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Abstract. The Boltzmann constant k has been determined from a measurement

of the speed of sound in helium gas in a quasi-spherical resonator (volume 0.5 l)

maintained at a temperature close to the triple point of water (273.16 K). The acoustic

velocity c is deduced from measured acoustic resonance frequencies and the dimensions

of the quasi-sphere, the latter being obtained via simultaneous microwave resonance.

Values of c are extrapolated to the zero pressure limit of ideal gas behaviour. We find

k = 1.380 648 7(14)×10−23 J·K−1, a result consistent with previous measurements in

our group and elsewhere. The value for k, which has a relative standard uncertainty

of 1.02 ppm, lies 0.02 ppm below that of the CODATA 2010 adjustment.

PACS numbers: 06.20.Jr Determination of fundamental constants, 07.20.-n Thermal

instruments and apparatus, 43.58.-e Acoustical measurements and instrumentation

Keywords: Acoustic resonance, Boltzmann constant, Definition of the kelvin, Microwave
resonance, Quasi-sphere, Speed of sound, Triaxial ellipsoid
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1. Introduction

1.1. Historical overview and motivation

The SI unit of temperature, the kelvin, is currently defined as 1/273.16 of the

temperature of the triple point of water (TPW). The relative uncertainty of triple-

point standards is below 2 × 10−7 [1, 2], but the present definition suffers from two

major drawbacks. First, thermometry at the 10−6 level of accuracy is only possible
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for temperatures close to TPW. Secondly, it can be very complicated to trace a

thermometer over a temperature range of several decades. A future definition of the

base unit will use a fixed value of the Boltzmann constant k [1] so as to be universal,

immune from the drifts inevitable with water filled cells and allow higher accuracy

thermometry across a temperature scale spanning hundreds of kelvin. While k will be

fixed with zero uncertainty, it is desirable that the most accurate and reliable value of

the constant be established to ensure a smooth transition from the current definition to

the new one. Historically, the Boltzmann constant has been determined in a number

of different ways [3, 4]. While the most accurate experiments have been based on

the speed of sound in a monatomic gas [5, 6, 7, 8], other determinations have been

based on the refractive index or dielectric constant of a gas at known temperature

and pressure [9, 10, 11] or the Johnson noise in a resistance [12]. Laser resonance

experiments that determine the Doppler width of molecular absorption, though not as

accurate, use a completely different technique and could provide a useful cross-check

of other results (see e.g. [13] and references therein). In this article we describe

our most recent determination of k via the measurement of the speed of sound in

helium vapour. It follows an earlier determination by our group using argon gas [7]

with a similar apparatus. We outline some of the improvements made to the set-up

and indicate differences between measurements with helium and argon. Since similar

experiments are underway elsewhere, we underline key differences between the apparatus

and procedure used here compared with other work. While the resonator, its dimensional

measurement and thermometry are identical with those of the earlier experiment, the

acoustic frequency measurements and gas handling are completely independent. The

degree to which the present measurement is correlated with previous ones is currently

being evaluated by the BIPM CCT WG4 on behalf of CODATA [14].

In keeping with the spirit of our publication on the measurement of k with argon [7],

we state herewith the result and uncertainty : k = 1.380 648 7(14)×10−23 J·K−1. Table 1

gives the global error budget. Figure 1 shows a comparison of recent determinations of

the Boltzmann constant. The present result, with a standard uncertainty of 1.02 ppm,

lies in good agreement with measurements in our own group and most of those elsewhere.

Our value lies 0.02 ppm below that of the CODATA 2010 adjustment [15], i.e. it differs

from it by much less than the standard error.

In the next section (2) we give the principle of the experiment. Thereafter

(section 3) we outline the apparatus. The measurement of acoustic resonance frequencies

is described in section 4 and the remaining aspects of the experiment (resonator

geometry, pressure measurement, gas handling and thermometry) in section 5. The

results are summarised and a conclusion given in section 6.

2. Principle of the experiment

The basis of the experiment is the measurement of the speed of sound in a gas of known

molar mass at a given temperature. A resonator maintained at a temperature as close
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Table 1. Uncertainty budget for the present determination of the Boltzmann constant

using 4He. The figures correspond to standard uncertainties. Details of the acoustic

and gas purity contributions are presented in sections 4 and 5.3. The thermometry

and volume uncertainties are discussed in depth in [7].

Term Relative uncertainty (10−6)

Acoustic frequency 0.62

Resonator volume 0.57

Molar mass and gas purity 0.53

Thermometry 0.30

Total (square root of quadratic sum) 1.02

k × 10
23

/  m
2
·kg· s

-2
·K

-1

Figure 1. Comparison of determinations of the Boltzmann constant since 1979.

Key : AGT (acoustic gas thermometry), JNT (Johnson noise thermometry) ; RIGT

(Refractive-index gas thermometry) DCGT (Dielectric constant gas thermometry);

References: CODATA2010 [15]; INRIM [6]; LNE 1 [16], LNE 2 [7]; NIST RIGT [17];

NIST JNT [12]; NPL 1 [18], NPL 2 [19],NPL 3 [8]; NIM-NIST 1 [20], NIM-NIST 2 [21];

PTB 1 [9], PTB 2 [10], PTB 3 [11]. The values of NPL-3 and LNE-2 include corrections

arising from recent, independent determinations of argon gas [22] composition.

as possible to 273.16 K and through which there flows a gas of the highest purity is

excited by acoustic waves. From the measurement of the resonance frequencies and
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resonator dimensions, one determines the acoustic velocity. Together with the values

of molecular mass and temperature, this leads to a value for the Boltzmann constant.

Before describing the details of the experiment and some subtleties of the underlying

assumptions, we justify the choice of gas and resonator geometry.

2.1. Choice of gas

For an ideal gas consisting of molecules of mass m at a temperature T the speed of

sound c is linked to the Boltzmann constant k via

c2 =
Cp

Cv

kT

m
(1)

where Cp and Cv denote respectively the specific heat capacities at constant pressure

and volume. For diatomic and polyatomic molecules, the heat capacity is a function of

temperature. For a monatomic gas, however, the ratio Cp/Cv is simply equal to 5/3.

Furthermore, it is only for these gases that acoustic boundary layer corrections can be

calculated at the 0.05 % level [23], which affects the relative value of k by 0.1 ppm

(see equation 6). Thus, only noble gases are used for measurements of k by acoustic

thermometry. When a real gas is used, virial corrections that depend on the pressure p

at which the measurements are performed must be applied to the ratio Cp/Cv. One can

either calculate these corrections for each pressure [6] or, as here, determine the speed

of sound for the gas at several different pressures and extract the pressure-independent

part of the result. Ideally, one would like to measure the Boltzmann constant using

several different noble gases and hence values of m. In practice, the choice of gas is

governed by issues relating to isotopic abundance, purity and, in the case of helium-3,

cost. Xenon has nine stable isotopes while krypton has six [24]. One needs to know

the value of m at a level of < 10−6 which is currently not possible for either of these

gases for which no single isotope is predominant. As alternatives to argon used in our

previous measurement and elsewhere, there remain neon and helium. A priori helium-4

has the advantage over argon of chemical purity since all other species bar helium-3 can

be eliminated from the source bottle with the aid of a cold trap. On the other hand,

the mass is much smaller compared to the other possible impurity, so the effect on the

speed of sound of any impurity will be greater, as explained in [5]. Another advantage

of using helium for acoustic measurements is that while the boundary layer correction

can be evaluated using ab initio calculation for both gases, the relative uncertainty in

the correction for helium [23] is smaller than it is for argon. We note finally that a

measurement of k with helium-3 would provide an interesting cross check of the present

work were the gas to become affordable in future [25].

2.2. Resonator geometry

For plane standing waves, where the modes are sinusoidal, the speed of sound is given by

the product of frequency and wavelength, the latter being determined by the dimensions

of the resonator once the order of a given mode is known. For spherical waves, where
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the modes are given by Bessel functions whose nodes are unequally spaced, the term

wavelength is no longer appropriate. However, the mode number and resonator size still

provide the link between sound velocity and frequency. The simplest case is that of a

spherical resonator and was used for the determination of k by Moldover and colleagues

in 1988 [5]. The most accurate determinations of k since then have employed refinements

of the same technique. In the original experiment, as spherical a resonator as possible

was used, the volume of which was determined by the gravimetry of a liquid of known

density. The experiment described here uses a slightly ellipsoidal resonator, the lengths

of whose three axes are measured by microwave resonance. At the time of Moldover’s

measurement, this was not technically possible but modern, diamond-turning techniques

allow one to manufacture such an exotic shape. The asphericity is chosen to be large

enough to allow closely-spaced resonances to be clearly resolved yet sufficiently small

that perturbations arising from the shape deformation remain acceptably low. (The

relative shift in the present case is a few times 10−5.) Note that an alternative resonator

shape, a cylinder, has been used successfully in recent measurements of the Boltzmann

constant by Lin et al. [26], albeit for a relative accuracy of 3.7×10−6.

3. Apparatus

The experimental set-up consists of an ellipsoidal copper resonator held in a thermostat

at a temperature close to TPW into which flows helium gas. Microphones flush with

the internal surface the resonator are used to measure acoustic resonances while internal

antennæ are used for microwave measurements. Ultra-pure gas is supplied via one

or two cold traps and its pressure is both measured and servo-controlled. Capsule

standard platinum resistance thermometers (CSPRTs) used to link the measurement to

the TWP. Aside from the gas handling and measurement of acoustic resonances, the

basic apparatus, already described extensively elsewhere [7], is the same as that used for

measurements with argon. It differs from those of [6] and [8] in that it uses an isentropic

thermostat (Figure 2), the design of which was inspired by that of cryostats used for

work at temperatures around 4.2 K. This allows one not only to measure the average

temperature of the resonator but also obtain a detailed breakdown of the different

sources of heat (gas flow, microwaves, acoustic waves, room temperature variations). To

do this, the heat shield is maintained at a constant temperature while the temperature of

the outer heat bath is altered. In this way, one can switch off a particular source of heat

(e.g. microwaves) then change the temperature of the outer heat bath to compensate

for the loss. Note that when the power is changed, the difference in the temperature

read by the CSPRTs and that deduced independently by acoustic thermometry remains

constant whatever the source of heat power, as listed in table 2. This implies that not

only is the temperature highly uniform throughout the body of the resonator but there

is also excellent temperature homogeneity between the gas and the metallic surface.

Because the time constant of the CSPRTs thermometers and measurement bridge is

about 2 min, it is easier to track temperature changes on minute-long timescales using
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Figure 2. Schematic diagram of the sphere in the thermostat: a stirring propeller, b

Dewar, c heater, d pressure vessel, e radiation shield, f vacuum vessel, g Ar or He gas,

h water + ethylene glycol bath, i cooler, j heater. Taken from [7].

Table 2. Power contributions of different heat sources. See figure 3 for the definition

of the unit sccm.

Heat source Power Standard uncertainty

(µW) (µW)

Acoustic pre-amplifier 130 10

Microwave power +10 dBm 890 10

Microwave power -10 dBm 85 10

Gas flow 10 sccm to 50 sccm 0 10

acoustic frequency measurements than by contact thermometry; the method is faster

but of comparable resolution.

Once the temperature of the resonator has been set to its working point close to

TPW, it is verified that the temperature homogeneity of the sphere remains unchanged

at the level of 0.1 mK. The thermostat is not of course perfectly adiabatic. However,

even when the room temperature changes by ±3 ◦C, that of the resonator is affected
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only at the level of a 0.1 mK (drift 0.1 mK/h) if the temperature of the heat shield

is kept constant. To cancel the effect of an ambient temperature change, we alter the

temperature of the heat shield. In this way, the drift of the resonator temperature is

limited to 0.1 mK/day. Since the time constant τ for thermalisation of the 0.5 l sphere

is 4 h, this implies that the temperature difference between the shell and the gas is less

than 16 µK.

Microwave resonance is used to determine the resonator dimensions. Aside from a

different refractive index for helium than for argon, the resonance frequencies are very

similar and the apparatus and procedure identical (section 5.1). Compared with the

experiment with argon, the pressure measurement has been improved using a piston

gauge section 5.2. The gas handling apparatus for helium gas is somewhat different

than for argon (section 5.3). Finally, in a lighter gas, the acoustic resonances occur at

higher frequency. Their measurement is described below.

4. Measurement of acoustic resonance frequencies

4.1. General principle

In a real gas in a resonator, the ideal gas equation 1 no longer holds true and the speed

of sound c varies with pressure. We suppose its variation to be described by

c2 =
A−1

p
+ A0 + A1p+ A2p

2 (2)

where the coefficients A−1, A0, A1 and A2 are independent of p. The terms proportional

to p and p2 are called the first and second virial terms and are related to van der Waals

forces. The 1/p term is to account for energy exchange between gas and the resonator.

For a detailed discussion of this equation see [27]. By performing measurements at

different pressures and fitting the above equation to the data, one can extract the

pressure-independent term A0 and thereby calculate a value for the Boltzmann constant.

The speed of sound of acoustic standing waves c is related to resonance frequencies

of a spherical resonator and the orders (n,l) of the radial and transverse modes and the

radius of the resonator a whose measurement is described hereafter in subsection 5.1.

Specifically,

c(p, T ) = 2πa(p, T )

[
fA
nl(p, T ) + ∆fA

nl(p, T )

ZA
nl

]
(3)

where fA
nl denotes the measured acoustic frequency, ∆fA

nl a correction to account for the

effects of the cavity and non-ideal gas behaviour, and Znl is the eigenvalue of the mode

(n, l) related to the zero of the corresponding Bessel function. The parentheses indicate

that frequency and radius are functions of pressure p and temperature T . Residuals of

fits of data for different acoustic modes to the polynomial of equation 2 are shown on

the left-hand side of Figure 4.

Acoustic and microwave frequency measurements were performed simultaneously.

From the microwave data, the average radius of the ellipsoidal resonator at TTPW was
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determined as a function of the pressure p. In this way, the Boltzmann constant is given

by

k = lim
p→0

[
3

5

m

TTPW

]
4π2⟨a⟩2

⟨
fA
nl +∆fA

nl

ZA
nl

⟩2

(4)

where m is the atomic mass of the gas and the angular brackets denote averages. Since

the average radius ⟨a⟩ is determined from microwave modes of order n′,l′ eigenvalue,

ZEM
n′l′ with measured frequencies fEM

n′,l′ and correction ∆fEM
n′l′ the value of k is deduced

via

k = lim
p→0

[
3

5

mc20
TTPW

]⟨
ZEM

n′l′

fEM
n′l′ +∆fEM

n′l′

⟩2 ⟨
fA
nl +∆fA

nl

ZA
nl

⟩2

(5)

where c0 the speed of light in vacuo. Note that in equations 4 and 5, the limit sought

is not strictly that where p → 0 (since there is a 1/p correction) but rather the value

of k deduced from the pressure-independent term A0 of a fit of c2 versus p as described

just above.

The acoustic resonances of modes (0,2) to (0,6) were determined for the helium-filled

cavity for static pressures ranging from 0.12 MPa to 0.72 MPa at a temperature close to

TPW. The mode (0,6) was the highest that could be studied given the frequency limit

of the microphones, around 50 kHz. All the measurements were made at temperatures

within ±10 mK of 273.16K and frequencies were corrected using equation 10 of [19]

to correspond to a temperature of 273.16 K exactly. For each mode, the frequency

emitted by the source microphone was stepped quickly through the resonance (3 s per

point) using 25 points for increasing frequency and 25 again for decreasing frequency to

determine a rough value for the resonance frequency. The receiver microphone signal

is amplified and sent to a lock-in detector. The final resonance curve of the mode was

deduced from the average of data for increasing and decreasing frequency sweeps, as in

[5]. Due to the greater thermal conductivity of helium compared with argon, the quality

factor of the resonance is lower. We use equations 5.1 and 5.2 of [7] to analyse the data.

4.2. Corrections to measured frequencies

In order to deduce the speed of sound, and thereby the value of k, one needs to

apply small corrections for physical effects, namely the thermal boundary layer, bulk

dissipation, temperature discontinuity between He gas and the wall, ducts, acoustic

transducers, and the non-spherical shape of the resonator. Each of these corrections

can be estimated with the help of well-established models [5, 7, 19, 28, 29, 30]. During

each acoustic cycle, heat exchange between the gas and the shell surrounding the cavity

results in a thermo-acoustic boundary layer in the gas. Boundary layer corrections are

the most important perturbation in this experiment (around 400 ppm). Unlike the

case of argon, all the thermophysical properties for helium can be obtained by ab inito

calculation [23]. Importantly, the input parameters to these expressions are known to
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high accuracy. Using these and the thermal boundary layer correction equations can be

found in [19], we deduce a correction with a lower relative uncertainty than for argon.

We applied Eq. 5.10 of [7] to the data of the isotherm and calculated, for each mode,

the thermal accommodation coefficient h [31], obtaining three different values for the

modes (0,4), (0,5) and (0,6) respectively 0.3913, 0.3929 and 0.3933; we take the thermal

accommodation coefficient for the isotherm to be the average of these three values i.e.

h = 0.3926(10).

As has been explained in [7] the value of h near the shell resonance is affected by

the pressure dependence of the shell response, which is why we use neither mode (0,2)

nor (0,3) to measure it (i.e. because the shell resonance falls between them).

The value of the thermal accomodation coefficient is very sensitive to the adsorption

condition of the solid surface and slightly sensitive to the surface roughness. Cochran

and Irey [32] discuss the value of h for helium adsorbed on copper surfaces: on a clean

copper surface with a roughness higher than the one of the present experiment (Ra ≃
1-4 µm cf. 2 nm here), h lies between 0.4 and 0.5.

We determined numerically the sensitivity of the value of k to a change in the value

of the thermal conductivity λ and found

∆k

k
= −5.46× 10−4

(
∆λ

λ

)
. (6)

Since the relative uncertainty for the thermal conductivity λ is itself very small,

(9.5×10−6 [23]), this correction has only a tiny effect on the uncertainty in the

measurement of k.

Note that the shell effect here is very small compared with that in measurements

using argon [7] which is due to the fact that the speed of sound in helium is over three

times greater. In our previous Boltzmann constant measurement, with argon gas, the

breathing resonance of the shell had a strong effect on all modes of resonance as shown

by the figure 22 of [7]. In the case of helium, with the same cavity, the resonance

frequencies used to determine k determination lie very far from the breathing resonance

of the shell; although the breathing resonance lies between modes (0,2) and (0,3) it really

affects only the latter, while modes (0,4), (0,5) and (0,6) are at much higher frequencies.

Moreover, the correction due to shell vibration is a linear function of pressure, and can

be taken into account completely via the coefficient A1 defined in equation 2.

Contrary to the argon experiment [7], no effect of gas flow on the value of k described

in [7] and [8] was discerned. This is obvious from figure 3 which shows speed-of sound

versus flow rate (in units of sccm , defined in figure 3) for two separate runs at 650 kPa

He in the resonator. The effect of the gas flow on the acoustic modes is related to the

Mach number Ma, i.e. the ratio of the speed of the gas jet in the tube to that of the

speed of sound. (see e.g.[33]) This effect becomes significant when Ma approaches the

value Ma ≃ 1. In our case, not only is the speed of sound in helium three times greater

than in argon, but also we have doubled the diameter of the inlet tube of the gas to

decrease the flow effect.
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 1
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Figure 3. Change in squared sound velocity versus flow rate for He at 650 kPa.

The unit sccm = ”standard cubic centimetres per minute”, corresponding to

1.666710−8 m3.s−1 in the International System of Units (SI). A volumetric flow of

1 sccm is defined as a flow of 1 cm3· min−1 of argon at a pressure 103 kPa and

temperature 20 ◦C.

The last step of the data processing procedure was to correct all the data with the

new estimate of h after which the corrected speed-of-sound data for each mode were

fitted to the function of the pressure (equation 2). We stress that that no pressure-

dependent weights were applied to the data i.e. all the results were deduced from

unweighted fits.

The excess of the half-width (Figure 4) is the amount by which the measured

half-width of a resonance exceeds that predicted by all of the effects discussed in this

section. Excess half-widths thus provide a measurement of the size of the physical

phenomena not included in our model for the acoustic resonator and are an order-of-

magnitude estimate of how our imperfect understanding of resonator affects the result

for k. The excess half-width of each mode is plotted on the right-hand side of Fig. 4.

These graphs represent the difference between the measured and the calculated half-

widths; no empirical parameters were fitted to make them. The following Figure 5

shows a measurement of the half-width of the (0,3) resonance as the cryostat is cooled.

Because of the bump observed for T ≈ 273 K, no data from this mode was used to

determine the value of k.
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Figure 4. Residuals of squared sound velocities (c2 − ⟨c2⟩)/⟨c2⟩ (left) and doubled

excess half-widths 2∆g/f (right) for the acoustic modes (0,2) to (0,6), as a function of

the pressure p. The squared sound velocity is fitted to the polynomial of equation 2.

4.3. Uncertainty budget for acoustic measurements

The uncertainty budget is given in table 3.

Gillis et al. [36] tested the theory for the effects of gas ducts on the acoustic modes.

They found agreement between their model and measurements at the level of 1% of

the effects for long ducts and at the level of 10% for short ducts. To be conservative,

we added to our uncertainty budget the effect of a factor 1.1 increase in the acoustic

admittance of the ducts.

5. Measurement of resonator geometry, gas pressure, gas handling and

thermometry

5.1. Determination of resonator radii via microwave resonances

The mechanical design of the copper resonator has already been described in detail for

the case of a measurement of k with argon gas [7]. The inner shape is a triaxial ellipsoid

defined by

x2

a2x
+

y2

a2y
+

z2

a2z
= 1 (7)

where ax=49.950 mm, ay=49.975 mm and az=50.000 mm. Since, the diameters are

thus close to 100 mm, an error in the diameter of 10 nm will affect the value of k at
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Figure 5. Measurement of the half width during a slow cooling of the thermostat. An

unexpected perturbation is clearly observed at a temperature near 273 K. A spurious

shell resonance was already observed in [34]. This figure underlines why no data from

mode (0,3) is used to determine the value of k: the curve should not have this bump,

which is due to another shell resonance coupled with the acoustic resonance.

a level of 2×10−7. There are two ways to determine the dimensions of the resonator

with a relative accuracy approaching 10−7: pycnometry [5] and microwave resonance.

We have chosen the latter since it allows a constant check of resonator size and can

be performed simultaneously in situ with acoustic measurements but we also used an

optimized CMM technique [37] to check the microwave determination of the dimensions

prior to mounting assembly of the resonator.

To measure the dimensions, the same TE and TM modes are excited as in the

experiment on argon [7] (see Figure 6). The values of measured microwave resonance

frequencies depend on the product of the radius and the refractive index n which is a

function of the type and amount of each gas and its temperature. In this way, accurate

measurements of microwave frequencies are used not only to determine the mechanical

dimensions and hence the acoustic wavelength but also, via the complex refractive index,

to provide a cross-check of gas temperature, pressure and purity. Because of its simple

atomic structure, the thermodynamic properties of helium gas can be calculated ab

initio [23] at a level not possible for other noble gases. In particular, one can predict

the refractive index of helium at a given temperature and pressure. In this experiment,
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Table 3. Uncertainty budget for measurement of acoustic resonances. For conciseness,

the relative standard uncertainty is denoted by urel.

Term urel Note

(10−6)

Scatter among modes 0.45 Standard deviation of modes (0,2) and

(0,4) to (0,6)

Thermal conductivity of helium 0.05 See § 2.2.2

Accommodation coefficient dis-

persion

0.14 Effect of a dispersion in h of 0.001

Shell perturbation 0.01 Change in result when a modified shell

effect [35] is included or not cf. [7]

Tubing acoustic impedance 0.41 Change in result when impedance

multiplied by 1.1

Pressure uncertainty 0.10 Offset of 13 Pa to allow for pressure

uncertainty

Microphone impedance effect 0.05 Change in result when impedance

multiplied by 1.1

Total (square root of quadratic

sum)

0.63

the temperature is constant but the pressure is varied for extrapolation to ideal gas

behaviour. One can study the correlation of the actual refractive index as determined

by microwave resonance and that predicted from the measurements of temperature and

pressure. Furthermore, since trace amounts of water vapour will shift the value of the

refractive index, microwave resonance provides a means of probing gas contamination.

5.2. Pressure measurement

To determine the Boltzmann constant from equation 1 one needs to extrapolate the value

of the speed of sound to the ideal gas limit where the virial terms of eq. 2 vanish. In the

current experiment, unlike the measurement with argon [7], the absolute value of the

pressure is measured using a spinning piston gauge Ruska 2465-727 Gas Piston Gauge

(Piston-cylinder serial number C662, calibrated by Fluke Calibration with respect to the

NIST calibration chain [38]) and maintained constant using a servo loop. This approach

turns out to have three advantages. The first is a factor of two increase in signal-to-noise

for the measurements at the lowest pressures. The second is to allow one to predict the

refractive index of helium gas and check it against microwave measurements, allowing

for the compressibility of the resonator [17]. The final advantage is to alleviate the

need to calibrate the pressure sensors located elsewhere in the gas handling system (see

Figure 7). With the piston gauge, the uncertainty in the pressure, due mainly to the

knowledge of the piston surface, is up = 18×10−6×p, which corresponds to 13 Pa at the
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Figure 6. Measurement of the radius of the resonator filled with argon and helium

gas using different microwave frequencies. In each case the value of the radius was

extrapolated to zero pressure. The average value for He lies just below that for Ar

but the difference is well below the level of uncertainty. ⟨a⟩Ar is the average over the

different microwave frequency resonances when the cavity was filled with argon [7].

maximum pressure used in the experiment. An error of this size would shift the value

of k by 0.10 ppm.

5.3. Gas handling

In order to counteract the effect of leaks, a flowing gas system is used (Figure 7). An

advantage of using helium gas is that it can be purified after the source bottle by the

use of a cold trap to remove all other gases. In the subsequent pipework and resonator

itself, there might remain traces of other contaminants, notably water vapour, since it

was chosen not be bake the system so as to avoid deformation.

In order to test and qualify the gas handling and purification system, we carried out

two separate experiments. First the effectiveness of the liquid helium (LHe) cold trap

was checked by using two different cold traps, each with a different design. The first one

is just a cylinder of volume 4 cm3 directly in contact of the LHe. The second, of volume
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Figure 7. The gas-handling system. The gauges P1 and P2 are Digiquartz model

749 sensors. Cold trap 1 is a just U-tube while cold trap 2 contains charcoal.

10 cm3 and filled with charcoal, has a much larger surface in contact with the liquid

helium. The difference in results obtained using one or other of the traps (0.03 ppm in

value of c2) was indistinguishable at the noise level of the experiment (±0.25 ppm).

Although the Boltzmann constant was measured using gas from only a single bottle,

the second auxiliary experiment was performed to study the effect of changing the gas

bottle from ultra-pure helium 6N to one of the same nominal high purity (Alpha gas

2 from Air Liquide). Here only one cold trap (the smaller one) was used while the

spherical resonator was kept at the same temperature and pressure (using the floating-

piston-gauge-based regulation system). Since the cold trap should filter out everything

but helium, the gas composition and speed of sound in the resonator should be identical.

While the equilibrium values obtained from both bottles were indeed identical at the

noise level (see figure 8), the squared velocity curves evolved differently. It might be

that different bottles contain different amounts of 3He because all other species should

be removed by the cold trap. Since the origin of this difference (amounting to a relative

shift of 0.44 ppm in k) is not understood, we include an uncertainty of 0.5 ppm under

”Impurity” in Table 4. Yoshiki et al. (2005) [39] state that a bottle of 4He gas should

contain between 0.1 ppm and 1.0 ppm of the isotope 3He and measured 0.14(8) ppm.

As a conservative limit, we take a ratio of 0.65 ppm, an amount which would shift the

value of k by 0.16 ppm as discussed by Moldover et al.[5] and include a correction of

0.16 with an uncertainty of 0.16 ppm in the uncertainty budget (Table 4).
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Figure 8. Squared speed of sound as a function of time for He from two different gas

bottles of nominally identical purity, filtered using a helium-cooled trap.

Table 4. Uncertainty budget for measurement of molar mass and gas purity

resonances. The relative standard uncertainty is denoted by ur.

Term ur Note

(10−6)
3He/4He ratio 0.16 See text

Coldtrap effectiveness 0.03 See text

Impurity 0.50 Estimate made with two

bottles

Total (square root of

quadratic sum)

0.53
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5.4. Thermometry

5.4.1. General considerations In early determinations of k by acoustic thermometry, a

cylindrical resonator was inserted within a triple point cell [40]. This is not possible with

the present, ellipsoidal resonator which is instead housed in a heat bath maintained at

a temperature close to TPW. The temperature of the resonator is measured using four

CSPRTs from different manufacturers. Note that three different brands of CSPRT were

used i.e. three different technologies. (Data from a fourth one, of another make, was

not used due to its instability, as discussed in [7]). Their calibration and the thermal

mapping of the resonator were detailed in [7]. The heat bath is the same as that

employed in the work on argon but it is used in a slightly different way, as described

above in section 3. Note that an uncertainty in T of 0.273 mK corresponds to a relative

uncertainty of 10−6 in the measurement of k. After recalibration of thermometers we

confirm the calibration uncertainty of 0.1 mK given in [7] as justified below.

5.4.2. Stability and recalibration of thermometers The CSPRTs were calibrated at

the triple point of water prior to the Boltzmann constant determination in argon

described in [7]. As a reminder, their serial numbers are ”1551”, ”1825277” and

”HS135”. Since measurements using helium were started immediately after those with

argon, the CSPRTs were not recalibrated between the two experiments. However, their

stability was monitored by crosscheck measurements performed on isotherms when the

resonator was filled with helium, and no significant deviations were observed within

the measurement uncertainties. After the completion of the whole Boltzmann constant

experiment with helium, the cryostat was opened and the CSPRTs were recalibrated

at TPW, using the same cell as previously, in order to assess their stability. New

calibrations at the triple point of water showed that, with respect to the calibration in

[7]:

• CSPRT 1551 deviated by 0.10(16) mK ;

• CSPRT 1825277 deviated by -0.03(09) mK;

• CSPRT HS135 deviated by -0.19(07) mK.

Figure 9 shows the difference between the resonator temperature measured on

an isotherm by the CSPRTs referred to their original calibration [7] (grey), and the

same temperature referred to the new calibration (black circles). Average temperatures

(grey and black lines) differ by less than 0.04 mK. The new calibration values are thus

compatible with the previous ones in [7] within their respective standard uncertainties.

Given that the average temperature of the resonator, calculated from the three CSPRT

measurements according to equation (3.9) in [7], differed by less than 0.04 mK from the

original calibration, the values from [7] rather than the new ones are used here.
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Figure 9. Calibration of the 25 Ω platinum resistance thermometers before the

measurement of k with argon [7] and after the present one using helium. The new

average lies above the old one by less than 0.04 mK.

6. Results and conclusion

6.1. Results

Figure 10 shows final values of k determined by four modes plotted as fractional

deviations from the CODATA 2010 value. The uncertainty bars represent the

uncertainty of the parameter A0 resulting from each second-order fitting function given

in Eq. 2, the dashed line is the mean value of k found in this work and the grey areas

represent the uncertainty. The average over the modes was unweighted. The data will

be posted on internet [41].

Thermometry has been carried out at a level of 0.3 ppm limited by the accuracy of

water triple point cells. This represents a baseline for any determination of k. The

same resonator was used as for the previous measurement with argon gas and its

dimensions measured with comparable accuracy in both cases by microwave resonance.

The microwave resonances are essentially the same when the resonator is filled with

either gas. By contrast, whereas with argon isotopic composition and gas purity was

the dominant source of uncertainty, with helium, acoustic boundary layer corrections

give rise to the largest term.

As shown by Figure 1 the present measurement lies in agreement with the result

of our previous determination using argon gas and most other measurements elsewhere

that used either acoustic gas thermometry or other techniques.
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Figure 10. Final values of k determined by four modes plotted as fractional deviations

from the CODATA 2010 value. The uncertainty bars represent the uncertainty of the

parameter A0 resulting from each fit and the grey areas represent the uncertainty.

6.2. Conclusion

This article has described a determination of the Boltzmann constant k by acoustic

thermometry in helium gas using a quasi-spherical resonator. It is the first measurement

of this kind with a relative uncertainty below 2×10−6 using helium instead of argon.

Another peculiarity of this experiment is that it is performed in quasi-adiabatic thermal

conditions, instead of standard, constant heat-flux conditions. As well as providing a

fresh measurement of a fundamental constant, this experiment has served as a further

proof of principle of the use of an acoustic thermometer with a triaxial ellipsoidal cavity.

To reduce the relative perturbation introduced on the surface of the resonator by the

acoustic transducers, we now have built a scaled-up 3 l resonator [42] for measurements

with argon and subsequently with helium gas.
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