He–Ne
laser wavelength of 632.9908 nm had an uncertainty of 0.1 ppm.
This uncertainty results entirely from the uncertainty of the static
polarizability. The latter was reduced compared to Ref. 188 mainly
because the work of Ref. 205 has shown that the error of the so-
called one-loop approximation used to evaluate the α4 terms is
smaller than previously expected, amounting to only about 5% when
applied to the excitation energies of helium. Another small change
in the static polarizability was due to a slightly improved value of the
Bethe-logarithm contribution; see also Ref. 192.

The polarizabilities computed in Refs. 84, 187, 188, and 191
had uncertainties orders of magnitude smaller than the best experi-
mental results. However, recently a new, very accurate measurement
of this quantity was published.63 The measured value of the molar
polarizability, 0.517 254 4(10) cm3/mol, is consistent with the theo-
retical molar polarizability computed from the atomic one listed in
Table 1 and equal to 0.517 254 08(5) cm3/mol. The combined uncer-
tainty is more than three times the difference while the experimental
uncertainty is 20 times larger than the theoretical one.

When a helium atom is in a gas or condensed phase, one can
expect that its polarizability changes due to interactions with other
atoms. More precisely, the polarizability of a helium cluster is not
equal to the sum of polarizabilities of helium atoms. This change is
often referred to as collision-induced polarizability and for atoms is a
function of interatomic distance. For a pair of helium atoms, reliable
values of this quantity were computed in Ref. 206, reconciling pre-
viously published inconsistent calculations. The results of Ref. 206
were used to compute the second79 and third207 dielectric virial coef-
ficients of helium. Very recently, the collision-induced three-body
polarizability of helium was computed.208

Due to inversion symmetry, a system consisting of one or two
helium atoms cannot have a dipole moment in the BO approxi-
mation. However, configurations of three or more atoms may have
a non-zero dipole moment, which in turn influences the value of
the third dielectric virial coefficient.207 Presently, the only ab initio
description of the three-body dipole moment of noble gases is the
one developed by Li and Hunt.209 However, the results of Ref.
209 apply only at large separations, and do not have associated
uncertainties. A dipole-moment surface for the helium trimer with
rigorously defined uncertainty is currently being developed.210

3.3. Helium dimer potential
3.3.1. BO level

The interest in the helium dimer potential is nearly as old as
quantum mechanics. In 1928, Slater211 developed the first poten-
tial for this system, which gave the interaction energy of −8.8 K at
the internuclear distance R = 5.6 bohrs (1 bohr ≈52.917 721 09 pm).
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There is a wide range of helium dimer potentials available in the
literature; see Ref. 212 for a comparison of bound-state calcula-
tions using a large number of potentials. Figure 6 illustrates the
remarkable progress in accuracy of predictions achieved since 1979.
Empirical potentials dominated the field until the end of the 1980s;
the two most widely used ones, HFDHE2213 and HFD-B,214 were
developed by Aziz et al. The first really successful ab initio one was
the LM-2 potential (published only in a tabular form) developed
by Liu and McLean.215 Those authors performed CI calculations
and, by analyzing the configuration space and basis set convergence,
obtained extrapolated interaction energies with estimated uncertain-
ties. Although these estimates were rather crude and do not embrace
the current best values for most values of R, cf. Fig. 6, they are
reasonable.

Aziz and Slaman216 used the HFD-B functional form with
refitted parameters to “mimic” the behavior of the LM-2 poten-
tials, of the unpublished ab initio data computed by Vos et al.,217

and of the small-R Green’s-function MC (GFMC) data218 to obtain
potentials denoted as LM2M1 and LM2M2, differing by assuming,
respectively, the smallest and the largest well depth of the LM-2
potential as determined by the estimates of uncertainty. The para-
meters of these potentials were not fitted directly to ab initio data,
but chosen by trial and error to reproduce both theoretical data
and measured quantities to within their error bars. The LM2M2
potential was considered to be the best helium potential until the
mid-1990s, when purely ab initio calculations took the lead. Among
the latter ones, the TTY potential developed by Tang et al.219 has
a remarkably simple analytical form based on perturbation theory.
The HFD-B3-FCI1 potential was obtained by Aziz et al.,7 who used
the HFD-B functional form with its original parameters adjusted so
that the new potential runs nearly through the ab initio data points.
These points were GFMC results of Ref. 218 and the FCI results
of van Mourik and van Lenthe.220 No uncertainties were assigned
to HFD-B3-FCI1, and Fig. 6 shows that it was about as accurate
as LM2M2.

The SAPT96 potential175,176 opens an era of helium potentials
based mostly on calculations with explicitly correlated functions. It
was the first fully first-principles He2 potential with a systematic
estimation of uncertainties. The potential was obtained using a two-
level incremental strategy. The leading SAPT corrections (the com-
plete first-order and the bulk of the second-order interaction ener-
gies) were computed using GTG basis sets. The GTG-based variant
of SAPT was developed in Refs. 221–225. Higher-order SAPT cor-
rections were computed using the general SAPT program based
on orbital expansions.226–230 Large orbital basis sets including up
to g-symmetry functions and midbond functions (placed between
the nuclei)231 were used. The remaining many-electron effects were
computed using both SAPT based on FCI-level monomers, with
summations to a very high order of perturbation theory (using
He2-specific codes), and supermolecular FCI calculations in small
orbital basis sets. It is interesting to note that the actual errors of the
SAPT96 potential relative to the current best results turned out to
be completely dominated by the residual orbital (rather than GTG)
contributions. For instance, at R = 5.6 bohrs, the orbital part consti-
tutes only −1.81 K out of −11.00 K, but its error was −0.05 K out
of the total SAPT96 error of −0.06 K. The factor of 2 underestima-
tion of the uncertainties seen in Fig. 6 for R = 5.6 bohrs was entirely

FIG. 6. Comparison of ECG BO interaction energies Eint (in K) at R = 4.0, 5.6,
and 7.0 bohrs with those from selected earlier potentials. For empirical potentials
(HFDHE2 and HFD-B), the sum of post-BO corrections was subtracted in each
case. The energies are plotted as error bars from Eint − σ to Eint + σ (with dots at
E) whenever uncertainty estimates σ are available and as squares otherwise (for
three cases at R = 7.0 bohrs, the energies are not available). The horizontal lines
denote the positions of the BO energies calculated in Ref. 177. For acronyms, see
the text.
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due to this issue. SAPT96 is about as accurate as LM2, except for
large R where it is more accurate, with SAPT96 overestimating and
LM2 underestimating the magnitude of interaction energy. With an
added retardation correction, SAPT96 was used (under the name
SAPT2) by Janzen and Aziz232 to calculate properties of helium and
found to be the most accurate helium potential at that time.

In 1999, van Mourik and Dunning233 calculated CCSD(T)
energies in basis sets up to daug-cc-pV6Z, CCSDT − CCSD(T)
differences in the daug-cc-pVQZ basis set, and FCI − CCSDT dif-
ferences in the daug-cc-pVTZ basis set. The CCSD(T) energies were
CBS-extrapolated and then refined by adding a correction equal to
the R-interpolated differences between highly accurate CCSD(T)-
R12 results (available at a few distances in Ref. 234) and the obtained
CBS limits. The CC-R12 methods are analogous to CC-GTG meth-
ods, but the explicit correlation factor enters linearly.195 As seen in
Fig. 6, the results of Ref. 233 were more accurate than any previously
published ones, but no estimates of uncertainties were provided and
the computed interaction energies were not fitted.

Supermolecular ECG-based calculations for He2 started to
appear in the late 1990s,235,236 and were initially aimed at providing
upper bounds to the interaction energies (by subtracting essen-
tially exact monomer energies), as the authors did not attempt to
extrapolate their results to the CBS limits. Another application of
explicitly correlated functions to the He–He interaction was a series
of papers by Gdanitz,237–239 who used the multireference averaged
coupled-pair functional method with linear r12 factors, r12-MR-
ACPF. The extrapolated results from the last paper of the series, Ref.
239 (denoted “Gdanitz01” in Fig. 6), were among the most accurate
results available at that time. However, the reported uncertainties
were strongly underestimated at shorter distances (as much as 5
times at 5.6 bohrs and 17 times at 4.0 bohrs).

Another important series of papers was published by Anderson
et al.,240–242 who reported quantum MC energies with progres-
sively reduced statistical uncertainties. Although these results were
obtained only for a few internuclear distances, they represented very
valuable benchmarks for mainstream electronic structure methods.
In fact, until the publication of the CCSAPT07 potential,185 the result
from Ref. 242, −10.998(5) K (see “Anderson04” in Fig. 6), was the
most accurate value available at 5.6 bohrs.

In Refs. 243 and 244, a hybrid supermolecular ECG/orbital
method was applied to the helium dimer. The bulk of the correlation
effect on the interaction energy, at the CCSD level, was evaluated
using GTG functions and the method developed in Refs. 245–256.
The nonlinear parameters were optimized at the MP2 level. The
effects of noniterative triple excitations [the “(T)” contribution],
i.e., the differences between CCSD(T) and CCSD energies, were
calculated using large orbital basis sets (up to aug-cc-pV6Z with
bond functions and daug-cc-pV6Z) and extrapolated to the CBS
limits. Finally, the FCI corrections [differences between FCI and
CCSD(T) energies] were obtained in basis sets up to aug-cc-pV5Z
with bond functions and daug-cc-pV5Z, and also extrapolated.
Results for three distances were reported in Ref. 244 (see “Cencek04”
in Fig. 6).

Hurly and Mehl (HM) analyzed the best existing ab initio data
for the helium dimer and created a new potential9 representing a
compromise based on uncertainties of existing data and their mutual
agreement (for instance, as can be seen in Fig. 6, the result from
Ref. 244 was used at R = 7.0 bohrs). The diagonal adiabatic cor-

rections from Ref. 257 were added to the final potential, which was
then used to calculate the second virial coefficient, viscosity, and
thermal conductivity of helium. HM recommended that the val-
ues of these thermophysical properties should serve as standards for
measurements.

The CCSAPT07 potential185 based on the hybrid GTG/orbital
method, published in 2007, was a significant improvement over
the previous complete potential of this type, i.e., the SAPT96
potential.175,176 CCSAPT07 combined three different computational
techniques, according to the criterion of the lowest uncertainty
available for a given internuclear distance. Variational four-electron
ECG calculations were used for R ≤ 3.0 bohrs and SAPT+FCI
was employed for R > 6.5 bohrs. At intermediate distances, the
hybrid supermolecular method developed in Refs. 243 and 244
and described above provided the highest accuracy. Compared to
Refs. 243 and 244, several computational improvements were intro-
duced,184 resulting in significantly reduced uncertainties. The SAPT
calculations185 of CCSAPT07 followed the SAPT96 recipe, but also
with larger basis sets and some computational improvements. The
uncertainties of this potential were smaller than some effects that are
neglected at the nonrelativistic BO level. Calculations of these effects
will be discussed in Sec. 3.3.2.

Another highly accurate potential, by Hellmann, Bich, and
Vogel (HBV),258 appeared at almost the same time as CCSAPT07.
Those authors used very large basis sets (up to daug-cc-pV8Z with
added bond functions at the CCSD level, and gradually smaller bases
for higher levels of theory up to FCI) followed by CBS extrapolations.
After augmenting the HBV potential with adiabatic, approximate
relativistic, and retardation corrections, the authors used it to cal-
culate thermophysical properties of helium.259 However, the uncer-
tainties of the HBV potential were not estimated, which restricts its
usefulness. A direct accuracy comparison between the pure BO com-
ponent of HBV and CCSAPT07 is now possible because of the much
higher accuracy of the present-day benchmark energies,177 and we
performed such analysis using the values reported in the last column
of Table 3 in Ref. 258. Out of 11 distances for which all three ener-
gies are available, the largest relative error (with respect to the results
of Ref. 177), equal to 0.90%, occurs for the CCSAPT07 energy at 5.0
bohrs, while the error of the HBV energy at this distance is 0.48%.
If one excludes this distance, which is close to where the helium
potential crosses zero, and calculates the average relative error at the
remaining distances, one obtains 0.007% for CCSAPT07 and 0.011%
for HBV. Therefore, both potentials exhibit a similar accuracy and
represent a significant improvement over all previously published
helium dimer potentials.

The current most accurate nonrelativistic BO potential for the
helium dimer (labeled as “Przybytek17” in Fig. 6) was published
in Ref. 177; see Ref. 193 for details of these calculations. The sig-
nificant improvement over all previous potentials was achieved by
a combination of three factors. First, a pure ECG approach was
used, i.e., with all four electrons explicitly correlated and no con-
tributions calculated with orbital methods. Indeed, the residual
errors of the older hybrid ECG/orbital potentials, SAPT96175,176 and
CCSAPT07,185 were dominated by insufficient basis set saturation
of the relatively small orbital contributions. Second, the use of the
monomer contraction method,189,260 i.e., the use of the product of
helium atoms wave functions as one of the functions in the basis
set, dramatically improved the energy convergence with respect to
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the ECG expansion size. Furthermore, a replacement of the sim-
ple product of monomer wave functions by a more compact sum
of four-electron functions optimized for two noninteracting helium
atoms206,261 reduced the computational cost at the nonlinear opti-
mization stage. Third, a near-complete optimization of nonlinear
parameters in large basis set expansions was possible due to this
reduced cost and due to other improvements of the optimization
algorithm.

3.3.2. Physical effects beyond the nonrelativistic BO
level

With the small uncertainties of the CCSAPT07 BO potential,185

it became clear that a further reduction of uncertainties required
inclusion of post-BO effects. The first calculation of all relevant such
effects for the whole potential-energy curve was presented in Ref.
137 and later improved in Refs. 10, 11, and 177. Some post-BO
effects for the whole curve were included even earlier in Refs. 258
and 259, but this work omitted non-negligible two-electron terms
in the α2 relativistic and α3 QED corrections. The helium dimer
potentials of Refs. 11 and 177 include at the post-BO level the diago-
nal adiabatic correction, relativistic corrections (earlier computed in
Ref. 189, but for the minimum separation only), the QED correction,
and the retardation effect (a long-range QED correction)

V(R) = VBO + Vad + Vrel + VQED + Vret. (35)

In Refs. 10 and 137, all the post-BO corrections were computed
in the supermolecular way as the differences of expectation values of
appropriate operators with the dimer and monomer wave functions,
except at the CCSD(T) level, see below. The nuclear kinetic energy
operator was used for the adiabatic correction, the α2 Breit–Pauli
operator204 for the relativistic correction, and the α3 QED opera-
tor262 for the QED correction. In the latter case, one approximation
was made in the operator. In the term

−
8α
3π

D̂1 ln k0, (36)

with

D̂1 =
π
2

α2
∑

I

4

∑
i=1

ZIδ(ri − rI), (37)

where the sum over I is over the nuclei, the value of ln k0 should
be computed for each R, but instead a constant value was taken,
equal to the value of ln k0 for the helium atom. This is an excellent
approximation since ln k0 depends very weakly on R. Calculations
for two interacting ground-state hydrogen atoms263 have shown that
ln k0 changes by less than 1.15% when R varies from 1.4 bohrs, the
distance of the potential minimum, to infinity, where it assumes
the atomic value. For H2, this R-dependence is important since its
inclusion changes the dissociation energy by 0.004 cm−1, while the
uncertainty of this quantity is 0.001 cm−1. This inclusion changes
the value of the QED term by 1.8%. The same relative change for
He2 would result only in a 0.000 02 K contribution to the interaction
energy at the minimum of the potential, negligible compared to the
uncertainties coming from other sources.

All post-BO corrections were computed using both four-
electron ECG basis sets and orbital basis sets (except for the so-called
Araki–Sucher part of the QED operator where only ECG functions

were used). The calculations with smaller uncertainties were selected
for the final potential. Orbital calculations were performed using a
combination of CCSD(T) and FCI approaches or FCI alone. For the
adiabatic correction, only FCI was used. The calculations of the aver-
age values of the operators listed above with ECG and FCI wave
functions are straightforward (although regularization techniques
have to be used for singular operators). However, the CCSD(T)
wave function needed to compute expectation values is not avail-
able (not defined) and instead the CCSD(T) linear response method
was used.264 The retardation effects of long-range electromagnetic
interactions were computed from the Casimir–Polder formula265 by
subtracting the retardation part of the α2 relativistic and α3 QED
corrections.190

The calculations of Ref. 177 significantly improved the accu-
racy of the helium dimer potential, with uncertainties reduced by
an order of magnitude compared to those of Refs. 137 and 185.
As already discussed, the main improvement was due to the use of
larger and better optimized ECG wave functions at the nonrelativis-
tic BO level of theory for all R ≤ 9 bohrs. Accuracy of the adiabatic
and relativistic corrections was also improved by using larger basis
sets than in Refs. 10 and 137. A major theoretical advance was the
calculation of the properties of the very weak bound state of He2
(the so-called halo state) with full inclusion of nonadiabatic effects.

The accuracy of relativistic and QED contributions was further
improved in Ref. 11. The contributions to the interaction energy at
the van der Waals minimum are presented in Table 2. Clearly, with
the uncertainty of the BO contribution of 0.000 20 K, all the included
post-BO contributions are relevant, except for the retardation con-
tribution, but this contribution does become important at very large
separations.190 One can also see that uncertainties of the adiabatic,
relativistic, and QED terms are almost negligible compared to the
uncertainty of the BO term. The potential of Ref. 11 was used to
compute the second virial coefficient and the second acoustic virial
coefficient of helium.

3.4. Nonadditive helium potentials
In any fluid, the total interaction energy includes terms beyond

pairwise-additive interactions between monomers. These so-called
nonadditive contributions begin with three-body nonadditive terms
defined as the part of the trimer interaction energy that cannot be
recovered by the sum of two-body interactions. The additive and
nonadditive interactions form a series called the many-body expan-
sion of interaction energy. Fortunately, for all fluids consisting of
monomers interacting via noncovalent forces, this expansion con-
verges very fast and usually it is sufficient to limit calculation to two-

TABLE 2. Contributions to the interaction energy of helium dimer (in K) at the van der
Waals minimum separation of R = 5.6 bohrs. Results from Refs. 11 and 177

Contribution Value Uncertainty

VBO −11.000 71 0.000 20
Vad −0.008 904 8 0.000 009 7
Vrel 0.015 391 1 0.000 015 4
VQED −0.001 332 7 0.000 001 8
Vret 0.000 012
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and three-body terms. For a review of the many-body expansion,
see Ref. 266. For metrology, the three-body potential is needed to
calculate the third virial coefficient.

A pairwise-nonadditive potential for helium was developed
in Ref. 267 and improved in Ref. 138. In the earlier work, two
independent potentials were obtained. One was based on three-
body SAPT268–272 and the other on the supermolecular CCSD(T)
approach. Orbital basis sets up to aug-cc-pV5Z were used. The two
potentials were in very good agreement. In Ref. 138, the CCSD(T)
potential was improved by calculating the FCI correction in an
incremental approach and increasing the number of grid points,
with CCSD(T) values taken from Ref. 267 except for the new grid
points. Near the minimum of the total potential, the three-body
contribution is only −0.0885 K, which should be compared to the
total interaction energy of about −33 K, but the three-body con-
tribution is much larger than the uncertainty resulting from the
two-body term, which is 0.0006 K. The uncertainty of the three-
body term at the minimum of the total potential was estimated to be
0.002 K.

Recently, the three-body potential for helium was further
improved273 by adding the relativistic and adiabatic corrections, as
well as using a new set of correlation-consistent basis sets specifically
developed for helium atoms.177 An improved functional form was
also used to analytically represent the potential at large distances. In
particular, new terms were developed for the case when two atoms
remain close while the third is progressively more distant. These
refinements resulted in a reduction of the uncertainty by a factor of
about 5 overall. In particular, the uncertainty at the minimum was
reduced to 0.5 mK, a factor of 4 smaller than that of the previous
work.138

3.5. Heavier noble-gas atoms
While theory is superior to experiment for the helium atom and

helium clusters, this is not the case for neon, and even less so for
argon. The simple reason is the number of electrons per atom: 2, 10,
and 18, respectively. While for the helium atom and small helium
clusters the N-electrons explicitly correlated bases can reach ppm

or smaller uncertainties, and FCI calculations can be performed in
fairly large bases, for neon neither type of calculation can be per-
formed in bases large enough to get meaningful results. To quantify
this statement, let us examine the most accurate calculations for the
neon dimer,117 see Table 3. The calculations at the CCSD(T) level
of theory were performed in the largest available basis sets: mod-
ified daug-cc-pV8Z with bond functions. The uncertainty of the
interaction energy obtained in this way is about 200 ppm, which is
only ten times larger than the 20 ppm uncertainty of the He2 BO
interaction energy. However, uncertainties coming from some exci-
tations of higher rank are significantly larger: the pentuple excitation
contribution, Δ(P), increases the uncertainty of the total value of
interaction energy to about 1000 ppm. The increase of uncertain-
ties is due to the use of smaller and smaller basis sets as the number
of excitations increases: at the CCSDTQ(P) level of theory only the
daug-cc-pVDZ basis set could be used. Furthermore, based on the
results in Table 3, it is not possible to estimate the uncertainty result-
ing from neglecting excitations beyond (P). The lower part of Table 3
shows the convergence in the rank of excitation. One can see that
while the contribution of the triple excitations is very substantial, a
29% increase in the magnitude of interaction energy relative to the
CCSD level, the contribution of quadruple excitations is 57 times
smaller than that of triple ones. However, the contribution of pen-
tuple excitations breaks this fairly fast convergence: it is of similar
magnitude to that of the quadruple excitations. Note that one can-
not blame the noniterative character of the pentuple excitations, as
for lower-rank excitations the iterated and noniterated values are
fairly similar. One may ask if the value of the pentuple contribu-
tion computed in Ref. 117 could be a numerical artifact resulting
from the use of a rather small basis set. This issue was investigated in
Ref. 117, and the results computed in the aug-cc-pVDZ and aug-cc-
pVTZ were 0.0227 and 0.1113 K, respectively. While these results
may indicate that even the first digit in the pentuple excitations
contribution may be uncertain, they also indicate that the order of
magnitude will likely remain the same when going to larger basis
sets. This would indicate that for Ne2 the coupled-cluster expan-
sion converges very slowly, whereas for other closed-shell systems
investigated in the literature CCSDTQ(P) agrees with FCI very well,

TABLE 3. Contributions to the interaction energy of the neon dimer (in K) at the van der Waals minimum separation of
R = 3.1 Å. (P) denotes noniterative pentuple excitations. The results in the upper part are taken directly from Table I of
Ref. 117 and except for CCSD(T) are FC values computed in the largest bases used in that work and in all cases not
involving the (P) contribution are extrapolated to the CBS limits. The results in the lower part are computed in the same basis
sets and are all FC

Contribution Value Uncertainty

CCSD(T) −41.3301 0.0100
CCSDT–CCSD(T) −0.5730 0.0115
CCSDT(Q)–CCSDT −0.1602 0.0112
CCSDTQ–CCSDT(Q) −0.0043 0.0009
CCSDTQ(P)–CCSDTQ 0.1179 0.0589

CCSD −32.5355
CCSDT–CCSD −9.4437
CCSDTQ–CCSDT −0.1645
CCSDTQ(P)–CCSDTQ 0.1179
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indicating that effects of higher excitations are negligible. Unfortu-
nately, FCI calculations would be extremely difficult to perform for
Ne2 even in the aug-cc-pVDZ basis set.

Similar calculations at the limits of the available technology
were reported for Ar2 in Ref. 274 (see also earlier calculations275

with accurate treatment at very small values of interatomic dis-
tances R). The value of the interaction energy obtained at the van
der Waals minimum is −142.86 K and its uncertainty was estimated
at 0.46 K. This uncertainty, representing 3000 ppm (0.3%) of the
computed well depth, does not include an estimate of effects beyond
CCSDTQ. The results of Ref. 117 for Ne2 indicate, however, that the
post-CCSDTQ contribution may be not negligible.

The first first-principles three-body potential for argon was
developed in Ref. 269 using three-body SAPT. It was then used
to compute the third virial coefficient of argon144 and to simu-
late vapor–liquid equilibria.153 An improved three-body potential
for argon was developed in Ref. 276 using the CCSDT(Q) level of
theory and including core correlation and relativistic effects. Uncer-
tainties of the potential were estimated. The authors of Ref. 276
also computed the third virial coefficient, obtaining good overall
agreement with experimental data. In particular, in some regions
of temperature, theoretical values exhibited smaller uncertainties
than experiment and comparisons with theory allowed evaluation
of different experiments. When the experimental data were refit-
ted by a new model that included an approximate fourth virial
coefficient,123 the agreement with theory improved, which can
be considered to be a validation of the new model. The work
of Ref. 276 shows that despite limitations of accuracy, for some
properties of argon theory may provide information relevant for
metrology and its accuracy may be competitive with experimental
accuracy.

3.6. Magnetic susceptibility
Magnetic susceptibilities of noble gas atoms are relevant for

RIGT; see Eq. (11). In general, the magnetic susceptibility is sev-
eral orders of magnitude smaller than its electric counterpart (hence,
Aμ is several orders of magnitude smaller than Aε). This means that
only modest accuracy for the magnetic susceptibility, on the order of
0.1% or even 1%, is sufficient for it to make a negligible contribution
to the uncertainty budget of current or planned refractivity-based
thermodynamic metrology. Calculations at the BO level are there-
fore probably sufficient, but it is still desirable to compute additional
effects, at least at lowest order, to verify that they are relatively
small.

The first comprehensive calculation of the magnetic suscep-
tibility of the helium atom was performed by Bruch and Wein-
hold.277 They added corrections for relativistic effects and nuclear
motion to an existing high-accuracy calculation at the BO level.
However, their calculation included only some of the relativistic
corrections that enter at lowest order. Recently, Puchalski et al.80

presented a definitive calculation of all effects through order α4,
along with a more accurately computed value for the nonrelativis-
tic BO limit using Slater geminals. They obtained agreement within
mutual uncertainties with the calculations of Bruch and Weinhold
for individual terms,277 but included some terms that had been
omitted in the previous work. When converted from the atomic
units used in the paper, the final result for 4He corresponds to

Aμ = −7.921 28(13) × 10−6 cm3 mol−1. The relative uncertainty of
this result, primarily due to neglected QED effects that enter at the α5

level, was conservatively estimated at 16 ppm. This is far more than
sufficient for any conceivable application of refractivity for temper-
ature or pressure measurement, and the agreement with previous
work encourages confidence in the result.

As with other properties, the greater number of electrons
renders the calculation of magnetic susceptibility much more dif-
ficult for neon and especially for argon. The current state-of-the-
art calculations for neon64 and argon66 were performed only at
the nonrelativistic BO level, with a rough uncertainty estimate for
neglected relativistic effects based on the magnitude of those effects
for the electric polarizability. The estimated uncertainty of this cal-
culated quantity was ∼0.2% for neon64 and 1% for argon.66 The
limited experimental information for the magnetic susceptibility is
discussed in Sec. 4.5.3.

4. From Electronic Structure to Thermophysical
Properties

Virial expansions are exact results from quantum statistical
mechanics which enable a systematically improvable evaluation of
various thermophysical properties as a power series in density start-
ing from the ideal-gas reference system. The coefficients appearing
in the N-th term of the series can be computed from the knowledge
of the interaction of clusters of N particles.

In the case of the equation of state – i.e., the expansion of the
pressure p as a function of density ρ – one obtains Eq. (7) 278,279

together with rigorous expressions for the virial coefficients B(T),
C(T), D(T), etc., which turn out to be functions of temperature only
and are given by

B(T)
NA

= −
1

2V
(Z2 − Z2

1) (38)

C(T)
N2

A
=
(Z2 − Z2

1)
2

V2 −
1

3V
(Z3 − 3Z2Z1 + 2Z3

1) (39)

D(T)
N3

A
= −

Z4 − 4Z3Z1 − 3Z2
2 + 12Z2Z2

1 − 6Z4
1

8V

+
3(Z2 − Z2

1)(Z3 − 3Z2Z1 + 2Z3
1)

2V2 −
5(Z2 − Z2

1)
3

2V3 , (40)

with

ZN

N!
=

QN(V , T) VN

Q1(V , T)N , (41)

where QN(V , T) is the partition function of a system of N particles
evaluated in the canonical ensemble. These partition functions can
be calculated once the interaction potential UN(x1, . . . , xN) among
N particles is known; the potential is generally expressed as

UN =
N

∑
i<j

u2(xi, x j) +
N

∑
i<j<k

u3(xi, x j , xk) + ⋅ ⋅ ⋅ , (42)
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where u2 is the pair potential, u3 is the non-additive contri-
bution to the three-body potential, and so on. In Eq. (42) we
specialized to the case of atomic systems, which is the principal
topic of this review; in this case xi represents the position of the i-th
atom. In the case of molecules, which we will discuss in Sec. 5, the
various potentials appearing in Eq. (42) depend also on coordinates
yi that describe the intramolecular configuration of molecule i.
In particular, a single-body potential u1(y1) will also appear in
Eq. (42). The potentials and their uncertainties can be computed
from first principles using the methods described in Sec. 3. The most
general expression for QN(V , T) in quantum statistical mechanics
is given by

QN(V , T) =∑
i

′

⟨i∣e−βHN ∣i⟩ (43)

=
1

N!

N!

∑
j=1
∑

i
⟨i∣e−βHNP j ∣i⟩, (44)

where β = (kBT)−1 and the primed sum in Eq. (43) is on a complete
set of states ∣i⟩ of the N-body Hamiltonian HN with the proper sym-
metry upon particle exchange due to the bosonic or fermionic nature
of the particles involved. Equation (44) is an equivalent expression
where the sum over the states has no restriction on the symme-
try and the operators P j represent the j-th permutation of particles
in the Hilbert space, including the sign of the permutation in the
case of fermions. The latter expression will be the most convenient
when discussing the path-integral MC approach for the calculation
of virial coefficients.280,281 The non-relativistic N-body Hamiltonian
is conveniently written as

HN =
N

∑
i=1

π2
i

2mi
+UN ≡ TN +UN , (45)

where we have introduced the momentum operator πi and mass
mi for the i-th particle and the second equality defines the N-body
kinetic energy TN .

Virial expansions of the form of Eq. (7) have been derived for
several other quantities measured by the gas-based devices described
in Sec. 2: the speed of sound in Eq. (1), the dielectric constant in
Eq. (9), and the index of refraction in Eq. (11). The coefficients
appearing in Eq. (1) are given by282

βa(T) = 2B + 2(γ0 − 1)T
dB
dT
+
(γ0 − 1)2

γ0
T2 d2B

dT2 (46)

RTγa(T) = (
γ0 − 1

γ0
Q2
− βa(T)B(T)) +

2γ0 + 1
γ0

C +
γ2

0 − 1
γ0

T
dC
dT

+
(γ0 − 1)2

2γ0
T2 d2C

dT2 , (47)

where the quantity Q is

Q = B + (2γ0 − 1)T
dB
dT
+ (γ0 − 1)T2 d2B

dT2 . (48)

The density expansion of the dielectric constant εr is generally
given as a generalization of the Clausius–Mossotti equation in one

of the two equivalent forms given by Eqs. (8) and (9). Until recently,
derivations for the coefficients appearing in these equations would
agree on the expression for the second dielectric virial coefficient, Bε,
but differ in the case of the higher-order coefficients.283–285 A sys-
tematic review of the dielectric expansion showed that the correct
expressions are207,285

Aε =
4πα1

3
NA (49)
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0
)], (51)

where α1 is the atomic polarizability and the functions ZN are given
by expressions similar to Eq. (41), where the interaction Hamilto-
nian among the constituent particles of Eq. (45) is extended with
two terms in order to include the effect of the interactions of the
dipole moment and the electronic polarizability of the system with
an external electric field of magnitude E0. In Eqs. (49)–(51), the
derivatives are to be evaluated at E0 = 0. The two additional terms
in the Hamiltonian are

Hdip
N = −

⎛

⎝

N

∑
i=1

m1(i) +∑
i<j

m2(i, j) + ∑
i<j<k

m3(i, j, k) + ⋅ ⋅ ⋅
⎞

⎠
⋅ E0

(52)

Hpol
N = −

1
2

E0 ⋅
⎛

⎝

N

∑
i=1

α1(i) +∑
i<j

α2(i, j) + ∑
i<j<k

α3(i, j, k) + ⋅ ⋅ ⋅
⎞

⎠
⋅ E0,

(53)

where mn and αn are the (non-additive) dipole moments and the
(non-additive) electronic polarizabilities of a system of n particles.
In the case of atoms, m1 and m2 are both zero, but a system of three
particles has, in general, m3 ≠ 0.286,287

An expression analogous to the Clausius–Mossotti equation
(9) was derived by Lorentz and Lorenz for the refractive index n
and is given in Eq. (11). The Lorentz–Lorenz equation (11) is rel-
evant to those experiments where the refractive index is measured
by optical methods. In this case, the refractive virial coefficients are
a function of the angular frequency ω of the electromagnetic radia-
tion as well as the temperature. Usually, the frequency dependence
is approximated as a power-law expansion of the form

BR(T) = Bε + ω2B(2)R , (54)

where B(2)R depends on the interaction-induced Cauchy moment
ΔS(−4).288

4.1. Classical limit
Although the focus of this review is on calculations with no

uncontrolled approximation, let us briefly discuss the classical limit
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of the approach we have outlined. Classical expressions can be com-
puted relatively easily, and provide a useful high-temperature check
for the more involved calculations described below.

Since quantum exchange effects are absent in classical mechan-
ics, the only term that remains in Eq. (44) is the one corresponding
to the identity permutation, giving rise to the “correct Boltzmann
counting” factor of 1/N! in the partition functions.279 In the same
limit, the kinetic term in the Hamiltonian (45) commutes with the
potential energy UN as well as with Hdip

N and Hpol
N . Its contribution

can be integrated exactly, resulting in a factor of the form VN
/Λ3N

m

where Λm = h/
√

2πmkBT is the thermal de Broglie wavelength of the
atoms under consideration. Putting all of this together, one obtains

Z[class]
N (V , T, E0) = ∫ e

−β(UN+Hdip
N +Hpol′

N )

dXN , (55)

where the Hpol′

N is the same as Eq. (53), but without the terms
corresponding to α1. Additionally, we have denoted by dXN the inte-
gration element in the space of all the coordinates needed to describe
a system of N atoms, e.g., the Cartesian coordinates x1, . . . , xN . Since
the system is translationally invariant, the integration produces a
factor of V with the understanding that one particle, usually labeled
as 1, is fixed at the origin of the coordinate system. Using rotational
invariance, one can further write for the integration elements

dX2 = V 4πr2
12 dr12 (56)

dX3 = V 8π2
(r12r13)

2 dr12dr13d cos θ23 (57)

dX4 = V 8π2
(r12r13r14)

2dr12dr13dr14d cos θ23d cos θ14dϕ, (58)

where rij = ∣rij∣ = ∣xi − xj∣ and θij is the angle between the vectors ri1
and rj1. In Eq. (58), the angle ϕ is the polar angle corresponding to
the vector r14 in spherical coordinates.

Using Eqs. (38), (46), and (50), one obtains the classical
expressions

Bcl = −2πNA ∫ (e
−βU2(r12) − 1) r2

12dr12 (59)

βa,cl = −2πNA ∫ r2
12[2(e

−βU2 − 1) + 2(γ0 − 1)βU2e−βU2

+
(γ0 − 1)2

γ0
βU2(βU2 − 2)e−βU2]dr12 (60)

Bε,cl =
8π2

3
N2

A ∫ Δα2(r12)e−βU2(r12)dr12, (61)

for the second density, acoustic, and dielectric virial coefficient,
respectively. In Eq. (61) we have defined Δα2 =

1
3 Tr (α2), which is

the average of the interaction-induced pair polarizability. The clas-
sical expression for B(2)R,cl is analogous to Eq. (61), where Δα2 is
substituted by the Cauchy moment ΔS(−4).

In the same way, one can derive expressions for the classi-
cal limit of the third density, acoustic, and dielectric virial coef-
ficients using Eqs. (39), (47), and (51). After some lengthy, but
straightforward, evaluation, they turn out to be

Ccl = −
8π2

3
N2

A ∫

⎡
⎢
⎢
⎢
⎢
⎣

e−βU3 −∑
i<j

e−βU2(ri j) + 2

− 3(e−βU2(r12) − 1)(e−βU2(r13) − 1)] dΩ3 (62)

Cε,cl =
16π2

9
N3

A ∫

⎡
⎢
⎢
⎢
⎢
⎣

(
β∣m3∣

2

3
+ Δα3)e−βU3 −∑

i<j
Δα2(ri j)e−βU2(ri j)

− 6(e−βU2(r12) − 1)Δα2(r13)e−βU2(r13)] dΩ3, (63)

where dΩ3 = (r12r13)
2 dr12dr13d cos θ23, r23 =√

r2
12 + r2

13 − 2r12r13 cos θ23, and Δα3 =
1
3 Tr (α3) +∑

i<j
Δα2(ri j). The

classical expression for the third acoustic virial coefficient γa is more
involved and is given in the Appendix.

4.2. Quantum calculation of virial coefficients
The classical approach can be expected to be valid when Λ/σ ≪

1, where σ is the size of the hard-core repulsive region of atoms
(which is around 6 bohrs for the noble gases); this implies that the
classical formulas will be asymptotically valid for high temperatures
and heavy atoms. However, in the case of helium this approximation
is too drastic even at room temperature.

The inclusion of quantum effects in the calculation of virial
coefficients (density, acoustic, or dielectric) requires evaluating the
N-body partition functions QN of Eq. (43) in a quantum frame-
work. A straightforward approach would be to consider in Eq. (43)
the eigenstates ∣i⟩ of the N-body Hamiltonian, HN ∣i⟩ = Ei∣i⟩, so that
Eq. (43) becomes a simple sum. To the best of our knowledge, this
method has been demonstrated to date only in the case of the second
dielectric virial coefficient.79

In the case of Q2 (which enables the calculation of virial coef-
ficients of order 2), a very fruitful approach dating back to the late
1930s278,289 is to rewrite it as the sum of three terms: one depending
on the bound-state energies, one depending on the phase shifts of
the scattering states, and one depending on the bosonic or fermionic
nature of the atoms involved. The expression of B(T) then becomes

B(T) = Bth(T) + Bbound(T) + Bxc(T) (64)

Bth(T) = −
NAΛ3

μ

π ∫ e−βES(E) βdE (65)

S(E) =∑
l
(2l + 1) f (I, l)δl(E) (66)

Bbound(T) = −
NAΛ3

μ

2 ∑
l,n
(2l + 1) f (I, l)(e−βEbound

nl − 1) (67)
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Bxc(T) = −NA
(−1)2I

2I + 1
Λ3

μ

16
, (68)

where μ is the reduced mass of the pair of atoms considered, Ebound
nl is

the energy of the n-th bound state with relative angular momentum
l, and f (I, l) = 1 + (−1)2I+l

/(2I + 1) with I the nuclear spin in the
case of identical atoms (the case of different atoms can be recovered
by letting I →∞). The quantity δl(E) in Eq. (66) is the absolute scat-
tering phase shift for two particles with relative energy E and angular
momentum l. Absolute phase shifts are continuous functions of E
that tend, in the limit of E → 0, to π times the number of bound states
at angular momentum l. With the advent of electronic computers,
the use of Eqs. (64)–(68) enabled the calculation of accurate numer-
ical values290,291 and it is still the most efficient way to compute the
second virial coefficient of atomic species.10,11 One important ben-
efit of this method is that once the energies of all the bound states
have been computed and phase shifts are known for a sufficiently
high number of total angular momenta and scattering energies, the
values of B(T) and its derivatives, and hence βa(T), can be easily
computed at all temperatures; knowledge of the collision-induced
pair polarizability also enables the calculation of Bε.79 Additionally,
transport properties such as the viscosity and the thermal conduc-
tivity – see Sec. 4.6 below – can be computed in a straightforward
manner.

Unfortunately, this approach cannot be easily extended to
higher-order coefficients. Some attempts in this direction were made
in the 1960s,292,293 but all of them required the introduction of
some uncontrolled approximations and did not take into account
the non-additive parts of the many-body potential.

4.2.1. Path integral approach
At the same time, the path-integral approach to quantum sta-

tistical mechanics280 was shown by Fosdick and Jordan to provide a
systematic way to compute virial coefficients of any order without
any uncontrolled approximation.294,295 The path-integral formula-
tion is based on a controlled approximation of the exponential of
the N-body Hamiltonian, that is

e−βHN = (e−β(TN+UN)/P)
P

(69)

≃ (e−βTN/Pe−βUN/Pe−βO/P
)

P
, (70)

where

O =
β2h̵2

24P2m

N

∑
i=1
∣∇iUN ∣

2. (71)

Equation (70) is the Li–Broughton expansion of the exponen-
tial of the sum,296 which was independently discovered by Kono
et al.297 based on an initial idea by Takahashi and Imada.298 It can
be shown that Eq. (70) becomes an exact equality in the case P →∞,
although in practice satisfactory convergence is reached for a finite
value of the parameter P. Actually, Eq. (70) becomes an equality
in the P →∞ limit also when O is omitted in Eq. (70) (this is the
original Trotter–Suzuki approach),299,300 although in this case con-
vergence requires higher values of P; this approach is called the
primitive approximation,281 and, for the sake of simplicity, will be
used throughout this review.

The path-integral approach is obtained by using Eq. (70)
in Eq. (44) and inserting P − 1 additional completeness relations
between the P factors in Eq. (70). Additionally, one uses as a com-
plete set the (generalized) position eigenstates ∣i⟩ = ∣X(1)N ⟩, where we
have included a superscript (1) for later convenience. In this case, the
sum over i in Eq. (44) becomes an integral over the 3N coordinates
X(1)N and the P − 1 completeness relations can be written as

1 = ∫ ∣X
(k)
N ⟩⟨X

(k)
N ∣ dX(k)N , (72)

with k = 2, . . . , P. Notice that in this case the effect of the permuta-
tion operators P j is to exchange atomic coordinates in the rightmost
ket. For example, if P(12) denotes the permutation of particles 1 and
2 (assumed to be bosons), one has

P(12)∣x(1)1 , x(1)2 , . . . , x(1)N ⟩ = ∣x
(1)
2 , x(1)1 , . . . , x(1)N ⟩. (73)

Let us first proceed assuming that P is the identity permutation
(that is, we are considering Boltzmann statistics; this approximation
is essentially exact for T ≳ 10 K even in the case of helium) and the
case of density virials of pure species [so that our Hamiltonian is
given by Eq. (45) with mi = m]. The operators UN (and, if needed,
O) of Eq. (70) are diagonal in the position basis. The matrix elements
of the exponential of the kinetic energy operators can be calculated
exactly301 and are given by

⟨x(k+1)
i ∣e−

βπ2
i

2mP ∣x(k)i ⟩ =
P3/2

Λ3 exp(−
πP
Λ2 ∣x

(k+1)
i − x(k)i ∣

2
), (74)

so that ZN can be written as

ZN = ∫ e−βUN
N

∏
i=1

Fi

P

∏
k=1

dX(k)i , (75)

where

UN =
1
P

P

∑
k=1

UN(X(k)N ) (76)

Fi = Λ3
(

P3/2

Λ3 )

P

exp(−
πP
Λ2

P

∑
k=1

Δr(k)i
2
) (77)

Δr(k)i
2
≡ ∣x(k+1)

i − x(k)i ∣
2
, (78)

with the understanding that x(P+1)
i = x(1)i . Equations (75)–(77),

which correspond exactly (in the P →∞ limit) to the original
quantum statistical formulation, can be interpreted as the partition
function of a classical system.301 For each of the original N particles
of coordinates x(1)i , one has introduced P − 1 copies of coordinates
x(k)i , which, as one can see from Eq. (77), are connected via har-
monic potentials. The equivalent classical system is then made by
N ring polymers of P monomers each. As shown by Eq. (76), these
polymers interact with the original potential averaged over all the
monomers. It can be shown that the functions Fi of Eq. (77) rep-
resent probability distributions.302 Although they are not Gaussian
probabilities, because of the ring-polymer condition x(P+1)

i = x(1)i ,
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they can be sampled exactly using an interpolation formula due to
Levy294,295 (also known as “the Brownian bridge”). The harmonic
intra-polymer interaction, which ultimately comes from the kinetic
energy term TN of the quantum Hamiltonian (45), has the effect that
the average “size” of the ring-polymer corresponding to each par-
ticle is of the order of the de Broglie thermal wavelength Λ, thus
taking into account quantum diffraction (that is, the Heisenberg
uncertainty principle).

In order to compute the functions ZN (and, hence, the virial
coefficients), it is convenient to separate the NP vector coordi-
nates x(k)i as follows: first of all, we notice that the energy of the
equivalent classical system is invariant upon an overall rigid rota-
tion or rigid translation. We can use the latter property to extract
a factor of V and at the same time pin one of the coordinates
– conventionally the first monomer of particle 1, that is x(1)1 – at
the origin of the coordinate system. The rotational invariance can
be taken into account by assuming that the first monomer of one
particle (particle 2, say) lies along the x axis of the coordinate sys-
tem and that the first monomer of another particle (particle 3)
lies in the xy plane. This convention brings about a factor of 4π when
N = 2 (corresponding to the integration over the two polar angles
describing x(1)2 ) and a factor of 8π2 (that is the integration over the
two polar angles describing x(1)2 and the azimuthal angle of x(1)3 )
when N ≥ 3. The remaining 3NP − 6 coordinates (or 3NP − 5 in the
case of N = 2) can be conveniently divided into

1. The coordinates of the first bead of all the particles, that is r12 =

∣x(1)2 − x(1)1 ∣ and, for N ≥ 3, r13 = ∣x(1)3 − x(1)1 ∣, cos θ23 and x(1)i
(the latter only for N ≥ 4), where θ23 is the angle between the
position of particles 2 and 3 in the xy plane.

2. The relative coordinates Δr(k)i (k = 1, . . . , P − 1).

Since the functions Fi depend only on Δr(k)i , one can rewrite the
partition functions ZN of Eq. (75) in the form

Z2 = V 4π∫ ⟨e
−βU2 ⟩ r2

12dr12 (79)

ZN(N ≥ 3) = V 8π2
∫ ⟨e

−βUN ⟩dΩN (80)

dΩN(N ≥ 4) = dΩ3

N

∏
i=4

dx(1)i , (81)

where

⟨e−βUN ⟩ = ∫ e−βUN
N

∏
i=1

Fi

P−1

∏
k=1

dΔr(k)i , (82)

denotes the average of the Boltzmann factor of the potential energy
over the internal configurations of the ring polymers. Finally, using
Eqs. (79)–(81) and the definition of the virial coefficients (38) and
(39), one obtains

B = −2πNA ∫ ⟨e
−βU2(r12) − 1⟩r2

12 dr12 (83)

Bε =
8π2

3
N2

A ∫ ⟨Δα2(r12)e−βU2(r12)⟩r2
12dr12 (84)

C = −
8π2

3
N2

A ∫ ⟨

⎡
⎢
⎢
⎢
⎢
⎣

e−βU3 (r12 ,r13 ,r23) −∑
i<j

e−βU2(ri j)

+ 2 − 3(e−βU2(r12) − 1)(e−βU2(r13) − 1)]⟩ dΩ3 (85)

Cε =
16π2

9
N3

A ∫ ⟨

⎡
⎢
⎢
⎢
⎢
⎣

(
β∣m3∣

2

3
+ Δα3)e−βU3 −∑

i<j
Δα2(ri j)e−βU2(ri j)

− 6(e−βU2(r12) − 1)Δα2(r13)e−βU2(r13)]⟩ dΩ3, (86)

which are very similar to the classical expressions reported in
Sec. 4.1. The path-integral expressions are obtained from the
classical expressions by substituting the evaluation of potentials
and polarizabilities as averages over the ring-polymer beads [see
Eq. (76)] and averaging the resulting expressions over the config-
urations of the ring polymers, as evidenced by the angular brackets
in Eqs. (83)–(86). The path-integral expression for B(2)R is obtained
from Eq. (84) by the substitution of Δα2 with ΔS(−4).79 Explicit
expressions for the third acoustic virial coefficient in the path-
integral formulation are quite cumbersome, for reasons discussed in
the Appendix; they can be found in Ref. 303.

It is important to notice that in the case of C(T) the terms
coming from Z2

2 in Eq. (39) actually involve averages over four ring
polymers, since these two terms involve two particles each and have
to be treated as independent, lest spurious correlations be introduced
in the calculation of the ⟨⋅ ⋅ ⋅⟩ average. In fact, in the last term of
Eq. (85) two of these polymers are used to compute e−βU2(r12) − 1
and the other two to compute e−βU2(r13) − 1. Similar considerations
also apply when calculating γa and Cε using path integrals.

Quantum effects are taken into account by averaging over the
ring-polymers configurations, and at the same time evaluating the
interaction energy as an average over the monomers, as in Eq. (76).
We recall that in Eqs. (83) and (85) the radial variables ri j = ∣x(1)i

− x(1)j ∣ are the distances between the first monomer of particles i and
j. In the classical limit, the size of the ring polymers shrinks to zero
so that one recovers the results of Sec. 4.1.

It is worth noting that one can find several semi-classical
approximations of the exact path-integral expressions of
Eqs. (83)–(86). In general, they can be obtained by expanding
the full quantum-mechanical results in powers of h2, where the first
term is the classical one. This approach was pioneered by Wigner
and Kirkwood304,305 and subsequently developed by Feynman and
Hibbs,280 who put forward the idea of estimating semiclassical
values by using the classical expressions with suitably modified (and
temperature-dependent) potentials. Although the Feynman–Hibbs
approach considered systems with pair potentials only, a systematic
derivation of semiclassical expressions in the case of three-body
interactions has been developed by Yokota.306 Even if semiclassical
approaches introduce uncontrolled approximations, they are
quite effective in the case of heavier atoms such as argon at high
temperatures and provide a useful check for the fully quantum
calculations.
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4.2.2. Exchange effects
The bosonic or fermionic nature of the particles enters in those

terms of Eq. (44) where the permutation operator is different from
the identity. In the case of the equivalent classical system, the main
effect of the permutation operators is that the condition of closed
ring polymers, that is x(P+1)

i = x(1)i , is no longer valid. For a general
permutation, one would have x(P+1)

i = x(1)P (i) where P(i) denotes the
particle exchanged with i under the action of permutation P. This is
equivalent to saying that some of the ring polymers would coalesce
into larger polymers, depending on the specific permutation that is
being considered in the sum of Eq. (44). These larger ring polymers
are still described by probability distributions similar to those of the
Boltzmann case, that is Eq. (77). As an illustrative example, let us
see how the probability distribution for the internal coordinates of
particles 1 and 2 is modified in the presence of exchange for bosons
of spin 0. Defining Ri = x(i)1 and Ri+P = x(i)2 for i = 1, . . . , P as well
as ΔRi = Ri+1 − Ri (notice that R2P = R1 because we are considering
the permutation involving only particle 1 and 2), and Λμ =

√
2Λ, the

kinetic energy terms that would give rise to the probabilities F1F2
can be written as

F1F2 → Λ6
(

P3/2

Λ3 )

2P

exp(−
πP
Λ2

2P

∑
k=1

ΔRi
2
) (87)

=
Λ3Λ3

μ

23/2 (
(2P)3/2

Λ3
μ
)

2P

exp(−
π2P
Λ2

μ

2P

∑
k=1

ΔRi
2
) (88)

≡
Λ3

23/2 Fμ, (89)

where we recognize the probability distribution of a single ring poly-
mer of 2P monomers describing a particle of mass μ = m/2 at the
same temperature [cf. Eq. (77)]. In the case of the second virial
coefficient, where this is the only exchange term present, this con-
tribution is just a simple average over the larger polymer, and can
then be written as307

Bxc(T) = −
2πΛ3NA

23/2 ⟨exp(−
β
P

P

∑
i=1

U2(∣Ri+P − Ri∣
2
))⟩

μ

. (90)

In addition to this, the various terms in the sum over permu-
tation of Eq. (44) also acquire factors depending on the number of
nuclear spin states of the particles, that is factors of 1/(2I + 1) for a
nuclear spin I. A detailed derivation of these factors is reported in
Refs. 79 and 126.

4.3. Uncertainty propagation
As is apparent from their definition, the calculation of virial

coefficients depends on the knowledge of few-body properties of
atoms, namely interaction potentials, polarizabilities, and dipole
moments. In a completely ab initio calculation of virial coeffi-
cients, these quantities – as seen in Sec. 3 – are determined by
electronic-structure calculations and are provided with a full uncer-
tainty estimation. In this section, we will show how this uncertainty
can be propagated to the uncertainty in virial coefficients, using the
third virial coefficient C(T) as an example.

The first approach consists of calculating values of C(T) using
perturbed pair and three-body potentials, that is:

C[ui]
±
= C(T; ui ± δui), (91)

and

δC[ui] =
1
4
∣C[ui]
+
− C[ui]

−
∣, (92)

where we have assumed that the uncertainties in the potential – δui
for i = 2 or i = 3 in the case of the pair and three-body potential,
respectively – are given as expanded (k = 2) uncertainties. Assum-
ing that a (k = 2) perturbation of the potential results in a (k = 2)
perturbation of the virial coefficient, one fourth of the absolute value
of the difference, that is δC[ui] in Eq. (92), is interpreted as a stan-
dard (k = 1) uncertainty. The overall standard uncertainty in C(T)
due to the uncertainty in the potentials is then obtained as a sum in
quadrature

δC =
√

(δC[u2])
2
+ (δC[u3])

2. (93)

Although this approach was used in early calculations of the virial
coefficients,127,308 it is unsatisfactory for several reasons. First of
all, it considers only rigid shifts of the potentials, while in princi-
ple the actual potential can be closer to the upper bound for some
configurations and closer to the lower bound for others. Secondly,
the uncertainty (92) is obtained as a difference of quantities which
are themselves computed with some statistical uncertainty. This
requires very long runs to make sure that the difference in Eq. (92)
is not influenced by the statistical error in the calculation of C[ui]

±
.

A more satisfactory approach is obtained by considering that
the virial coefficients are functions of the temperature T as well as
functionals of the potentials.126 A variation δui in the potential will
then produce a corresponding variation in the value of the virial
coefficient, given by

δC[ui] = ∫ ∣δui
δC
δui
∣ dΩ3, (94)

where we have used the definition of the functional derivative
δC/δui. The absolute value in Eq. (94) comes from the conserva-
tive choice of assuming that all the variations will contribute with
the same (positive) sign to the final uncertainty. We note in pass-
ing that in the case of the second virial coefficient, B(T), Eqs. (94)
and (92) produce the same result. As is apparent from Eq. (39),
the evaluation of Eq. (94) requires the functional derivative of Z3
and Z2 with respect to the pair and three-body potential. As a
first approximation, one can use the classical expression Eq. (55)
(possibly augmented by semiclassical corrections).126 More accurate
results (especially at low temperatures) are obtained by functional
differentiation of the path-integral expressions (79) and (80) so that
one has303

δZ2∣u2
= −4πVβ∫ ⟨δu2e−βU2 ⟩r2

12dr12 (95)

δZ3∣u2
= −8π2Vβ∫ ⟨∑

i<j
δu2(ri j)e−βU3 ⟩dΩ3 (96)
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δZ3∣u3
= −8π2Vβ∫ ⟨δu3e−βU3 ⟩dΩ3, (97)

where we have defined

δZi∣u j
= ∫ δuj

δZi

δuj
dΩi. (98)

The same approach can be used in the calculation of the propagated
uncertainties for dielectric virial coefficients.207,210

In actual practice, these expressions enable rigorous estima-
tion of the uncertainty propagated from the potentials with a much
smaller computational effort than that needed to compute virial
coefficients. Additionally, the a priori knowledge of a lower bound
on the uncertainty and its temperature dependence facilitates the
process of finding the optimal set of parameters for the path-integral
simulations (cutoff distance, number of beads P, number of MC
integration points) in order to make the statistical uncertainty of the
calculation a minor contributor to the total uncertainty.

4.4. Mayer sampling and the virial equation of state
Equations (38)–(40) show that the expressions for the virial

coefficients become more involved when the order is increased.
Although these expressions can be systematically derived using
computer-algebra systems, their subsequent implementation in
classical or quantum frameworks becomes more and more time-
consuming. Taking also into account the limited availability of
ab initio many-body potentials (at the time of this writing, these are
limited to three bodies and have been developed only for a small
set of atoms and molecules), it might seem that a fully ab initio cal-
culation of the equation of state using virial expansions could not
be feasible. Nevertheless, it is observed that the largest contribu-
tions to the value of the virial coefficients come from the many-body
potentials of lower orders, as already discussed in Sec. 2.4. As a con-
sequence, even if only pair and three-body potentials are available, a
calculation of higher-order virial coefficients can provide useful and
reasonably accurate representations of the equation of state.309,310

A very efficient procedure to perform this task is based on the
diagrammatic approach by Ursell311 and Mayer,312,313 who showed
how the various terms contributing to the virial coefficients can be
related to simpler cluster integrals that can be cataloged using a dia-
grammatic form. The contributions from the diagrams can be added
very efficiently using MC sampling methods.314 Although the num-
ber of diagrams increases exponentially with the order of the virial
coefficient, it has been shown that calculations can be kept within
a manageable size up to virial coefficients of order 16,315–317 result-
ing in equations of state with very good accuracy up to the binodal
(condensation) density.310

Mayer sampling methods, originally developed for monatomic
systems, have been extended to molecules318 and therefore can also
be used to perform path-integral calculations of density121,319 and
acoustic virial coefficients.136 This approach provides an indepen-
dent validation of the framework outlined in this review. Virial coef-
ficients calculated using both approaches are found to be compatible
within mutual uncertainties.303

4.5. Numerical results for virial coefficients
As seen in Sec. 4.2, a fully first-principles calculation of virial

coefficients requires the knowledge of many-body potentials and,

in the case of dielectric properties, polarizabilities, which can be
obtained by ab initio electronic structure calculations. Currently,
as discussed in Sec. 3, the only system for which these calculations
can be made without uncontrolled approximations is helium. Much
effort has been devoted to produce high-quality potentials from first
principles. At the time of writing, the most accurate pair potential
is the one developed by Czachorowski et al.,11 which includes rela-
tivistic and QED effects. This potential was developed using exactly
the same approach as the potential of Ref. 177, the only difference
being that the relativistic and QED corrections were computed using
a larger basis set. As a consequence of including the adiabatic correc-
tions and recoil terms, slightly different pair potentials are available
for the 4He–4He, 3He–3He, and 4He–3He interactions.

Recently, a new three-body potential for 4He, including rel-
ativistic effects, has been developed,273 resulting in a significant
increase of accuracy with respect to the previous non-relativistic
potential (see Sec. 3.4).138 In the case of dielectric properties, the
single-atom polarizability has been calculated with outstanding
accuracy.192 The most accurate pair-induced polarizability currently
available is that of Cencek et al.206 and, recently, fully ab initio cal-
culations of the three-body polarizability208 and dipole moment210

have been performed, enabling a calculation of the third dielectric
virial coefficient with well-defined uncertainties completely from
first principles.210

In the case of neon, the most recent pair potentials and polar-
izabilities have been computed by Hellmann and coworkers.65,117

Parametrizations of three-body potentials have appeared in the liter-
ature,320 but no first-principles calculations have been published so
far.

Due to its easy accessibility and large measurement effects,
argon has been the subject of many theoretical studies. However,
the large number of electrons prevents calculations of potentials and
polarizabilities with the same accuracy as the lighter noble gases,
and some uncontrolled approximations are still necessary. The most
accurate pair potential so far has been developed by Lang et al.,118

while a three-body potential with well-characterized uncertainties
was computed and characterized by Cencek and co-workers.276

Regarding dielectric properties, the most accurate pair polarizabil-
ity is the one developed by Vogel et al.164 In the case of neon and
argon, no three-body polarizabilities are available. Calculations have
been performed using the superposition approximation321,322 for the
three-body polarizability. Although the results of these calculations
compare well with the available experimental data, their uncertainty
is to a large extent unknown.207

We report in Table 4 the most up-to-date references regarding
ab initio calculations of virial coefficients. This table to some extent
serves as an update to the table of recommended data presented by
Rourke.323

4.5.1. Density virial coefficients
The most accurate ab initio values of the second virial coef-

ficients of helium for both isotopes are those computed by Cza-
chorowski et al.11 In order to visualize the recent progress in this
field, we report in Fig. 7 the evolution of the theoretical uncer-
tainty of B(T) in the past 20 years. Theoretical and computational
improvements enabled a reduction of two orders of magnitude in
the relative uncertainty, which is presently on the order of 10−4 at
low temperatures (< 10 K) and decreases to less than 10−5 at higher
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TABLE 4. Bibliographic data for the state-of-the-art ab initio calculations of virial coefficients and transport properties. Results
for helium have rigorous theoretical uncertainties that are smaller than the best experimental determination. For neon and
argon, many of the values computed from first principles have a higher (and sometimes less rigorous) uncertainty than the
best experimental determination. Multiple references indicate independent validation of theoretical results or complementary
studies

Helium Neon Argon

B Reference 11 Reference 117 Reference 118
C References 273 and 303 Reference 324 Reference 276
D Reference 126 Reference 324 Reference 123
βa Reference 11 Reference 117 Reference 118
γa References 273 and 303 ⋅ ⋅ ⋅ Reference 325
Aε Reference 192 Reference 65 Reference 66
Bε Reference 79 Reference 117 References 79 and 164
Cε References 208 and 210 Reference 207 Reference 207
Aμ

a Reference 80 Reference 64 b Reference 66 b

BR Reference 79 References 79 and 117 c Reference 79
η Reference 10 Reference 117 Reference 118
λ Reference 10 Reference 117 Reference 118
aNote that AR = Aε + Aμ .
bImprovement in progress; see Ref. 326.
cBest values can be obtained by applying the frequency dependence of Ref. 79 to Bε calculated from Ref. 117.

temperatures. In general, the current theoretical uncertainties of
B(T) are more than one order of magnitude smaller than the best
experimental determinations.

Figure 8 shows the development of the uncertainty in the cal-
culations of C(T) for helium in the past 12 years, starting from the
first calculation with fully characterized uncertainties from 2011,127

whose results were independently confirmed a year later using the
Mayer sampling approach.319 One can clearly see that the subse-
quent improvement of the pair potential resulted in a reduction of

FIG. 7. Values of the relative expanded (k = 2) uncertainty in the calculated val-
ues of B(T) for 4He for different pair potentials. Stars: the first calculation of
thermophysical properties using ab initio potentials with well-characterized uncer-
tainties.8 Squares: the ϕ07 potential.9 Triangles: the first potential including a
complete description of relativistic effects.10,137 Diamonds: the latest pair poten-
tial.11 The filled circles are experimental data, compiled in Ref. 11. The peaks are
due to the fact that B(T) crosses zero near 23 K and hence relative uncertainties
become large.

the uncertainty at the lowest temperatures (T ≲ 50 K), while the
uncertainty at the highest temperatures is dominated by the prop-
agated uncertainty from the three-body potential. Recent improve-
ments resulted in a further reduction of the uncertainty by a factor
of ∼5 across the whole temperature range 10–3000 K. The current
theoretical uncertainty in C(T) is a few parts in 104 at high tempera-
ture, and increases to a few parts per 103 below 50 K. At temperatures
below ∼ 10 K, the theoretical uncertainty budget is dominated by the
propagated uncertainty from the pair potential.

FIG. 8. Values of the relative expanded (k = 2) uncertainty in the calculated val-
ues of C(T) for 4He for different pair and three-body potentials. Stars: calculation
from 2011,127 using the pair potential of Ref. 137 and the three-body potential of
Ref. 138. Solid line: calculation from 2021, using the latest pair potential11 and
the three-body potential from Ref. 138. Squares: latest calculation, using the pair
potential from Ref. 11 and the latest three-body potential.273 Experimental data are
from McLinden and Lösch-Will125 (circles) and from Blancett et al.327 (triangles).
The peaks around T = 3 K are due to the fact that C(T) crosses zero and hence
relative uncertainties become large.
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Although no well-characterized four-body potential has yet
been published for helium, several groups have performed calcu-
lations of the fourth virial coefficient, D(T). Although initially the
effect of the four-body potential was neglected,319 more recent work
tried to estimate its contribution using known asymptotic values.126

These results are in good agreement with the limited experimental
information.

In the case of neon, the most recent calculations for B(T) with
a pair potential having well-characterized uncertainties117 resulted
in a relative uncertainty at T = 273.16 K of ur(B) = 2 × 10−3. As
expected, this is larger than the corresponding uncertainty for
helium, due to the fact that electronic structure calculations for
the heavier atoms are much more computationally demanding.
Unfortunately, the three-body potential for neon is only approxi-
mately known at the moment. To the best of our knowledge, no
first-principles calculation is available in the literature, and only a
semi-empirical parametrization is currently known.320 As a conse-
quence, no ab initio calculation of higher-order coefficients has been
performed to date and only approximate values are known.324

The pair potential of argon is well characterized and has been
calculated independently by two groups,155,274 and hence thermo-
physical properties at the pair level are well characterized.29,164,325

The relative uncertainty of B(T) at T = 273.16 K is ur ∼ 0.6%. The
pair potential has recently been improved by including relativistic
effects, but the uncertainty of the resulting second virial coefficients
is still larger than for the best experimental determinations.118

The three-body potential for argon has also been computed
independently by two groups123,276 and its uncertainty has been
rigorously assessed. Therefore, the third virial coefficient of argon
is also known with rigorously propagated uncertainties. The rel-
ative uncertainty is on the order of ur ∼ 1% at T = 273.16 K and
increases up to ur ∼ 6% at T = 80 K. Analogously to the other
noble gases, the four-body (and higher) non-additive contribution
to the potential energy of argon is not known from first princi-
ples. Nevertheless, higher-order virial coefficients for argon, up to
the seventh, have been computed based on pair and three-body
potentials.123

4.5.2. Acoustic virial coefficients
The situation regarding first-principles calculations of acous-

tic virial coefficients closely follows that of the density virials. In
the usual approach using phase shifts, the calculation of B(T) also
provides the temperature derivatives needed to compute βa(T), and
therefore very accurate values for the second acoustic virials for
helium,11 neon,117 and argon29,118,164 can be found in the papers
where the pair potential and B(T) calculations are reported.

In the case of the third acoustic virial coefficient, the situation
is similar. The most accurate values of γa for helium isotopes are
reported in Refs. 273 and 303, which are in very good agreement
with the values obtained independently using the Mayer sampling
approach.136 The current relative uncertainty in γa for helium from
ab initio calculations is ur ∼ 0.02% − 0.2% across the temperature
range from 10 to 1000 K.303

As already mentioned, the lack of an accurate three-body
potential for neon has prevented a fully first-principles calculation
of the third virial coefficient, and hence no ab initio values of γa are
currently available for neon.

Regarding argon, ab initio acoustic virial coefficients up to the
fourth, together with a thorough analysis of their associated uncer-
tainties, have been reported by Wiebke et al.325 The uncertainty of
γa at T = 273.16 is ∼1.4%.

4.5.3. Dielectric and refractivity virial coefficients
The first dielectric virial coefficient Aε for helium has been

computed in Ref. 192 with an accuracy exceeding the best exper-
imental determination. In the case of neon and argon, the most
accurate theoretical results are less accurate than the best experimen-
tal determination.63 The most accurate computed value for neon can
be found in Ref. 65, and a calculation for argon, including the fre-
quency dependence needed for refractivity estimates, has recently
appeared.66

Magnetic susceptibilities computed from first principles and
the corresponding quantities Aμ that are used in RIGT are available
for helium,80 neon,64 and argon.66 Work in progress will signifi-
cantly reduce the uncertainties from theory for neon and argon.326

As noted by Rourke,323 there are some discrepancies between the
ab initio calculations of the susceptibilities and the experimental
values often cited from Barter et al.;328 the discrepancies are many
times larger than the stated uncertainties in the theoretical calcula-
tions. This may be due to errors in the 1930s-era argon data used in
Barter’s calibration; error in the theoretical value seems unlikely at
least for helium, where there is independent verification as discussed
in Sec. 3.6. It is noteworthy that the large discrepancy between the-
ory and Barter’s experiments is in the opposite direction for helium
than it is for neon and argon, suggesting that Barter might have had
an experimental problem specific to helium. A modern experimental
determination of Aμ for helium and argon (perhaps involving mea-
suring the ratio of the two) would be highly desirable. Even a 1%
uncertainty for this measurement would be good enough to resolve
the existing discrepancies, which are on the order of 7%.

First-principles calculations of Bε(T) for helium have been
available for a long time.284 Reference values from the latest pair
potential and polarizability can be found in Ref. 79. These results
have been independently confirmed (except at the lowest temper-
atures) by semiclassical calculations.329 Due to the recent devel-
opment in three-body polarizabilities208 and dipole-moment sur-
faces,210 ab initio values of Cε(T) with well-defined uncertainties
are also available for both helium isotopes.210 These values agree
with the limited experimental data available, but have much smaller
uncertainties.

In the case of neon, the most accurate ab initio Bε(T) has been
computed by Hellmann and co-workers,117 who also reported well-
characterized uncertainties. The results are in very good agreement
with DCGT measurements. The third dielectric virial coefficient of
neon is only approximately known from ab initio calculations, since
the contributions from the three-body polarizability and dipole-
moment surfaces can only be estimated with several uncontrolled
approximations.207

Regarding argon, the second dielectric virial coefficient has
been computed using a fully ab initio procedure in Refs. 79, 164, and
329. Analogously to neon, the lack of ab initio three-body surfaces
for the polarizability and dipole moment has prevented a fully first-
principles calculation of Cε(T) for argon. Approximate values were
reported in Ref. 207.
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Calculations of the second refractivity virial coefficient, BR,
for helium, neon, and argon were performed by Garberoglio and
Harvey79 using the best pair potentials and Cauchy moments avail-
able at the time, although in many cases a rigorous uncertainty
propagation was not possible. In the case of neon, the subsequent
improved Bε from Hellmann et al.117 can be combined with the
frequency-dependent correction from Ref. 79 to provide improved
values of BR.

4.6. Transport properties
When the thermodynamic equilibrium of a gas is perturbed,

dynamic processes will tend to restore it. The actual response
depends on the specific kind of induced non-homogeneity: density
variations will give rise to diffusive processes, relative motions will be
damped by internal friction, and temperature gradients will result in
heat flowing through the system.

The kinetic theory of gases330 provides a theoretical frame-
work to analyze non-equilibrium behavior and transport properties
of gases, determining how the flux of matter, momentum, or heat
depends on the spatial variation of density, velocity, or temperature.
The most accurate description is based on the Boltzmann equation,
which describes the evolution of the state of a fluid where simulta-
neous interactions of three or more particles are neglected; hence, it
is valid in the low-density regime only. Despite this limited scope,
additional approximations are needed to make the kinetic equations
manageable, for example by limiting the strength of the inhomo-
geneities to the linear or quadratic regime, which are situations that
find widespread application.

In the following, we will briefly review the theory and the main
computational results regarding heat and momentum transport in
monatomic fluids, and how the relevant quantities – viscosity and
thermal conductivity – can be calculated from first principles. In the
low-density and linear regime, the shear viscosity (η) and thermal
conductivity (λ) describe the linear relation between momentum
and temperature inhomogeneities and the resulting internal friction
and heat

πi j = pδi j − η(
∂ui

∂x j
+
∂u j

∂xi
) (99)

qi = −λ
∂T
∂xi

, (100)

where πij is the pressure tensor, p the isotropic pressure, 𝔲 the
macroscopic velocity, q the heat flux, and T the temperature. Kinetic
theory shows how to compute η and λ from the details of the
microscopic interaction between atoms. To this end, it is useful to
define

Q(l)(E) = 2π∫ (1 − cosl θ)σ(E, θ) sin θdθ (101)

Ω(l,s)(T) = 2∫
e−E/(kBT)

(s + 1)!
(

E
kBT
)

s+1
Q(l)

dE
kBT

, (102)

where σ(E, θ) is the differential cross section for two particles with
energy E in the scattering reference frame (E = μv2

/2, where μ = m/2
is the reduced mass and v the modulus of the relative velocity).

The quantities defined by Eq. (102) are known as collision integrals.
Equation (101) is valid when the cross section is calculated either in
the classical or quantum regime; in the latter case one must further
consider the fermionic or bosonic nature of the interacting atoms.278

The viscosity and thermal conductivity are given by

η(T) =
5

16

√
2πμkBT
Ω(2,2) f (k)η (103)

λ(T) =
75
64

√
kBT
2πμ

1
Ω(2,2) f (k)λ , (104)

where f (k)η and f (k)λ are factors of order 1 that depend on the spe-
cific order k of the approximations involved, which in turn involve
collision integrals of higher order. In the quantum case, collision
integrals cannot be computed using path-integral MC methods, but
their value depends on the scattering phase shift (see Sec. 4.2). For
example, the expression for Q(2)

(E) becomes331

Q(2)(E) =
4πh̵2

μE

∞

∑
l=0

(l + 1)(l + 2)
2l + 3

sin2
(δl(E) − δl+2(E)), (105)

and explicit expressions for f (k)η and f (k)λ can be found in Refs. 278
and 332 for k = 3 and k = 5, respectively.

As pointed out in Sec. 2.5, the accuracy of ab initio calculations
of transport properties for helium vastly exceeds that of experiments.
We report in Fig. 9 the evolution of the relative uncertainty in the
theoretical calculation of ηHe in the past 20 years. The most recent
theoretical values, which have an accuracy that is more than enough
for several metrological applications, can be found in Ref. 10. It
is worth noting that a more accurate pair potential has been pub-
lished in the meantime,11 although no corresponding calculation of
transport properties has yet been published.

In the case of neon, the best theoretical estimates of transport
coefficients are given in Ref. 117, while for argon they can be found
in Ref. 118. For both gases, the best experimental results are obtained

FIG. 9. The evolution of the relative uncertainty in the ab initio calculation of vis-
cosity for 4He. Stars: calculations from Ref. 8. Triangles: calculations from Ref.
9. Crosses: calculations from Ref. 10. The minimum of the calculated uncertainty
near 40 K is unphysical; see Sec. 6.3. Black dots: experimental data from Ref.
333. The gray square is the experimental value reported in Ref. 334.
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from ratio measurements using the ab initio value of the viscosity or
thermal conductivity of helium.

5. Molecular Systems
While the focus of this review is on noble gases, which are the

fluids of choice for most ab initio-based primary temperature and
pressure metrology, first-principles thermophysical properties for
molecular species can also be of interest and make significant contri-
butions. Three of the most promising areas are humidity metrology,
low-pressure metrology, and atmospheric physics.

There are two main factors that make rigorous ab initio cal-
culations of properties much more difficult for molecules than for
monatomic species. The first is the increased dimensionality, where
interactions depend not only on distance but on the relative orienta-
tions of the molecules. This not only complicates the development of
potential-energy surfaces between molecules, but also makes the cal-
culation of properties such as virial coefficients a sampling problem
in many dimensions. Second, for rigorous calculations the internal
degrees of freedom of the molecule must be considered, because
properties of interest (such as the mean polarizability) depend on
the molecular geometry and a distribution of geometries is sampled
for each quantum state of the molecule. In some cases it may be ade-
quate to assume a rigid molecule, but at a minimum an estimate
of the uncertainty introduced by this assumption is needed, even
though it might be difficult to compute.

In this section, we will describe the calculation of single-
molecule quantities and quantities involving two or more molecules,
along with their use to calculate properties of interest for metrol-
ogy. Particular attention will be given to methods for addressing the
challenges specific to molecular species. Finally, we will discuss some
metrological applications that use properties of molecular species.

5.1. Single-molecule calculations
5.1.1. Intramolecular potentials

In order to compute values of a property of a molecule aver-
aged over nuclear motions, it is necessary to have a PES for the
molecule. Such surfaces can be developed with ab initio calculations,
and they can often be refined if accurate spectroscopic measure-
ments are available. Development of the intramolecular potential is
relatively straightforward for diatomic molecules such as H2, N2, and
CO because the potential is one-dimensional, but the dimensionality
and complexity increases quickly with the number of atoms. Surfaces
of sufficiently high quality for most purposes have been developed
for the triatomic molecules H2O335 and CO2.336 These intramolec-
ular potential-energy surfaces are also needed in order to sample
configurations when considering molecular flexibility for pair cal-
culations as described in Sec. 5.2.2. Except for few-electron diatomic
species and two-electron triatomics, pure ab initio surfaces are not
accurate enough to provide rovibrational spectra competitive with
experiments, and the most accurate molecular surfaces are always
semiempirical.

5.1.2. Electromagnetic properties
In contrast to noble gases, molecular species have multi-

pole moments in the BO approximation (dipole, quadrupole, etc.).
The most significant for metrology is the electric dipole moment.

Rigorous ab initio calculation of the dipole moment for a molecule
such as H2O requires the development of a surface in which the
dipole moment vector is given as a function of atomic coordinates,
along with the single-molecule PES. The dipole moment for a given
rovibrational state can then be computed as the expectation value
averaged over the wave function of that state. Because the popula-
tion of states changes with temperature, the average dipole moment
will also change (slightly) with temperature; this has been analyzed
for H2O and its isotopologues by Garberoglio et al.337

The polarizability is another important quantity, both in the
static limit for capacitance-based metrology and at higher frequen-
cies for metrology based on optical refractivity. Unlike a noble gas
whose polarizability at a given frequency is a single number, the
polarizability of a molecule is a tensor that reflects the variation with
direction of the applied field and of the molecular axes. However, the
quantity of interest for metrology is the mean polarizability, defined
as 1/3 of the trace of the polarizability tensor.

Polarizability reflects the response of the electrons to an electric
field. It can be computed ab initio in a relatively straightforward way.
While for monatomic species (and homonuclear diatomic species)
the electronic polarizability is the only contribution, more compli-
cated molecules have an additional contribution in the static limit
and at low frequencies; this is usually called the vibrational polar-
izability. It can be thought of as the electric field distorting the
molecule (and therefore its charge distribution) by pushing the neg-
atively and positively charged parts of the molecule in opposite
directions.

The molecular dipole moment and polarizability are defined as
the first- and second-order response to an externally applied electric
field E0, respectively. They can be computed by numerical differen-
tiation of the molecular energy computed in the BO approximation
as a function of E0, or by perturbation theory. Although in prin-
ciple these two approaches should give the same result, in practice
some differences are observed. For atomic systems, the results from
perturbation theory are found to be more accurate than numer-
ical differentiation and are generally preferred.206 In the case of
water, numerical differentiation is considered more accurate for
dipole-moment calculations.338

Once intramolecular potential-energy surfaces, polarizability
surfaces, and dipole-moment surfaces are available, one can cal-
culate the temperature-dependent electromagnetic response of a
molecule, that is the first dielectric virial coefficient Aε [see Eq. (8)],
which is generally given by two contributions:337 the first is pro-
portional to the rovibrational and thermal average of the electronic
polarizability surface, while the second depends on the squared
modulus of the transition matrix element of the dipole-moment
surface. Additionally, one can separate the contribution from the
dipole-moment transition matrix elements into those transitions
where the vibrational state of the molecule changes and those for
which the vibrational state of the molecule does not change, but the
rotational state does: these two components of the dipole-moment
contribution to the molecular polarizability are known as vibrational
and rotational polarizabilities, respectively.339

For small molecules (two or three atoms), one can solve
directly the many-body Schrödinger equation for nuclear motion340

(e.g., using the efficient discrete-variable representation341 of the
few-body Hamiltonian342) and then perform the appropriate rovi-
brational and thermal averages to obtain Aε. It has recently been
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shown that the path-integral approach outlined in Sec. 4 can be
successfully used to compute the first dielectric virial coefficient of
water.337 It can possibly be generalized to larger molecules, where
the direct solution of the many-body Schrödinger equation becomes
very demanding in terms of computational power.

In the case of water, computational results using the most
accurate intramolecular potential-energy surface,335 polarizability
surface,343 and dipole-moment surface338 are within 0.1% of the
experimental value for the static dipole moment,344 although the
theoretical surfaces for water do not yet have rigorously assigned
uncertainties.

5.1.3. Spectroscopy
It is now possible, especially for molecules containing only two

or three atoms, to compute the positions and intensities of spectro-
scopic lines ab initio. The calculation of line positions requires only
the single-molecule PES. The more important quantity for thermo-
dynamic metrology, however, is the intensity of specific lines. This
requires both the PES and a surface for the dipole moment as a func-
tion of the coordinates. Accurate ab initio dipole-moment surfaces
have been developed for H2O,338 CO2,345,346 and CO.347 The possible
use in pressure metrology of intensities calculated from the surfaces
for CO and CO2 will be discussed in Sec. 5.4.

5.2. Calculations for molecular clusters
5.2.1. Interaction potentials

The development of interaction potentials for molecular gases
is more difficult than for atomic ones due to the additional degrees
of freedom, but much of the description in Sec. 3 is still applica-
ble. A common approximation when developing intermolecular pair
potentials is to treat the molecules as rigid rotors, which reduces the
dimensionality considerably. For example, the PES of a pair of flexi-
ble water molecules has 12 degrees of freedom. By freezing the four
OH bond lengths and the two HOH bond angles, only six degrees of
freedom, usually taken to be the center-of-mass separation and five
angles describing the mutual orientation, remain. To minimize the
consequences of freezing the intramolecular degrees of freedom, the
zero-point vibrationally averaged structures of the monomers are
often used instead of the corresponding equilibrium structures.348,349

However, even a six-dimensional dimer PES requires investi-
gating thousands or even tens of thousands of pair configurations
with high-level ab initio methods. As discussed in Sec. 3, the most
commonly applied level of theory is CCSD(T)350 for molecular
monomers; this method is usually applied with the frozen-core (FC)
approximation. Such a level of theory was only the starting point in
the schemes used to develop the most accurate pair potentials for the
noble gases beyond helium. For the CCSD(T) method, the computa-
tional cost scales with the seventh power of the size of the molecules,
and the scaling becomes even steeper for post-CCSD(T) methods.

In recent years, several intermolecular PESs have been devel-
oped that go beyond the CCSD(T)/FC level of electronic structure
theory. The first step is to include all electrons in the calculations.
Examples of all-electron (AE) surfaces are the flexible-monomer
water dimer PES of Ref. 351 and the rigid-monomer ammonia dimer
PES of Ref. 352. Also, post-CCSD(T)/AE terms were used in the
H2–CO flexible-monomer PESs starting in 2012.353,354 The T(Q)

contributions were shown to have surprisingly large effects on the
H2–CO spectra.355

Intermolecular pair potentials can be accurately represented
analytically by a number of different base functional forms. Mimick-
ing the anisotropy of the PES is most commonly achieved either by
using spherical harmonics expansions or by placing interaction sites
at different positions in the molecules, with each site in one molecule
interacting with each site in the other molecule through an isotropic
function. The site-site form is also often used for the empirical effec-
tive pair potentials commonly employed in MD and MC simulations
of large molecular systems. The analytic functions used to represent
high-dimensional ab initio PESs for pairs of small rigid molecules
typically have a few tens up to a few hundred fit parameters.

Determination of these parameters, i.e., fitting a PES to a set
of grid points in a dimer configurational space and the correspond-
ing interaction energies, was until recently a major task taking often
several months of human effort. This bottleneck has recently been
removed by computer codes that perform such fitting automatically.
In particular, the autoPES program351,356 can develop both rigid-
and flexible-monomer fits at arbitrary level of electronic structure
theory. The automation is complete: a user just inputs specifications
of monomers and the program provides on output an analytic PES.
This means that the program determines the set of grid points, runs
electronic structure calculations for each point, and performs the fit.
In addition to developing automation, the autoPES project intro-
duced several improvements in the strategy of generating PESs. In
particular, the large-R region of a PES is computed ab initio from
the asymptotic expansion. Such expansion predicts interaction ener-
gies well down to R about two times larger than the van der Waals
minimum distance. This means that no electronic structure calcula-
tions are needed in this region and autoPES can develop accurate
PESs for dimers of few-atomic monomers using only about 1000
grid points, while most published work used dozens of thousands
of points.

Accurate analytic rigid-rotor PESs exist for a large number
of both like-species and unlike-species molecule pairs. For metrol-
ogy, the most noteworthy of these are N2–N2,357 CO2–CO2,358,359

H2O–CO2,360 H2O–N2,361 and H2O–O2.362 Other accurate PESs
of this type are: N2–HF,363 H2O–H2O,351,364 (HF)2,365 and
H2–CO.353,355

Many of these PESs (e.g., those from Refs. 357, 358, and
360–362) are based on nonrelativistic interaction energies cor-
responding to the frozen-core CCSD(T) level of theory in the
CBS limit and are represented analytically by site-site potential
functions, with each site-site interaction modeled by a modified
Tang–Toennies type potential366 with an added Coulomb interac-
tion term. In the case of the N2–N2 PES,357 corrections to the inter-
action energies for post-CCSD(T), relativistic, and core-core and
core-valence correlation effects were considered. Motivated by the
availability of extremely accurate experimental data for the second
virial coefficients of N2 and CO2, the N2–N2

357 and CO2–CO2
358

PESs were additionally fine-tuned such that these data are almost
perfectly matched by the values resulting from the PESs. The max-
imum well depths of the PESs were changed by the fine-tuning by
less than 1%. Such fine-tuning does, however, mean that properties
such as virial coefficients calculated from these tuned potentials can-
not be considered to be truly from first principles for the purpose of
metrology.
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The second group of PESs listed above was also developed
using either CCSD(T), with FC or AE, or SAPT. Post-CCSD(T)
terms were considered in some cases, as already mentioned above. A
range of different functional forms was used in the fitting; for larger
monomers it was most often the site-site form.

While the error introduced by approximating molecules as
rigid rotors is believed to be small for the molecules con-
sidered here, more rigorous calculations should include the
intramolecular degrees of freedom; this has been done for exam-
ple for the H2–H2, H2–CO, and H2O–H2O potentials.351,353,354,367,368

There are several difficulties involved in the generation of
fully flexible potentials. The first is the larger number of
degrees of freedom. A system of N molecules approximated as
rigid rotors can be described by Cr = 6N − 6 coordinates, while
Cf = 3nN − 6 coordinates are necessary to fully describe a configu-
ration of the same molecules if each of the monomers has n atoms.
For sampling c configurations per degree of freedom, the number of
calculations needed to explore the PES grows exponentially as cCr∣f .
In the case of, say, the water trimer (N = 3, n = 3), even assuming
c = 3 one goes from 312

≈ 5 × 105 configurations for rigid models
to 321

≈ 1010 configurations for a fully flexible approach. The expo-
nential increase of the number of configurations as a function of
the number of degrees of freedom to be considered is sometimes
called the dimensionality curse. Not all of these configurations are
equally important and there is room for significant pruning and
clever sampling strategies: one of the most useful starts from poten-
tials developed for rigid molecules and enables the development of
fully flexible versions optimizing the number of additional molecular
configurations to be evaluated.369,370 More generally, even for a few
degrees of freedom, the product of dimensions strategy leading to
the cC is the worst strategy to follow. Instead, one uses various types
of guided MC generation of grid points. In particular, the statistically
guided grid generation method of Ref. 371 reduces the number of
points needed for a six-dimensional PES to about 300 (assuming the
use of ab initio asymptotics). Another important issue regards the
choice of a suitable form for the analytic potential and the fitting pro-
cedure. As in the case of rigid potentials, site-site interaction models
(based on exponential functions at short range, inverse powers at
long range, and Coulomb potentials) are commonly used for inter-
molecular flexible potentials. For the intramolecular interactions,
Morse functions are often used but polynomial expansions work suf-
ficiently well for molecules in their low-energy rovibrational state.351

Nevertheless, the dimensionality curse drastically limits the develop-
ment of fully flexible potentials and for the time being only pair and
three-body potentials involving diatomic and triatomic molecules
(notably water364,372,373) have been developed.

5.2.2. Density virial coefficients
The calculation of density virial coefficients for molecular sys-

tems can be performed in a way very similar to that for noble
gases. The main difference concerns the evaluation of the matrix
elements of the free-molecule kinetic energy operator, that is the
generalization of Eq. (74) which in turn depends on the spe-
cific degrees of freedom considered in the molecular model under
consideration.

In the most general case, one considers the translational degrees
of freedom of all the atoms in the molecule. Equation (74) remains
the same (with the obvious modification of an atom-dependent

mass m), but one needs an intramolecular potential to keep the
molecule bound and, in general, a large number of beads, especially
if light atoms (such as hydrogen or one of its isotopes) are to be con-
sidered. This approach allows flexibility effects to be fully accounted
for and has been applied to investigate the second virial coefficient of
hydrogen367 and water368 isotopologues. As one might expect, flexi-
bility is more important at higher temperatures. On the other hand,
this approach requires intramolecular and intermolecular potentials
that depend on all the degrees of freedom, which in turn call for very
demanding ab initio electronic structure calculations.

At sufficiently low temperatures, molecules occupy their vibra-
tional ground state, and rigid-monomer models are expected to
be quite (although not perfectly) accurate. In this case, a whole
molecule is described as a rigid rotor, that is by three translational
and three rotational degrees of freedom (2 in the case of linear
molecules). The matrix elements of the kinetic energy operator are,
in this case, more complicated than that in Eq. (74), but their expres-
sion has been worked out for both linear374 and non-linear375,376

rotors.
The rigid-rotor approximation of a molecular system is, in

principle, an uncontrolled approximation and, consequently, can-
not directly provide rigorous data for metrological applications. On
the other hand, the associated uncertainties can be partially offset by
the fact that potential-energy surfaces can be generated with higher
accuracy than in the case of fully flexible models.261,377 Validation of
the ab initio results with experimental data can be used to establish
the temperature range in which a rigid model is valid, and provide
useful estimates of virial coefficients where experimental data are
lacking. Additionally, rigid models can be a stepping stone toward
the more accurate fully flexible approaches.

Also, semiclassical approximations of density378 or dielectric
virial coefficients285 for molecular systems are available. They are
generally much easier to evaluate than by path-integral calculations,
and are quite accurate in many cases.337,368,379

5.2.3. Dielectric and refractivity virial coefficients
The calculation of dielectric and refractivity virial coefficients

for molecular species is much more difficult than for the monatomic
systems discussed in Sec. 4.5.3. In addition to the increased dimen-
sionality, the charge asymmetry creates additional polarization
effects in interacting molecules. A complete treatment must there-
fore include the effect of the molecular interactions not only on the
polarizability of the molecules, but also on their charge distribu-
tion. Because of this complexity, it seems unlikely that coefficients
beyond the second virial will be calculated in the foreseeable future,
and quantitatively accurate calculations with realistic uncertainty
estimates may be limited to diatomic molecules such as N2 or H2.

The only attempt at such calculations we are aware of for realis-
tic (polarizable) molecular models is the work of Stone et al.,380 who
calculated the second dielectric virial coefficient for several small
molecules, including CO and H2O. A recent experimental deter-
mination of the second dielectric virial coefficient for CO381 was
in qualitative but not quantitative agreement with the prediction of
Stone et al.

For rigorous metrology, it would be necessary to characterize
the uncertainty of the surfaces describing the mutual polariza-
tion and pair polarizability of the molecules. The dimensionality,
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and therefore the complexity, of these calculations for a diatomic
molecule like N2 would be similar to that for the three-body
polarizability and dipole surfaces for monatomic gases.

5.2.4. Molecular collisions
In some pressure-metrology applications near vacuum condi-

tions, collision rates, which are related to collision integrals, are
required. We already introduced collision integrals for atom–atom
collisions in Sec. 4.6, but the concept can be generalized to include
atom–molecule and molecule–molecule collisions, enabling the cal-
culation of transport properties for dilute molecular gases. While the
collision integrals for atom–atom collisions result in a classical treat-
ment from the solution of the linearized Boltzmann equation and
in the quantum-mechanical case from the solution of the linearized
Uehling–Uhlenbeck equation,382 the corresponding classical and
quantum-mechanical equations for collisions involving molecules
are the linearized Curtiss–Kagan–Maksimov equation383–386 and the
linearized Waldmann–Snider equation.387–390

The formalism for the calculation of collision integrals involv-
ing molecules is much more complex than in the case of atom–atom
collisions. Relations for classical collision integrals were derived by
Curtiss for rigid linear molecules391 and extended to rigid nonlinear
molecules by Dickinson et al.392 The quantum-mechanical calcula-
tion of collision integrals involving two molecules has rarely been
attempted because of the mathematical complexity and large com-
putational requirements, whereas atom–molecule collisions have
been studied quantum-mechanically more often. For collisions
between a helium atom and a nitrogen molecule, collision integrals
were calculated both classically and quantum-mechanically.393,394

The comparison showed that quantum effects are small except at
low temperatures. The degree to which the quantum nature of col-
lisions can be neglected for pairs with larger expected quantum
effects, such as H2O–H2O, remains an open question, but the agree-
ment with experiment of classically calculated dilute-gas viscosities
for H2O395 suggests that the classical approximation is adequate for
most purposes.

5.3. Humidity metrology
Much humidity metrology requires knowledge of humid air’s

departure from ideal-gas behavior. Because the densities are low, this
can be described by the virial expansion. The second virial coefficient
of pure water has been calculated368 based on flexible ab initio pair
potentials computed at a high level of theory.364,372,373 It is necessary
to take the flexibility of the water molecule into account to obtain
quantitative accuracy.368

The most important contribution to the nonideality of humid
air comes from the interaction second virial coefficient of water with
air. While fairly accurate measurements of this quantity exist near
ambient temperatures, it can now be computed with similar or bet-
ter uncertainty by combining the cross second virial coefficients for
water with the main components of dry air.396 Good quality pair
potentials exist for water with argon,397 nitrogen,361 and oxygen,362

and these have been combined by Hellmann362 to produce accurate
water–air second virial coefficients between 150 and 2000 K.

For humidity metrology at pressures significantly higher
than atmospheric, corrections at the third virial coefficient level
become significant. Only very limited data exist for the relevant

third virial coefficients (water–water–air and water–air–air),398 so
ab initio calculation of these quantities would be useful. This
requires development of three-body potential-energy surfaces for
systems such as H2O–N2–N2 and H2O–H2O–O2. To our knowl-
edge, no high-accuracy surfaces exist for these three-molecule
systems, but their development should be feasible with current
technology.

The same framework can be used for humidity metrology in
other gases. Hygrometers are typically calibrated with air or nitrogen
as the carrier gas, but some error will be introduced if the calibration
is used in the measurement of moisture in a different gas. Calibra-
tions can be adjusted if ab initio values of the cross second virial
coefficient are known for water with the gas of interest. Such val-
ues have been developed for several important gases, such as carbon
dioxide,360 methane,399 helium,400 and hydrogen.401

Some emerging technologies for humidity metrology can be
aided by ab initio property calculations. Instruments to measure
humidity from the change in dielectric constant with water content
of a gas402,403 require the first dielectric virial coefficient of water,
which depends on its molecular polarizability and dipole moment.
These quantities and their temperature dependence have been a
subject of recent theoretical study.337

Spectroscopic measurement of humidity has also been pro-
posed;404 this requires the intensity of an absorption line for the
water molecule. Thus far, work in this area has used measured line
intensities due to their smaller uncertainty compared to ab initio
values. The recent work of Rubin et al.405 demonstrated mutually
consistent sub-percent accuracy for both experimental and theoreti-
cal intensities based on a semiempirical PES for an H2O line, offering
promise for the future use of calculated intensities to reduce the
uncertainty of humidity metrology.

5.4. Pressure metrology
Molecular calculations are also promising for pressure metrol-

ogy at low pressures.105 Refractivity-based pressure measurements
using noble gases are discussed in Sec. 2.3. Some proposed
approaches use ratios of the refractivity of a more refractive gas (such
as nitrogen or argon) to that of helium. Use of nitrogen in these
systems would be aided by good ab initio results for the polarizabil-
ity of the N2 molecule and its second density and refractivity virial
coefficients.

For low pressures, on the order of 1 Pa and below, absorption
spectroscopy is a promising approach for pressure measurement.
The absorption of a gas such as CO or CO2 can be used to mea-
sure low gas densities (from which the pressure is calculated by the
ideal-gas law, perhaps with a second virial correction); this can be
a primary pressure standard if the line intensity is calculated from
semiempirical potential-energy and dipole-moment ab initio sur-
faces tuned to spectral data. Even if measured intensities are used,
theoretical results are valuable to check their accuracy. For CO2,
uncertainty of intensity measurements and agreement between the-
ory and experiment below 0.5% has been obtained.346,406 The simpler
CO molecule is more amenable to accurate theoretical calculations;
consistency between experimental and theoretical line intensities
on the order of 0.1% has recently been achieved.347 In these cal-
culations, the potential-energy curve was purely empirical, but the
dipole-moment surface was obtained ab initio. An unresolved ques-
tion in this work so far is the uncertainty of ab initio calculated line
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intensities, which must depend in a complex way on the uncer-
tainties in the intramolecular potential and in the dipole-moment
surface. Without reasonable estimates for the uncertainty of calcu-
lated intensities, the utility of this spectroscopic method for primary
pressure standards is diminished.

For ultrahigh vacuum, gas densities can be measured based on
the collision rate between the gas and a collection of trapped ultra-
cold atoms. Both lithium and rubidium have been proposed as the
trapped species.407–413 While in some implementations an apparatus
constant is derived from measurements,409,410 it has recently been
recognized414 that the proposed procedure introduces error when
light species (such as Li and H2) are involved in the collisions.

It is also possible to determine the relevant proportionality
factor for the collision rate from first principles using collision
cross sections calculated from ab initio pair potentials and quan-
tum collision theory. These calculations have been performed for
lithium with H2 (the most common gas in metallic vacuum systems)
and He;415,416 ab initio calculations with rubidium are more chal-
lenging due to the large number of electrons. A recent paper has
reported first-principles collision rate coefficients for both Rb and
Li with noble gases, H2, and N2.417 It is also possible to measure
the ratio of two collision pairs (for example, Rb–H2 versus Li–H2)
to obtain the coefficient for a system that is more difficult to cal-
culate ab initio;407,414 in this approach a low uncertainty for the
simpler-to-calculate system (that with fewer electrons) is essential.

5.5. Atmospheric physics
In atmospheric physics, the interaction of radiation with atmo-

spheric gases, particularly H2O and CO2, has received increasing
attention for climate studies; it is also important for Earth-based
astronomy where the atmosphere is in the optical path. Scientists
in these fields rely on line positions and intensities in the HITRAN
database.418 Increasingly, ab initio calculations are being used to
supplement experimental measurements for these quantities, as has
recently been summarized for CO2.419

5.6. Transport properties
While transport properties of molecular gases are of little rel-

evance in precision metrology, for the sake of completeness we
mention briefly the current state of the art for pure molecular gases.
Most of the transport property calculations for such gases performed
so far are based on classically calculated collision integrals for rigid
molecules using the formalism of Curtiss383 for linear molecules and
of Dickinson et al.392 for nonlinear molecules (see Sec. 5.2.4).

A representative example of such calculations for gases consist-
ing of small molecules other than H2 are the classical shear viscosity
and thermal conductivity calculations of Hellmann and Vogel395 and
Hellmann and Bich,420 respectively, for pure H2O. The agreement
with the best experimental data is within a few tenths of a percent
for the viscosity and a few percent for the thermal conductivity. For
both properties, these deviations correspond to the typical uncer-
tainties of the best experimental data. The significant contribution to
the thermal conductivity due to the transport of energy “stored” in
the vibrational degrees of freedom, which is not directly accounted
for by the classical rigid-rotor calculations, was estimated using a
scheme that only requires knowledge of the ideal-gas heat capac-
ity in addition to the rigid-rotor collision integrals.420 The main

assumption in this scheme is that collisions that change the vibra-
tional energy levels of the molecules are so rare that their effects on
the collision integrals are negligible.

For pure H2, classical calculations are not accurate enough
even at ambient temperature. Fully quantum-mechanical calcula-
tions were performed by Mehl et al.421 using a spherically-averaged
modification of a H2–H2 PES,261 thus reducing the complexity of
the collision calculations to that for monatomic gases. Despite this
approximation, the calculated shear viscosity and thermal conduc-
tivity values for H2 agree very well with the best experimental data,
particularly in the case of the viscosity where the agreement is
within 0.1%.

6. Concluding Remarks and Future Perspectives
The outstanding progress achieved during the last three

decades by the ab initio calculation of the thermophysical properties
of pure fluids and mixtures has drastically reduced the uncertainty
of the measurement of these properties and of the thermodynamic
variables temperature, pressure, and composition.

For example, consider primary thermometry. Ab initio calcu-
lations directly contributed to the acoustic and dielectric determi-
nation of the value of the Boltzmann constant that is used in the
new SI definition of the kelvin. The remarkably accurate theoretical
calculations of the polarizability and the non-ideality of thermomet-
ric gases have also facilitated simplified measurement strategies and
techniques.29,49,53,54 Consequently, new paths directly disseminating
the thermodynamic temperature are now available at temperatures
below 25 K, where the realization of ITS-90 is particularly com-
plicated. Various methods of gas thermometry have determined T
with uncertainties that are comparable to or even lower than the
uncertainty of realizations of ITS-90.35,62,63 Improved theory has
also suggested that primary CVGT could usefully be revisited, as
discussed in Sec. 2.2.4.

In the near future, technical achievements will likely further
reduce the uncertainty of measurements of the thermodynamic tem-
perature and the thermophysical properties of gases. Efforts include:
(1) improving the purity of the thermometric gases at their point
of use, (2) implementing two-gas methods to reduce the uncertain-
ties from compressibility of the apparatus, and (3) developing robust
microphones (possibly based on optical interferometry) to facilitate
cryogenic AGT. In the remainder of this section, we will sum-
marize current limitations and describe some prospects for future
contributions.

6.1. Current limitations of ab initio property
calculations

As described in Sec. 3, ab initio calculations of properties
for individual helium atoms and pairs of atoms have achieved
extraordinarily small uncertainties. Even for three-body interac-
tions, the potential energy is now known with small uncertainty,
and good surfaces are available for the three-body polarizability and
dipole moment. This enables accurate calculations, with no uncon-
trolled approximations, of the second and third density, acoustic,
and dielectric virial coefficients. This high accuracy is due to the
small number of electrons involved; electron correlation at the FCI
level is still tractable for three helium atoms with a total of six
electrons.
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For DCGT and RIGT, it would be desirable to have similarly
accurate properties for neon and argon, because their higher polar-
izability (and therefore stronger response) reduces the relative effect
of other sources of uncertainty such as imperfect knowledge of the
compressibility of the apparatus or the presence of impurities in
the gas. Unfortunately, this level of accuracy for neon and argon
is unlikely to be obtained in the foreseeable future. The neon atom
has ten electrons, as many as five helium atoms, and argon has 18.
While recent efforts have (at large computational expense) signifi-
cantly reduced the uncertainty of single-atom and dimer quantities
for neon and argon,64–66,117,118 they do not approach the levels of
accuracy achieved for helium. For example, the relative uncertainty
of the best calculation of the static polarizability of a neon atom65

is more than 100 times greater than that of a helium atom.192

Similarly, the relative uncertainty of the pair potential minimum
energy is about 100 times larger for neon117 than for helium.11

Therefore, the relative uncertainties of calculated gas-phase ther-
mophysical properties will be much higher for other gases than
for helium. In such cases, the most accurate values of properties
may be obtained by measuring ratios of properties relative to that
of helium. This has already been done for the static polarizability
of neon and argon63 and for the low-density viscosity of several
gases.166–168

Refractivity-based thermal metrology82,323 requires AR, and
preferably also BR and CR. At microwave frequencies, the static
values (Aε, Bε, etc.) can be used. At optical frequencies, AR has
been computed at a state-of-the-art level for helium,84 neon,64

and argon.66 BR has been computed at a state-of-the-art level for
helium,79 but corresponding calculations for neon and argon rely on
values for the Cauchy moment ΔS(−4) that could be significantly
improved.

Even with state-of-the-art ab initio results, it seems likely that
ratio measurements using helium, such as those of Egan et al. for
AR,119 will produce lower uncertainties. To our knowledge, the
theory for calculating CR at optical frequencies is not available.
Therefore, at the moment, it is necessary to take rather uncertain
values from experiment or assume (based on the small difference
between BR and Bε) that it is equal to Cε.

As mentioned in Sec. 4.5.3 and also noted by Rourke,323 another
issue for refractivity methods is the unclear situation surrounding
the Aμ contribution. The best calculations of the magnetic suscepti-
bility for helium,80 neon,64 and argon66 disagree with the old, sparse
measurements of these quantities328 by amounts much larger than
their stated uncertainties. Independent calculations of the magnetic
susceptibility for one or more of these species would be helpful in
assessing this discrepancy, but what is most needed is a modern
measurement of the magnetic susceptibility of a noble gas (probably
argon), either as an absolute measurement or as a ratio to a substance
with a better-known magnetic susceptibility, such as liquid water.

To reach higher pressures with helium-based apparatus, it
would be desirable to have reliable values, with uncertainties, for
the fourth virial coefficient D(T). The most complete first-principles
estimate so far126 used high-accuracy two-body and three-body
potentials, but had a significant uncertainty component due to the
unknown four-body potential. Accurate calculations of the non-
additive four-body potential for helium are feasible with modern
methods. A four-body PES for helium, even if its relative uncer-
tainty was as large as 10%, would allow reference-quality calculation

of D(T) and enable improved metrology. The fitting of ab initio
calculations to functional forms with many variables could, in
this case, benefit from recent progress in machine-learning-based
methods.422

6.2. Molecular gases
Nitrogen is an attractive option for gas-based metrology due to

its availability in high purity and its longstanding use in traditional
apparatus such as piston gauges, but its lack of spherical symme-
try and its internal degree of freedom add complication to ab initio
calculation of its properties. The development of potential-energy
surfaces for pair and three-body interactions for rigid molecular
models is certainly feasible. This is also possible for flexible models,
pending the difficulties discussed in Sec. 5.2.1. Once these sur-
faces are available, the methods for calculations of density virial
coefficients have already been proven.261,368,377 (see Sec. 5.2.2). To
the best of our knowledge, no fully ab initio calculation of dielec-
tric virial coefficients for molecular systems has been performed.
This task will require the development of the molecular interaction-
induced polarizability function and dipole-moment function. The
path-integral approach described in Sec. 4 can certainly be extended
to compute these quantities as well as rigorously propagate their
uncertainties.

6.3. Improved uncertainty estimations
As mentioned in Sec. 4.3, much progress has been made in

estimating realistic uncertainties for density and dielectric virial
coefficients. The old method of simply displacing the potentials in
a “plus” and “minus” direction, while correct for one-dimensional
integrations such as B and Bε, is inefficient and can produce
inaccurate results for higher coefficients. The functional differ-
entiation approach discussed in Sec. 4.3 provides more rigorous
results.

However, it is not entirely clear how to obtain uncertainties for
acoustic virial coefficients, because they involve temperature deriva-
tives of B(T) and C(T). The rigorous assignment of uncertainty
to a derivative of a function computed from uncertain input is an
unsolved problem as far as we are aware. Binosi et al.303 recently
applied a statistical method (the Schlessinger Point Method) to the
estimation of uncertainties for acoustic virial coefficients; this may
provide a way forward.

A similar issue exists for the low-density transport proper-
ties. The very low uncertainty of the viscosity of helium shown
in Fig. 9 near 40 K, obtained with the traditional method of
“plus” and “minus” perturbations to the pair potential, is an arti-
fact of competing effects on the collision integral of perturbations
from different parts of the potential. While B(T), for example,
exhibits monotonic behavior with respect to perturbations in the
potential, that is not the case for the collision integrals used to
compute transport properties, which can cause uncertainties to
be artificially underestimated. This was recognized by Hellmann
and co-workers, who created potentials perturbed in additional
ways to provide a non-rigorous but reasonable estimation method
for the uncertainty of low-density transport properties for kryp-
ton,149 xenon,423 and neon.117 Further analysis would be welcome
to improve the rigor of uncertainty estimates for transport collision
integrals.
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6.4. Transport properties
In addition to the uncertainty issue just mentioned, we see two

areas for improvement in the field of transport properties. The first
concerns the density dependence beyond the low-density limiting
values discussed in this work. As mentioned in Sec. 2.5, for flow
metrology it would be desirable to know the viscosity with small
and rigorous uncertainties not only at zero density, but at the real
densities at which instruments are calibrated. The first correction
should be a virial-like term linear in density, but the most successful
theory so far171–173 relies on some simplifying assumptions. A more
rigorous theory would be a significant advance. Even if the initial
density dependence were only known for helium, that would enable
better metrology for other gases because of the established methods
for measuring viscosity ratios.

The second area is the transport properties of molecular
species, such as N2 or H2O. As mentioned in Sec. 4.6, classical col-
lision integrals can be calculated for these species when they are
modeled as rigid rotors. While it is believed that the errors intro-
duced by the assumptions of classical dynamics and rigid molecules
are small, it would be desirable to have verification from a more
rigorous calculation. One might expect quantum effects to be sig-
nificant for the dynamics of H2O collisions, since they make a large
contribution to B(T) for H2O.367 Since fully quantum calculation
of collision integrals is currently intractable for all but the sim-
plest systems, the development of a viable “semiclassical” method for
transport properties would be desirable. No such formulation exists
to our knowledge.

6.5. Simulations of liquid helium
While we have focused on the gaseous systems where ab initio

properties are already making major contributions to metrology,
the thermophysical properties of condensed phases (particularly for
helium) are also important in temperature metrology. For example,
the vapor pressures of liquid 3He and 4He are part of the definition
of ITS-90.6 With highly accurate two- and three-body potentials for
helium (perhaps eventually supplemented by a four-body potential),
high-accuracy simulation of thermodynamic properties of liquid
helium may become feasible.

In fact, path-integral simulations of liquid 4He can be per-
formed without uncontrolled approximations,281 although, to the
best of our knowledge, the most recent ab initio potentials have
not yet been employed to compute any liquid helium property (e.g.,
the specific heat – and hence the vapor pressure, via the Clapeyron
equation – or the temperature of superfluid transition). Conse-
quently, the accuracy of first-principles many-body potentials for
liquid 4He is largely unknown. The use of three-body (or higher,
when available) potentials would require considerable computa-
tional resources, as has been recently observed in simulations of
liquid para-H2,424 but theoretical developments in efficient simu-
lation methods for degenerate systems425 might pave the way for
a fully ab initio calculation of the thermophysical properties of
condensed 4He.

In the case of fermionic systems such as 3He, the path-integral
approach suffers in principle from a “sign problem,”426 which gen-
erally requires some approximations and results in a large statistical
uncertainty. However, two research groups have recently claimed
to have overcome these limitations,427,428 which might result in

accurate calculations of thermophysical properties in the liquid
phase also for this isotope.

6.6. Reproducibility and validation
It is desirable for metrological standards to be based on multi-

ple independent studies, so that they will not be distorted by a single
unrecognized error. For example, for the recent redefinition of the
SI in which several fundamental physical constants were assigned
exact values, it was required that the value assigned to the Boltz-
mann constant be based on consistent results from at least two
independent experiments using different techniques and meeting a
low uncertainty threshold.28 Similarly, metrological application of
the calculated results discussed in this Review would be on a firmer
basis if there was independent confirmation of the results.

The danger of an unrecognized error in calculated quantities is
not merely hypothetical. For several years, the “best” calculated val-
ues of C for 3He were in error below about 4.5 K because the effects of
nuclear spin on the quantum exchange contribution had been incor-
porated incorrectly; this was eventually recognized and corrected in
Errata.126,127 An early quantum calculation of Bε of argon429 dis-
agreed with a later study,79 apparently because of inexact handling
of resonance states in the earlier work. Ideally, there would be inde-
pendent confirmation of all the results cited in Table 4 so that any
errors could be detected.

One helpful step in this direction would be more complete doc-
umentation of calculations, including computer code, so that others
can reproduce or check the work. It is common to provide computer
code for potential-energy surfaces, but the calculation of virial coef-
ficients has typically been performed with specialized software that
is not public.

More important for metrology, however, would be independent
verification of the calculated results. Conceptually, this has two parts:
validation of the calculated quantities and surfaces described in
Sec. 3 (potential-energy, polarizability, and dipole surfaces; atomic
and magnetic polarizabilities) and validation of the calculation of
virial coefficients from these quantities (described in Sec. 4).

Validation of calculated virial coefficients is probably the eas-
ier of the two parts, because it is typically less computationally
demanding. This has been done for a few quantities; for example,
two groups have performed fully quantum calculations (in one case
neglecting exchange effects that become important below 7 K) of
C127,319 and D126,319 for 4He. Consistency checks can also be made
by comparing different calculation methods, including classical and
semiclassical approaches that should agree with the quantum calcu-
lations at high temperatures. The error in Bε for argon mentioned
above was detected by comparing phase-shift calculations to PIMC
and semiclassical calculations, showing the value of multi-method
comparisons.

The independent validation of calculated atomic quantities
and intermolecular surfaces is more difficult, because these require
large amounts of dedicated computer time. There have been a few
cases where parallel efforts have produced independent, high-quality
results; these include Aε for neon64,65 and the three-body potential of
argon.123,276 Some validation is also provided when the state of the
art advances and new potentials are produced that agree with pre-
vious potentials (but have smaller uncertainties); this has been the
case with the sequential development of pair potentials for helium
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(Sec. 3.3). In some cases, however, these are not truly independent
verifications because they are developed by the same group and use
many of the same methods. While it may be difficult to justify the
extensive work required to independently confirm a state-of-the-art
calculated surface, there would be value in performing spot checks
of a few points. This would require developers of surfaces to make
their calculated points available (or at least a subset of them), and
also the multiple calculated quantities that typically contribute to
each point.

We believe that more attention should be paid to the repro-
ducibility and validation of the calculated results that are increas-
ingly important in precision metrology. Work of this nature may
not be very attractive to funding agencies (or graduate students), but
it is needed for more confident use of gas-based metrology.
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9. Appendix: Formulae for the Third Acoustic Virial
Coefficient, γa

As is apparent from Eqs. (43), (46), and (47), the explicit expres-
sion of the third acoustic virial coefficient as a function of the pair
and three-body potential is quite involved. We found that it is most
conveniently expressed by defining

b(r, T) = e−βU2(r) − 1 (A1)

bT(r, T) = βU2(r)e−βU2(r) (A2)

bTT(r, T) = βU2(r)(βU2(r) − 2)e−βU2(r) (A3)

and

c = e−βU3 −∑
i<j

e−βU2(ri j) + 2 (A4)

cT = βU3e−βU3 −∑
i<j

βU2(ri j)e−βU2(ri j) (A5)

cTT = βU3(βU3 − 2)e−βU3 −∑
i<j

βU3(βU3 − 2)e−βU3 , (A6)

where c, cT and cTT are functions of the temperature T as well as
r12, r13, and r23 through their dependence on U3. Performing the
substitution γ0 = 5/3, we obtain

RTγa(T) =
8π3

3
N2

A ∫ [
2

15
bTT(r12)bTT(r13) +

14
15

bT(r12)bTT(r13)

+ b(r12)bTT(r13) +
73
30

bT(r12)bT(r13)

+
34
5

b(r12)bT(r13) +
33
5

b(r12)b(r13)

− (
2

15
cTT(r12, r13, r23) +

16
15

cT(r12, r13, r23)

+
13
5

c(r12, r13, r23))]dΩ3. (A7)

The path-integral expression for γa is more complicated, due
to the fact that the ring-polymer distribution function F of Eq. (77)
depends on temperature. In particular, defining U so that

F = Λ3
(

P3/2

Λ3 )

P

exp (−βU), (A8)

one can show that

dF
dβ
= (U − 3(P − 1)

2β
)F, (A9)

and derive path-integral expressions for γa. However, this straight-
forward approach is characterized by large variance in the MC
simulations, since Eq. (A9) has a form analogous to the thermo-
dynamic estimator of the kinetic energy.301 It is possible to derive
equivalent expressions with smaller variance, using the same ideas
that lead to the virial estimator.301,430 The resulting formulas are very
cumbersome, and can be found in Ref. 303.
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221G. Chałasiński, B. Jeziorski, J. Andzelm, and K. Szalewicz, “On the multipole
structure of exchange dispersion energy in the interaction of two helium atoms,”
Mol. Phys. 33, 971 (1977).
222K. Szalewicz and B. Jeziorski, “Symmetry-adapted double-perturbation anal-
ysis of intramolecular correlation effects in weak intermolecular interactions,”
Mol. Phys. 38, 191 (1979).
223S. Rybak, K. Szalewicz, B. Jeziorski, and M. Jaszuński, “Intraatomic correla-
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