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Magnetic nanoparticles 
in square‑wave fields 
for breakthrough performance 
in hyperthermia and magnetic 
particle imaging
Gabriele Barrera *, Paolo Allia  & Paola Tiberto 

Driving immobilized, single‑domain magnetic nanoparticles at high frequency by square wave 
fields instead of sinusoidal waveforms leads to qualitative and quantitative improvements in 
their performance both as point‑like heat sources for magnetic hyperthermia and as sensing 
elements in frequency‑resolved techniques such as magnetic particle imaging and magnetic 
particle spectroscopy. The time evolution and the frequency spectrum of the cyclic magnetization 
of magnetite nanoparticles with random easy axes are obtained by means of a rate‑equation 
method able to describe time‑dependent effects for the particle sizes and frequencies of interest in 
most applications to biomedicine. In the presence of a high‑frequency square‑wave field, the rate 
equations are shown to admit an analytical solution and the periodic magnetization can be therefore 
described with accuracy, allowing one to single out effects which take place on different timescales. 
Magnetic hysteresis effects arising from the specific features of the square‑wave driving field results 
in a breakthrough improvement of both the magnetic power released as heat to an environment 
in magnetic hyperthermia treatments and the magnitude of the third harmonic of the frequency 
spectrum of the magnetization, which plays a central role in magnetic particle imaging.

The most significant applications of magnetic nanoparticles in present-day personalized nanomedicine are based 
on the electromagnetic effects of the magnetization reversal under the action of a periodic magnetic  field1–7. The 
magnetic moments of nanoparticles of suitable composition and size can be driven by a high-frequency field 
in such a way that their motion either produces a controllable amount of magnetic energy able to locally heat 
the environment (resulting in antitumor therapies based on or enhanced by magnetic hyperthermia (MH)3,8,9), 
or generates an induced voltage allowing to trace the position of the nanoparticles themselves within a living 
environment for diagnostic imaging purposes (magnetic particle imaging (MPI)5,10,11). Therapies and diagnostic 
tools based on the properties of magnetic nanoparticles are particularly looked at because they are repeatable, 
minimally harmful, basically not invasive and not involving ionizing  radiation3–5,8. Closely related to MPI, being 
likewise based on the detection of the harmonics of the magnetization signal, is magnetic particle spectroscopy 
(MPS), a fast, sensitive laboratory technique presently applied to several  bioassays12–14.

The electromagnetic effects relevant to therapeutic and diagnostic purposes appear when the nanoparticles 
are submitted to periodic magnetic fields of sufficiently high frequency (in the 100-300 kHz range for MH, in 
the 10-30 kHz range for MPI/MPS). The magnetic nanoparticles of choice for biomedical applications are made 
of iron oxides (IONs) normally in the single-domain  condition15–17 and most commonly of magnetite (Fe3O4 ) 
because of the limited threat posed by this composition to a patient’s  health18,19 and of the availability of magnetite 
ferrofluids suitable for in-vivo  applications20,21, together with a sufficiently strong magnetic signal.

In the common practice of both MH and MPI/MPS the ac magnetic fields applied to magnetite nanoparticles 
are typically characterized by a sinusoidal behaviour. Such a choice is determined by a wide range of reasons, 
including the easy generation of the signal, the rather simple control electronics, and the ease of interpretation 
of the magnetic effects.

However, substituting the sinusoidal field waveform with a non-conventional one (such as the trapezoidal 
wave or the square wave) brings about notable improvements of the efficacy of magnetite nanoparticles in 
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biomedical applications, as put in evidence  elsewhere22. Recently, magnetic fields characterized by a trapezoidal 
waveform with almost vertical legs, called almost-square fields, have been generated using a laboratory  setup23 
and experimented on magnetic particles. The results are quite promising in view of the possible application of 
non-conventional waves as exciting fields for  MH24. The almost-square signal stays constant for most of the time, 
periodically switching from a positive value to the one of opposite sign and back in a time significantly shorter 
than the field’s period, called the inversion time. Such a behaviour markedly affects the one of the magnetiza-
tion, resulting in favorable effects on the magnetic properties of application-oriented interest in nanomedicine. 
In particular, a recent systematic in-vitro study demonstrates that applying an almost-square field at 300 kHz 
has considerable capability to increase cancer cell death compared to a sinusoidal treatment of same amplitude, 
proving that non-harmonic signals are actually able to enhance MHT treatment efficiency against tumor  cells25.

The present state-of-the-art of the practical realizations of trapezoidal magnetic fields leaves room for a 
substantial improvement of the waveform thanks to the possible technological evolution of the electronics and 
the circuitry for generation and control of the magnetic field, with the goal of significantly reducing the inver-
sion time, which is nowadays of the order of the  microsecond23,24, while keeping an amplitude adequate to the 
present applications.

As a consequence, it may be useful to study in detail the effects arising when the magnetic nanoparticles are 
submitted to an ideal square wave (SW) field, viewed as the natural limit of a trapezoidal field wave for vanish-
ingly small inversion time. This is the main task of the work, achieved exploiting a rate-equation treatment of 
magnetic particles driven by an ideal SW field. In such a case the rate equations admit a simple analytic solution 
for the magnetization, resulting in a particularly simple and informative description of this quantity and the 
related effects, both in the time domain and in the frequency domain. The present treatment will highlight the 
significant advantages of applying to magnetic nanoparticles a SW field instead of a conventional sinusoidal 
wave of same frequency and amplitude.

Model
Rate equations for magnetic nanoparticles
A rate-equation treatment can be applied to determine the time evolution of the magnetization of magnetic 
nanoparticles characterized by uniaxial effective anisotropy and pictured as double-well systems (DWS) with 
easy axes randomly pointing in all directions in three dimensions. The magnetic moments on particles are 
treated in the macrospin approximation (coherent switching)26. In the rate-equation framework, changes in the 
magnetization of the system by effect of magnetic field and/or temperature are ascribed to Néel’s  relaxation27, 
so that the method can be applied only when the geometrical axes of particles are fixed in space, a simplifying 
assumption well satisfied in some important biomedical  applications28. For nanoparticles immobilized in a tissue 
or organ, the Brown’s relaxation  disappears29; moreover, at the frequencies and for the nanoparticle sizes typically 
exploited in clinical or pre-clinical applications of magnetic  hyperthermia30 the Brown’s relaxation is expected 
to be dominated by the much faster Néel’s relaxation even in a fluid  environment29.

In the present model, the following assumptions concerning the magnetite nanoparticles are made:
- the particles have spherical shape characterized by the diameter D;
- they are homogeneously dispersed in a diamagnetic host material (such as a living tissue) without forming 

chains or aggregates; - their intrinsic magnetic properties are independent of diameter; the magnetization is 
Ms = 350 emu/cm3 and the effective magnetic anisotropy is Keff = 3× 105 erg/cm3 , values appropriate to single-
core nanoparticles of magnetite around room  temperature31–33. Although both Ms and Keff  can be affected by 
nanoparticle size because of contributions from the particle’s  surface31,33,34, such an effect is of minor importance 
in the range of diameters explored in this paper ( D ≥ 10 nm)32,33;

- the particles are considered to be non-interacting; this assumption is supported by the low particle concen-
tration used in clinical applications of magnetic  hyperthermia30, resulting in a weak dipolar interaction whose 
effect can be included in the definition of Keff

35.
We consider first the nanoparticles whose easy axis makes an angle φ with the magnetic field; if their total 

number (per unit volume) is Nφ , the particles are distributed between the two energy wells according to the 
occupancy numbers N1φ and N2φ = Nφ − N1φ.

The rate equations determine the time evolution of the reduced occupancy numbers n1(t) = N1φ(t)/Nφ 
and n2(t) = 1− n1(t) by effect of the magnetic field and temperature (from now on, the suffix φ is dropped for 
the sake of simplicity)36. In the case of magnetic DWS, only one independent rate equation is actually needed:

where

is the effective time constant and the relaxation time for a particle in the ith well is:

EBi being the height of the energy barrier as seen from well i, τ0 the inverse of the attempt frequency and T  the 
absolute temperature. It should be explicitly noted that EBi and the time constants τi depend on the magnitude 
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of the applied magnetic field and on the angle φ36. The effective time constant of the rate-equation method ( τ ) 
is of course strictly connected to the Néel’s relaxation  time27:

where V = π/6D3 is the volume of the nanoparticle. However, some non-trivial differences between τ and 
τN exist. In fact, τN is the relaxation time in the absence of the applied field, i.e., when the two energy wells of 
the DWS have the same depth. When HV = 0, τ = τN/2 because in this case τ1 = τ2 = τN . However, when a 
magnetic field is applied at a generic angle φ with respect to the easy axis of the particle, the energy wells are 
characterized by different barriers EB1,EB2 , the lower energy barrier corresponding to the easy-axis direction at 
an angle φ < π/2 with respect to the magnetic field’s direction (see the sketch reported in panel b.1 of Fig. 2). 
Here, the case of collinear particles (i.e., having the same φ angle) is discussed; the extension to the general case 
of random easy axes is straightforward.

When H(t) is an ideal square wave field, the amplitude is always either HV or −HV , so that its modulus is 
constant (= |HV | ). In this case the energy barriers EBi ( i = 1, 2 ) as well as the corresponding time constants τi 
entering the definition of τ are affected by the field in a rather simple way. In particular, it is shown in the Appen-
dix A that the effective time constant can be written in terms of the Néel’s relaxation time by simply multiplying 
τN by a field-dependent factor β:

As demonstrated in the Appendix A, the dimensionless β(|HV |) function has the form:

where E1(|HV |),E2(|HV |) are the |HV |−dependent energies corresponding to the minima of the two wells. Such 
a function monotonically decreases with increasing |HV | , starting from 1/2 for |HV | = 0 . The rate of reduction 
of β as a function of |HV | significantly depends on the size of nanoparticles; some examples of the β(|HV |) curve 
are given in the Appendix A for magnetite particles of different diameters. Generally speaking, the relaxation 
time decreases with increasing the applied field magnitude |HV | , as shown in the Appendix A.

The contribution of the considered subset of particles to the overall time-dependent magnetization of the 
system along the field’s direction is:

where ci = cos(θi − φ) ( i = 1, 2 ), θi being the angle of tilt from the easy axis of the magnetic moment of particles 
by effect of the magnetic field; for a graphic scheme see the Supplementary Information. The subscript φ is a 
reminder that the time-dependent quantities n1, c1, c2 also depend on φ ; Ms is the saturation magnetization of 
nanoparticles.

Generally speaking, a change of the magnetic field determines a variation of the magnetization Mφ(t) through 
two concurring mechanisms: a) the redistribution of the population within the two energy wells as a consequence 
of the change in the energy barrier heights EBi and b) the variation of the angles of tilt θi and consequently of the 
angular parameters ci . In the general case, both a numeric solution of the rate equation for n1(t) and a numeric 
evaluation of the ci parameters are needed to find Mφ(t)

36.
In this paper, the amplitude of the SW magnetic field is always the same, HV = 100 Oe, as typically found 

in biomedical  applications37.
Advantages and limits of rate equations applied to magnetic nanoparticles were discussed in detail  elsewhere22. 

A brief summary of the model’s features is given here:
- rate equations are a flexible, effective way to study magnetic hysteresis loops of a DWS assembly submitted 

to any time-dependent magnetic field;
- the rate-equation treatment of the dynamic behavior of a DWS assembly has the notable advantage of 

providing an accurate picture of the evolving magnetization without requiring much computational power and 
time as in numerical treatments involving the solution of stochastic Landau-Lifshitz (LL) or Landau-Lifshitz-
Gilbert (LLG) equations;

- rate equations naturally emerge from the Fokker-Planck equation when the energy barrier of the DWS is 
significantly larger than thermal energy kBT , a condition easily fulfilled by magnetite nanoparticles of sufficiently 
large size ( D � 10 nm using the above reported values of magnetic parameters);

- the driving-field frequency f is obviously limited by the attempt frequency of the Arrhenius expression for 
energy barrier crossing, ν0 = τ−1

0 ≈ 1× 109 Hz (Equation 3). In fact, a frequency significantly lower than ν0 
(i.e., f � 2× 108 Hz) should be used, in order to fulfil the condition of detailed  balancing22.

Ideal square‑wave field: properties and effects
Typically, the high-frequency magnetic fields applied to magnetic nanoparticles in biomedical applications such 
as magnetic  hyperthermia38,39 or in imaging/spectroscopy applications (MPI/MPS)10,12 have sinusoidal waveform. 
Although such a choice has technical advantages (e.g., there exist a variety of ways to generate a sinusoidal field 

(4)τN = τ0 exp

(

Keff V

kBT

)

(5)τ = β(|HV |)τN = β(|HV |) τ0 exp

(

Keff V

kBT

)

.

(6)β(|HV |) =
exp

[

(E1+E2)
kBT

]

exp
[

E1
kBT

]

+ exp
[

E2
kBT

]

(7)Mφ(t) = Ms(n1c1 + n2c2) = Ms[n1(c1 − c2)+ c2]



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10704  | https://doi.org/10.1038/s41598-024-61580-8

www.nature.com/scientificreports/

of desired amplitude and  frequency40), it was theoretically  demonstrated22 and experimentally  verified23–25 that 
a non-sinusoidal waveform of H(t) may produce hysteresis loops characterized by a significantly larger area and 
a quicker inversion of the magnetization, with beneficial effects on the performance of magnetic particles when 
they act both as point-like sources of heat in a  tissue38,39 and as sensing  elements10.

This effect can be clearly observed in Fig. 1, where four ideal waveforms of the magnetic field (triangular, 
trapezoidal, and square-wave) having same frequency and amplitude are shown, together with the resulting hys-
teresis loops obtained by numerically solving the rate equations for magnetite nanoparticles at room temperature 
(panels a and b, respectively). In this case, φ = π/3 and f = 100 kHz.

The four waveforms correspond to different values of the ratio between the inversion time of the field ( tinv ) 
and the period T = 1/f  . Such a ratio takes values between 0 and 1/2; the triangular waveform (whose effects are 
similar to the ones of a sinusoidal waveform) corresponds to tinv/T = 1/2 , whilst the two trapezoidal waveforms 
are characterized by lower values of this ratio. The ideal SW field can be viewed as the limiting case of an inver-
sion time tinv which becomes vanishingly small with respect to the field’s period.

The resulting hysteresis loops (panel b) obtained for magnetite particles of diameter D = 12 nm display an 
increasing width and an increasing length of the vertical sides with decreasing the tinv/T ratio. For trapezoidal/
SW fields, the vertical sides of the loop appear at H = ±HV : there, the magnetization is continuously relaxing 
towards equilibrium with time constant τ while the magnetic field stays constant for a time depending on the 
tinv/T ratio. In the SW limit, the hysteresis loop takes the simple form of a regular parallelogram whose vertical 
sides turn out to be connected by two inclined straight lines corresponding to the abrupt change of the magneti-
zation by effect of the inversion of H(t).

Solutions of the rate equation
The features of the SW magnetic field allow us to derive simple analytical solutions for the evolving magnetiza-
tion. Particles having an easy axis which makes an angle φ with the field’s direction will be treated before extend-
ing the model to the general case of random easy-axis directions.

Particles with collinear easy axes
When the nanoparticles have collinear easy axes making the same angle φ with the field direction ( 0 ≤ φ ≤ π/2) , 
the rate equation for n1(t) (Equation 1) admits a simple analytical solution under an ideal SW field ( tinv → 0). 
After each instantaneous inversion of the field the populations in the two wells relax towards equilibrium start-
ing from initially off-equilibrium values. During each half-period of the square wave, the field has constant 
amplitude; as a consequence, Equation 1 reduces to a first-order differential equation with constant coefficients, 
so that the solution n1(t) follows an exponential law. Using the relation between the value of n1 at equilibrium 
and the time constants τi , which is obtained by setting dn1/dt = 0 in the rate equation, i.e.:

the evolution of n1 with time during a half period of the square wave (where the field can be either positive or 
negative) is:

where t ′ is the time elapsed since the field inversion and n10 is the value of n1 when the field inversion occurs; 
Equation 9 indicates that n1(t) begins to relax towards the equilibrium value corresponding to the new value of 

(8)n1eq = τ/τ2 = τ1/(τ1 + τ2)

(9)n1(t
′) = n10e

−t′/τ + n1eq(1− e−t′/τ ) (0 < t ′ < T/2)

Figure 1.  (a) Non-conventional magnetic field waveforms characterized by different values of the inversion 
time tinv with respect to the field’s period T; (b) minor hysteresis loops corresponding to the four waveforms 
shown in (a) at f = 100 kHz for 12-nm magnetite nanoparticles whose easy axis makes an angle φ = π/3 with 
the field.
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the field. The equation holds as long as H stays constant ( = +HV or −HV ). It should be noted that at the end 
of the half-period the equilibrium value n1eq can be either reached or not, depending on the value of the ratio 
T/τ , i.e., on the rapidity of the particles to redistribute between the two wells according to the new conditions. 
In particular, the equilibrium value is expected to be attained when τ << T.

Figure 2 provides a representation of the behaviour of the SW magnetic field (panel a) and of the relaxing 
occupancy number n1(t) (panel b), studied over two periods between times t = nT and t = (n+ 2)T (n being 
a positive integer). The initial time is when the square-wave magnetic field H(t) is turned on; it is supposed that 
the number of repetitions n is so large that the steady state condition has been reached.

The reduced occupancy number n1(t) changes by effect of the change in shape of the energy profile of the 
DWS resulting from the periodic inversion of the field, as sketched in panel b.1. In the present example, the 
ratio T/τ is such that the equilibrium value n1eq under a positive field (red dotted line in panel b) is not attained 
after a half period. In general, when the time t is equal to an integer number of half periods, n1 takes maximum 
(minimum) values equal to n1MAX = n∗1 (≤ n1eq) and n1min = 1− n∗1 .

The n1(t) function shown in Fig. 2b is the steady-state solution of the rate equation, which applies when the 
square wave field is acting on the DWS since a time much longer that the period T. The transient effect occurring 
just after the square-wave field has been switched on is studied in the Appendix B provided in the Supplementary 
Information; the calculation reported there allows one to obtain an explicit expression for the quantity n∗1 in 
steady-state conditions:

The quantity n∗1 is the maximum value of the occupancy number after each half-period of positive field; it is 
easy to show that when the field is negative the same quantity takes the value 1− n∗1 . It should be noted that 
n∗1 → 1/2 when τ >> T because in this case the hyperbolic tangent goes to zero, and n∗1 → neq when τ << T 
and tanh(T/4τ) → 1.

As previously commented, after each inversion of the field the magnetization is affected not only by the 
relaxation of n1(t) but also by the sudden rotation of the angles of tilt θi , involving a change of the angular param-
eters c1, c2 appearing in the expression of Mφ(t) (see Equation 7). This effect is shown in Fig. 2c for φ = π/3 
and sketched in panel c.1. Here, the change of the θi angles is assumed to occur in a vanishingly small time (see 
below the subsection on “fast” and “slow” effects in the magnetization variation for an in-depth analysis of this 
assumption).

As a consequence, the evolving magnetization defined by Equation 7 is given by the superposition of a 
square-wave signal associated to the switch of the angles of tilt θi and of an exponential relaxation associated to 

(10)n∗1 =
1

2
[1− tanh(T/4τ)]+ n1eq tanh(T/4τ)

Figure 2.  (a) time behaviour of the SW field; (b) resulting relaxation of the reduced occupancy number n1 
by effect of the activated processes sketched in panel (b.1); (c) changes of the parameters c1 , c2 by effect of the 
rotation of the angles of tilt, as sketched in (c.1); (d) time behaviour of the magnetization; (d.1) resulting minor 
hysteresis loop. Magnetite nanoparticles, φ = π/3.
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the redistribution of particles in the two wells, as shown in Fig. 2d. Here, the characteristic values of the periodic 
Mφ(t) function are labeled as MA,MB,MC ,MD : the values MB,MD correspond to the maximum/minimum mag-
netization values and have opposite sign and same magnitude (less than or equal to the equilibrium magnetiza-
tion Meq = Ms[n1eq (c1 − c2)+ c2] ); MA,MC correspond to the values taken by the magnetization immediately 
after the almost instantaneous rotation of the θi angles and have opposite sign and same magnitude as well. In 
particular, the peak amplitude of the magnetization signal MB is given by

When the magnetization is reported as a function of the SW field as in panel d.1, the hysteresis loop is the par-
allelogram ABCD in the H, M plane, the vertical segments AB and CD corresponding to the relaxation of the 
magnetization at constant field and the inclined straight segments corresponding to the almost instantaneous 
change of Mφ by effect of the rotation of the angles θi . The validity of the present scheme is supported by the 
perfect agreement between the theoretically predicted shape of the hysteresis loop and the result obtained by 
numerically solving the rate equations, as shown in the Supplementary Information.

When the easy axes of particles are all parallel to the magnetic field ( φ = 0 ), as it is sometimes realized in 
 practice41–44, Equation 7 takes a particularly simple form, c1 and c2 being always constant in this case (in fact, 
θ1 = 0, θ2 = π ), so that the time behaviour of the magnetization is fully determined by the one of n1(t) without 
the effects related to the rotation of the angles of tilt θi.

Particles with random easy-axis directions
In the more realistic case of independent magnetic nanoparticles with random easy-axis directions in three 
dimensions, the expressions obtained in the previous section need to be averaged over all directions in space 
using spherical polar coordinates.

The cylindrical symmetry of the problem makes it possible to average the magnetization Mφ(t) (Equation 7) 
over the polar angle φ only:

.
As an example, the M(t) function resulting from the numerical average of Mφ(t) over the φ angles is shown 

in Fig. 3a for magnetite particles with diameter D = 13 nm submitted to a SW magnetic field of amplitude 
HV = 100 Oe and frequency f = 100 kHz (black line). Strictly speaking, while the relaxation of Mφ follows an 
exponential law for all φ angles, the average is no longer an exponential curve. An example of the behaviour of 
Mφ(t) for selected values of the angle φ and of the average curve M(t) is given in the Supplementary Information.

However, the M(t) function defined in Equation 12 turns out to be very well approximated by the following 
expression:

which keeps the same form as Equation 7 and where all φ-dependent terms are substituted by their angular 
averages:

(11)MB = Ms

[

n∗1(c1 − c2)+ c2
]

.

(12)M(t) =
1

2

∫ π

0
Mφ(t) sin φ dφ

(13)M(t) = Ms[n1(c1 − c2)+ c2]

Figure 3.  (a) Average over all φ angles of the time behaviour of magnetization; black line: result of numerical 
calculation of Equation 12; red line: approximate expression (Equation 13); b): average relaxation time τ  as a 
function of temperature for selected diameters of the magnetite nanoparticles.
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gφ being any of the φ-dependent quantities n1, n1eq, τ , c1, c2 . All φ-averaged quantities to the right side of Equa-
tion 13 are functions of time. The M(t) function for magnetite nanoparticles with D = 13 nm is reported in 
Fig. 3a (red curve): the agreement with the exact M(t) curve is excellent (and is such for all particle diameters), 
allowing us to confidently use everywhere the approximate expression in place of the exact one. As a consequence, 
all the expressions developed for particles with collinear easy axes can be exploited; in particular, the relaxa-
tion of M(t) related to the evolution of the average occupancy number n1(t) can still be considered to follow an 
exponential law, and the peak magnetization is given by:

where:

Therefore, MB can be expressed as:

where Meq = Ms

[

n1eq (c1 − c2)+ c2

]

 . An expression for MA can be obtained along the same lines; as it turns out:

Therefore, the length of the vertical sides of the hysteresis loop, �M = MB −MA (see Fig. 2d.1) is:

The quantity �M  can be shown to be positive or at least equal to zero.
Finally, the time evolution of the magnetization during the first half-period following the inversion of H(t) 

from −HV to +HV can be explicitly written as:

where t ′ is the time elapsed from the inversion ( 0 < t ′ < T/2 ) and the superscript (A → B) indicates that 
this expression is valid in the first half period corresponding to the relaxation from point A to point B in 
the hysteresis loop. In the second half period ( T/2 < t ′ < T  ), one simply has (with obvious notations): 
M

(C→D)
(t′) = −M

(A→B)
(t′ − T/2) . The M(t) function can be checked to take the correct values at the char-

acteristic times t ′ = 0,T/2,T.

“Fast” and “slow” effects in the magnetization variation
A feature of the present model is the sharp separation between the two physical processes which concur to 
modify the nanoparticle magnetization after an inversion of the magnetic field: a) the rotation of the magnetic 
moments towards the new angles of tilt θi and b) the redistribution of the populations of the two energy wells 
through activated barrier crossing. Such a view makes sense only if the rotation of the magnetization can be 
safely assumed to be almost instantaneous with respect to the activated relaxation of n1.

As a matter of fact, the rotation of the magnetic moment in a nanostructure is expected to be a fast process. 
Such a concept is supported by studies of the fast or ultra-fast magnetization dynamics in various nanostructures, 
including magnetic nanoparticles. The rotation, or switch, of the magnetization in a nanostructure by effect 
of an almost instantaneous external disturbance takes place in a time of the order of a few picoseconds up to 
about one nanosecond, as demonstrated by the results of  theories45 or simulations based on the LLG equation 
of  micromagnetics46–48 and by a number of advanced  measurements49–51.

On the other hand, the relaxation of n1 takes place in a time determined by the effective time constant τ  , 
whose lower limit is in principle the pre-exponential term of the Arrhenius kinetics, τ0 ≈ 1 ns. However, when 
the rate-equation treatment is applied to magnetic nanoparticles such a theoretical limit cannot be reached by 
far, as discussed in detail  elsewhere22,36 on the basis of methods derived from the theory of stochastic  processes52. 
The shortest time which can be safely examined by means of the rate equations for magnetic nanoparticles turns 
out to be of the order of 10  nanoseconds22; shorter times cannot be investigated by this method, because the 
rate equations cease to be a valid approximation to the Fokker-Planck  equation36,52. Looking at the quantities 
which determine the effective relaxation time τ  (i.e., temperature and energy barrier height) such a requirement 
rules out particle diameters below 10 nm at room temperature using the present values of the intrinsic magnetic 
properties of magnetite particles. The variation of the effective time constant τ  with temperature is reported in 
Fig. 3b for different particle diameters.

As a consequence, the separation of the effects of the inversion of the magnetic field between a “fast” effect 
and a “slow” effect (a rotation of the magnetization vector followed by the relaxation of n1 ) is valid around room 

(14)g =
1

2

∫ π

0
gφ sin φ dφ

(15)MB = Ms

[

n∗1 (c1 − c2)+ c2
]

.

(16)n∗1 =
1

2
[1− tanh(T/4τ )]+ n1eq tanh(T/4τ ).

(17)MB =
Ms

2
(c1 + c2) [1− tanh(T/4τ )]+Meq tanh(T/4τ )

(18)MA =
Ms

2
(c1 + c2) [1+ tanh(T/4τ )]−Meq tanh(T/4τ )

(19)�M =
[

2Meq −Ms (c1 + c2)
]

tanh(T/4τ )

(20)M
(A→B)

(t′) = −
[2Meq −Ms(c1 + c2)]

1+ e−T/2τ
e−t′/τ +Meq



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10704  | https://doi.org/10.1038/s41598-024-61580-8

www.nature.com/scientificreports/

temperature for single-core magnetite nanoparticles having diameters D ≥ 10 nm. This requirement matches 
the nanoparticles used in most of the current biomedical  applications37. It is interesting to note that a distinc-
tion between “fast” and “slow” magnetization variation at room temperature emerges from the solution of the 
LLG equation  also47, i.e., within an independent simulation protocol where the effect of thermal processes is 
accounted for not in terms of an activated barrier crossing but in terms of an effective thermal field. In that case, 
the rearrangement of the magnetization by effect of an infinitely fast change of the magnetic field takes place 
through an adiabatic rotation completed in less than one nanosecond followed by an exponential tail arising 
from thermal random effects likened to Néel’s  relaxation47. The agreement between the predictions of the two 
methods confirms the adequacy of the main assumptions of our model (the macrospin hypothesis and the Néel’s 
relaxation framework) in the study of magnetic effects occurring in nanoparticles in the considered time range.

Of course, such a sharp separation between “fast” and “slow” effects is not longer possible when a sinusoidal 
field is applied to the nanoparticles, because under a continuous-wave field the rotations of the magnetization 
vector and the redistribution of the particles between the two energy wells are intermingled.

Results
Driving the nanoparticles at high frequency by means of a SW field brings about major advantages which can be 
acknowledged looking at the main features of the magnetization M(t) in both the time and frequency domain. 
The following results refer to magnetite nanoparticles with random easy-axis directions in three dimensions 
submitted to a field of magnitude HV = 100 Oe. The approximate expression for the average magnetization 
M(t) is used throughout.

Properties of the solution in the time domain
The effect of nanoparticle size on the shape of M(t) is shown in Fig. 4a, where the steady-state ratio M(t)/Meq 
is reported for one full period of the field and for different values of the particle diameter D. The field’s period is 
T = 1/f = 1× 10−5 s and the temperature is T = 300 K. The equilibrium value Meq is a monotonically increas-
ing function of D, as shown in the inset of the same panel.

The absolute value attained by the relaxing magnetization after each half period ( MB ) turns out to be very 
close to the equilibrium value for D = 11− 13 nm and very distant from it for D = 15 , 16 nm (in this case, it 
can be observed that MB always stays close to the initial value). This effect depends on the different ratio (T/τ) , 
related to the different energy-barrier height which is determined by the particle size, all other parameters being 
constant in this case.

The corresponding hysteresis loops are shown in panel b. For each particle size, the height of the vertical 
sides of the parallelograms in the (H, M) plane, �M  , is determined by the greater or less distance of MB from 
Meq and by the magnitude of the equilibrium value itself. A definitely non-monotonic behaviour of the height 
of the vertical sides with nanoparticle size can be observed in Fig. 4b.

As it is apparent from Fig. 2d.1, the loop’s area AL is simply equal to the area of a rectangle of height �M and 
length 2 HV . Using Equation 19 one gets:

The loop’s area at fixed temperature and frequency displays a maximum at intermediate D values, as shown in 
the Supplementary Information, because for large D, τ >> T and tanh(T/4τ) << 1, while for decreasing D the 
equilibrium magnetization Meq steadily decreases as shown in the inset of Fig. 4a.

(21)AL = 4HV

[

Meq −
Ms

2
(c1 + c2)

]

tanh(T/4τ ).

Figure 4.  (a) Behaviour of M(t)/Meq over one period for different magnetite nanoparticle diameters; inset: 
increase of Meq with increasing D; (b) minor hysteresis loops in the ( H ,M ) plane for the same diameters as in 
(a). Frequency f = 100 kHz.
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The peak value of the magnetization signal MB is shown in Fig. 5 for four nanoparticle diameters as a function 
of absolute temperature T at f = 100 kHz (panel a) and as a function of frequency f at T = 300 K (panel b). 
The MB(T ) curves start at low temperature from a common, constant baseline equal to Ms(c1 + c2)/2 . because 
there tanh(T/4τ) << 1 (see Equation 17); with increasing T , each curve gradually departs from the baseline, 
increases up to a broad maximum and finally merges with the equilibrium curve Meq(T ) (dotted lines); this hap-
pens when τ  becomes so small that the tanh(T/4τ) → 1. Such a behaviour takes place in different temperature 
regions in dependence of the particle diameter. This effect simply reflects the unfreezing of the magnetization of 
nanoparticles from the blocked to the superparamagnetic (i.e., equilibrium) state, and could be used to simply 
evaluate the actual blocking temperature of nanoparticles at the operating frequency. The effect of the SW field 
frequency on the MB(T ) curve is shown in the Supplementary Information. Using a very low frequency ( f ≈ 
0.01 Hz), the behaviour of MB(T ) allows one to determine the temperature of onset of the superparamagnetic 
regime of nanoparticles in quasi-static conditions. These results were obtained neglecting as a first approximation 
the temperature dependence of the intrinsic magnetic properties of nanoparticles.

In the interval f = 5–500 kHz, the peak value of the magnetization signal MB displays a sort of complemen-
tary behaviour by effect of the continuous variation of the product (f τ) = (T/τ) , starting from the equilibrium 
value Meq at very low frequencies and decreasing towards a common plateau equal to Ms(c1 + c2)/2 for f → ∞ . 
Note that for small particle diameters ( D ≤ 13 nm) the peak magnetization is basically insensitive to the applied 
frequency over a wide frequency interval.

The particular features of the loop’s area AL directly affect the magnetic power PW = ALf  , i.e., the energy 
released per unit time by nanoparticles driven at the frequency f and exploited to locally heat the environment. It 
should be recalled that when the concentration of nanoparticles in a tissue is c (0 ≤ c ≤ 1) , the heating power is 
simply written as PWc ; in typical hyperthermia treatments c often takes values in the 0.001-0.01  range20,53–55. The 
heating power (in SI units) of magnetite nanoparticles of different diameters is shown in Fig. 6a as a function of 
the applied frequency in the interval 0 ≤ f ≤ 400 kHz. For small particles ( D < 13 nm) the loop’s area is basically 
constant with frequency because MB is constant (Fig. 5b), so that the heating power is directly proportional to f 
with a slope which increases with D. For larger diameters, all PW (f ) curves show a curvature in the considered 
frequency region; in particular, for D ≥ 14 nm an asymptotic plateau of PW is soon reached, whose magnitude is 
dramatically reduced at large D. This effect is explained considering that for large particles the hyperbolic tangent 
in the expression for AL (Equation 21) decreases with increasing frequency as tanh(T/4τ ) ∼ (T/4τ ) ∼ 1/f .

The linear behaviour of PW with f in small particles can have significant impact in hyperthermia applications 
where a suitable choice of the power released by the magnetic particles is of crucial importance for the achieve-
ment of the correct temperature of the target tissue: in fact, a simple linear relation between PW and f could be 
particularly useful to this aim.

The power released by magnetite nanoparticles of different diameters submitted to a SW field at 100 kHz 
(black line and symbols) is compared in Fig. 6b to the one produced by the nanoparticles under a sinusoidal 
field of same amplitude and frequency (red line and symbols). For both waveforms the maximum of PW occurs 
around the same D value; however, the advantage of using the square-wave field is apparent for all diameters. 
In both cases, PW disappears above a critical nanoparticle size ( D ≈ 16 nm for the Keff  value considered in this 
paper) because both energy barriers EB1 , EB2 of the DWS become too large to allow for energy-barrier crossing in 
one period of the driving field. As a matter of fact, the magnetization of a small particle driven by a continuously 
evolving field, such a sinusoidal wave, is always close to equilibrium and is therefore very similar to a Langevin 

Figure 5.  (a) peak value of the magnetization signal ( MB ) as a function of absolute temperature T at 
f = 100 kHz for selected nanoparticle diameters (full lines); the corresponding equilibrium curves Meq(T ) 
are shown by the dotted lines; (b) frequency behaviour of ( MB ) at room temperature for the same nanoparticle 
diameters as in (a).
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 curve56 which has no hysteresis; on the contrary, when a square-wave field is applied, the instantaneous inver-
sion of H(t) at every half period produces a wide hysteresis loop, despite the particles are almost at equilibrium.

Finally, it should be noted that the voltage induced by a SW field basically occurs in bursts with an interval of 
one half-period between subsequent bursts. Detrimental effects such as healthy tissue heating, possibly arising 
from the eddy currents generated by the induced-voltage bursts, were discussed in a previous  paper22, where it 
was shown that using realistic SW waveforms still complies with the requirement of not damaging living bodies 
or bring discomfort to patients. In fact, the time interval between subsequent induced-voltage bursts - where the 
magnetic field is kept constant - is long enough to dampen the undesired heating effect of short eddy-current 
pulses in a self-regulating biological environment.

Properties of the frequency spectrum
The average magnetization M(t) is a periodic function of time where the “fast” effect is depicted as a square wave 
and the “slow” relaxing effect is well approximated by an exponential curve. Therefore, the Fourier coefficients 
can be easily calculated, as reported in the Appendix C provided in the Supplementary Information. This is one 
of the very few cases where it is possible to give analytic formulas for the Fourier coefficients of the magnetiza-
tion of magnetic nanoparticles, another case being the frequency spectrum of the fully anhysteretic response of 
ideal Langevin  particles57.

Figure 6.  (a) behaviour of the magnetic power PW with frequency for different diameters of the magnetite 
particles at room temperature; (b) magnetic power at f = 100 kHz for particles of different size submitted to 
a SW field (black line and symbols) and to a sinusoidal field of same amplitude and frequency (red line and 
symbols).

Figure 7.  (a) magnitude of the first five harmonics of the frequency spectrum Mk normalized to the magnitude 
of the first harmonic for two nanoparticles submitted to a SW field (full symbols) and to a sinusoidal field (open 
symbols); (b) magnitude of the third harmonic M3 for magnetite nanoparticles of different size submitted to a 
SW field (black symbols and lines) and to a sinusoidal field (red symbols and lines).
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The magnitude of the first odd harmonics of the frequency spectrum of magnetization is reported for two 
nanoparticle diameters in Fig. 7a as the ratio to the magnitude of the first harmonic Mk/M1 (full symbols). Here, 
k is an odd integer ( k = (2n+ 1) with n = 0, 1, 2 . . . ). The frequency of the SW field is f = 25 kHz, a typical 
value used in applications such as MPI/  MPS10,12. The magnitude of the kth harmonic is Mk = (P2k + Q2

k)
1/2 ; 

the analytical expressions of coefficients Pk and Qk are given in Equation 5 of Appendix C provided in the Sup-
plementary Information.

For both nanoparticle diameters, Mk slowly decreases with increasing k; the reduction factor of the kth har-
monic with respect to the first one is rather small, Mk being still larger than a few percent of M1 when k = 9 . 
The decrease of Mk with k is only slightly affected by particle size for the D values considered in this paper. On 
the contrary, when the nanoparticles are submitted to a sinusoidal field of same amplitude and frequency, the 
behaviour of the ratio Mk/M1 with the number of the harmonic k becomes much steeper, as it can be observed 
in Fig. 7a (open symbols in colour). In this case, the harmonics were obtained by using a FFT package after 
numerically solving the rate  equations58. It should be noted that while the particles with D = 11 nm still exhibit 
a pure superparamagnetic (anhysteretic) behaviour when they are submitted to a sinusoidal field at f = 25 kHz, 
the ones with D = 13 nm are characterized by a non-negligible hysteresis  loop56. This difference is reflected in 
the different slope of the corresponding Mk/M1 curves (open symbols).

In any case, it is apparent that nanoparticles driven by a sinusoidal field have a much stronger reduction factor 
of the higher-order harmonics with respect to the first one. A similar strong reduction of the magnitude of the 
higher-order harmonics of the magnetization with respect to the first one was often observed in measurements 
on magnetite nanoparticles driven by a sinusoidal  field15,41,59,60.

It is concluded that substituting the sinusoidal field with a square-wave field of same amplitude and frequency 
would produce a frequency spectrum of the magnetization particularly rich in higher-order harmonics, result-
ing in a dramatic increase of their magnitude. This applies to the third harmonic M3 also, which plays a central 
role in MPI  applications10,11.

The behaviour with D of the quantity M3 produced by either a square-wave or a sinusoidal driving field of 
same amplitude and frequency is shown in Fig. 7b. The overall M3(D) curve for the square-wave field is similar 
to the behaviour of the loop’s area AL with D (see the Supplementary Information). The enhancement of M3(D) 
is apparent, particularly in the low diameter limit.

The significant enhancement of M3 may have important consequences on the performance of magnetic nano-
particles used as tracers in  MPI10,11,56, because a much higher value of the third harmonic means a substantially 
higher sensitivity of the technique, allowing the specialists to achieve the same contrast and definition of the 
image while using a significantly lower concentration of magnetic nanoparticles.

Conclusion
The application-oriented properties of magnetic nanoparticles driven by a high-frequency magnetic field can be 
substantially improved by a suitable choice of the field’s waveform. In particular, applying a SW field to single-
core magnetite particles results in a significant enhancement of the high-frequency performance of magnetite 
nanoparticles as a consequence of the unique behaviour of the cyclic magnetization. In this case, the process is 
shown to consist of a nearly instantaneous rotation of magnetization at each inversion of the field and a slower 
activated relaxation towards equilibrium at constant field; such a sharp separation between “fast” and “slow” 
effects is confirmed by experiments and simulations of the fast and ultra-fast dynamics of magnetization in 
nanostructures.

A rate equation model has been used to evaluate the effect of a SW field on the time behaviour of the mag-
netization of magnetic nanoparticles with random easy-axis directions in three dimensions. The rate equations 
have been easily solved and shown to result in analytic expressions for the time behaviour of the magnetization 
and for the harmonics of the frequency spectrum.

The most significant consequences of exciting the magnetic nanoparticles by a SW field are a large enhance-
ment of the power released by the nanoparticles at frequencies typical of MH applications and a highly enhanced 
sensitivity of the same particles at frequencies typical of MPI/MPS. In both cases, the performance turns out to 
be definitely better than the one of the same particles submitted to a sinusoidal field of same amplitude and fre-
quency. Other interesting results include the simple linear dependence of the magnetic power PW on frequency 
for small nanoparticles and the possible use of the peak amplitude of the time-resolved magnetization to find 
the blocking temperature of the nanoparticles at all frequencies.

Although the present model describes the magnetic response of nanoparticles under the action of an ideal 
SW field (i.e., characterized by tinv → 0 ), the results described in this paper may serve as a starting point to 
understand the behaviour of the magnetization of nanoparticles driven by more realistic SW fields, which are 
characterized by a finite inversion time.

A comment on this point seems to be appropriate. A SW field of practical interest in biomedical applications 
of magnetic nanoparticles should have an inversion time tinv as short as possible and an adequate amplitude. 
Although the SW fields realized so far as limiting cases of trapezoidal waveforms have inversion times of the order 
of the microsecond, this quantity could be significantly reduced by means of suitable technological improvements 
of both control electronics and slave circuitry.

In order to preserve the separation between the “fast” change of the angles of tilt θi and the “slow” evolution of 
n1 with time, and therefore make use of the results of the present model, the time tinv taken by the field to change 
sign should be significantly lower than the time constant τ  governing the redistribution of particles within the 
two energy wells of the DWS. It is suggested that such a condition can be considered as fulfilled when tinv ≤ 0.1 τ .

Both the highest magnetic power PW and the highest magnitude of the third harmonic M3 are predicted to 
occur for diameters of 13-14 nm in nanoparticles driven by a SW field (with the present choice of the values of the 
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intrinsic magnetic properties of magnetite nanoparticles). Taking into account the behaviour of τ  with particle 
diameter at room temperature (see Fig. 3b), it can be estimated that an inversion time of about 100 ns would be 
sufficient to include particle diameters of 13-14 nm in the range of validity of the present model. An inversion 
time of about 100 ns is estimated to be accessible by making a few improvements to the present-day technology, 
and would allow the users to take advantage of the improved performance of nanoparticles at their best.

In conclusion, the present theoretical treatment may pave the way to the development of more efficient tech-
niques to magnetically drive the nanoparticles for biomedical applications, with the proviso that the encouraging 
results described in this paper be viewed as a goal which can be approached to a larger or lesser degree in depend-
ence of one’s technical ability to produce a sharp inversion of the field and of the choice of intrinsic magnetic 
properties and size of nanoparticles in such a way that the condition tinv/τ ≤ 0.1 be satisfied.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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