
22 November 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Flexible Arduino-Based board - Base Firmware R1.0 / Francese, Claudio. - (2017).
Original

Flexible Arduino-Based board - Base Firmware R1.0

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/75183 since: 2023-01-12T14:41:19Z

Claudio Francese

Flexible Arduino-Based board - Base Firmware R1.0

T.R. 24/2017 13/12/2017

I.N.RI.M. TECHNICAL REPORT

2

Contents
Abstract ... 4

Arduino Nano board overview and interconnections capabilities .. 5

Design of the Firmware ... 6

Abstraction of the board ... 7

Board operating modes ... 7

Single board Configuration (Mode 1) .. 7

Single Point Controlled System with Bus Connected Boards through I2C (Mode 2) 8

Standalone System with Bus Connected Boards through I2C (Mode 3) ... 8

Firmware Architecture .. 10

Register access... 11

Implementation of the Base Board Layer .. 12

Communication sublayer ... 12

Board messages ... 12

Board Messages execution .. 14

Resources sublayer .. 17

Base Board Registers ... 17

The Specialized board layer ... 19

Top level file of the Firmware.. 20

Class ClassBoard .. 21

Class ClassBuffer .. 27

Class ClassEeprom ... 27

Class ClassMessage .. 29

Operating the board .. 31

Serial port .. 31

Communication Protocol ... 31

Identification procedure .. 31

Appendix .. 33

Board commands ... 35

Command PROTOCOL – Request Communication Protocol ... 35

Command WHO – request the board ID ... 35

Command LIST – list the I2C attached boards .. 36

Command FORWARD - Enable Message Forwarding .. 36

Command SYSTEM – issue a special command to the board .. 37

Command IDENTIFY - Start Identification ... 37

3

Command ACK - Identification Acknowledge .. 37

Command GET - Read a Register ... 38

Command REPLY - Following Data are a Reply .. 39

Command REMARKS - Following Data can be discarded .. 39

Command SET - Write a Register ... 40

Board internals .. 41

Detecting the Board Reset type .. 41

Description of the Base Set Registers .. 43

General Registers ... 43

Firmware information ... 44

Debugging and Special Registers ... 45

Debug tool Example: Memory leakage in ClassMessage::Parse() ... 47

Conclusions .. 48

Bibliography ... 49

4

Abstract
This report describes the design of the firmware for an Arduino board which is intended to drive some

generic ICs (e.g. DDS generators, A/D or D/A converters , etc) which support experiments.

The idea behind the design of the firmware it the possibility to support a generic board with a set of base

functionalities which can be later extended according to the user needs. This approach allows the

developer of the application firmware to focus only of the new parts of the firmware, while the common

part remains the same.

This project is part of a wider study on the development of flexible instrumentation and distributed control

systems.

5

Arduino Nano board overview and interconnections capabilities

The Arduino Nano board is based on an Atmel ATmega328 microcontroller.

This board has been chosen because of its small footprint (18 x 45 mm, 7 g weight), low power

consumption (19 mA) and good versatility which make it a good choice for low-medium complexity

applications.

The main specifications of the board are

 16 MHz clock speed

 6 PWM outputs

 22 General purpose I/O pins

 8 Analog I/O pins

 SPI bus connection

 I2C bus connection

 32 kB Flash memory for firmware code

 2 kB RAM

 1 kB EEPROM for the storage of user parameters

It should be noted that some signals / peripherals available in Arduino are mutually exclusive. In addition,

those resources are anyway a subset of the ATmega328 because of the board reduced pin count and the

constraints given by the ATmega328 hardware. For a detailed description and more specifications, please

see (1) (2).

The last constrain to the allocation of the Arduino pins is given by the application specific connections

between the Arduino board and the Application Board. Figure 2 shows the pin allocation for an AD9959-

based DDS board. While the orange-marked terminals assignment is restricted because given by the

microcontroller, the green-marked terminals can be used for the application – in this case the connection

to the DDS chip leaving only two GPI/O auxiliary pins and two analogic input terminals.

FIGURE 2 - ARDUINO BOARD PIN ALLOCATION

I2C BUS

Analog inputs

USB

Assignable to
application

 SPI

Assignable to
application

SPI

Auxiliary I/O

FIGURE 1 - ARDUINO NANO

6

Design of the Firmware
Some considerations should be made before starting the design of the firmware.

1. Trade-off between

 complexity, flexibility and reliability of the code

 performance and development time
2. Typical use of the board

 frequent reconfigurations of the board for new experiments

 requirements not fully specified at design time
3. Distributing and installing different software versions on many instruments can be confusing and

can lead to errors. In this scenario, tracking the configuration of an instrument shared among many
people can be difficult

4. Interfacing the board to a user-application
Usually the end user of the software is not interested in the technical details of the components of
the application, so the software should provide the available resources hiding the details.

The above considerations, in particular 1, 2 and 4, took the author to implement the firmware using the

OOP (Object Oriented Programming) paradigm which better describes and helps to efficiently implement

the behaviour of the instrument under development. The extra efforts introduced by the abstraction of the

functionalities are convenient because

- it allows to develop a generic board object, based only on a standalone Arduino, even when the
application hardware is not available yet

- the development of a new application is more flexible because it can be derived by extending the
base object

Point 3 shows that using the same firmware on all the boards is convenient (unless some modules require

special functions). This suggests that the version tracking mechanism should be included in the base board

capabilities. Mixing different firmware releases in a system is possible as well, but the protocols must be

compatible with the standard.

The resulting keywords for the development of the firmware are: Abstraction and Object Oriented

Programming. C++ has been selected as a programming language for the board. At the first development

step the firmware will be able to manage a generic board with fixed resources (orange terminals in Figure

2) by means of a base class. In the second step, the base class is extended to handle the final board with the

remaining resources.

The reliability of the developed software can be further improved by using automatic code generation

techniques and tools. This leads to describe parts of the expected code in a human-readable format which

is the converted in the appropriate coding language (C, C++, C#, Python (3), other). The immediate result is

the ability to correct a great number of sections of the code by correcting only a small portion of the code-

generator software. The requirement for this approach is the separation of the resulting firmware sources

into two groups of files. The first group is composed of code automatically generated according to the

specifications. The second group is composed by manually written files which implement in detail the parts

of the logic of the firmware which need to be customized.

The software has been developed in C++ language. As the Arduino IDE lacks of flexibility and refactoring

capabilities, Eclipse CDT has been used.

As of now, Eclipse Oxygen 4.7.0 with Arduino C++ Tools (9.3.0) provide a good development environment.

7

Abstraction of the board
The board is accessed by an external user software (e.g. a graphical user interface) as described in (4). This

requirement can be achieved in many ways but the trade-off between software complexity and flexibility

took to presenting the board as a set of registers at standard addresses. Thus the external software has

access to the contents of the registers by means of a set of standard commands exchanged with the board

as shown in Figure 3.

FIGURE 3 –ABSTRACTION OF THE BOARD AS A SET OF REGISTERS

In addition to the resources access requirement, the implementation must allow future expansion. Figure 4

shows the relation between a generic base board and the extended board which accesses the full set of

board resources. The C++ implementation is based on the inheritance from the base class.

FIGURE 4 - BOARD OBJECTS HIERARCHY

The implementation of the base board class requires the definition of a set of operating configurations of

the board, the definition of the communication protocol and the definition of a standard set of registers.

Board operating modes
The board is intended to be operated in three modes according to the user needs and the firmware has

been designed to simplify the operation of the board in all the conditions. For this reason, one firmware

version must be able to automatically support all the operating conditions without the user intervention.

Single board Configuration (Mode 1)
In this configuration, the board is connected to an external PC which provides the User Interface.

The connection via Serial over USB through the Arduino Nano on-board conversion module.

User
software

REGISTERS

R 1

R 2

…

R n

Messages

Board

Base board

Extended board

class ClassBoard {
…
}

class ClassExtendedBoard: public ClassBoard {
…
}

C++

8

This configuration is suitable for simple setups, where the mess of USB cables can be tolerated. In this

setup, indeed, every board needs a separate USB connection.

Single Point Controlled System with Bus Connected Boards through I2C (Mode 2)
In order to reduce the controller-to-boards connections, a bus topology can be implemented as well. All the

boards thus are installed into a rack and only a single connection to the controller is needed.

In this configuration all the boards can share the same firmware. The board connected via USB becomes

the master of the I2C bus, while the remaining boards remain slaves. It should be noted that although the

I2C bus is multi-master capable, this feature is not worth to be implemented in this firmware release

because of the added complexity which would increase the firmware size. Thus only one master a time is

guaranteed to work correctly with the firmware described in this report.

Standalone System with Bus Connected Boards through I2C (Mode 3)
In this configuration all the boards act as I2C slaves. Strictly speaking, this configuration is not that much

different from Mode2 as it only lacks the Arduino Board acting as the I2C bus master. Thus the master

function is assigned to an external dedicated hardware, for example a Single Board Computer (e.g.

Raspberry Pi, Arduino with Ethernet or Wi-Fi Shield, Beaglebone, Industrial PC, etc).

This configuration can be used in experiments with complex topologies, for example in two remote

locations A and B. The local Controller in location B coordinates the I2C-connected boards with complex

algorithms which otherwise could not be implemented on an Arduino board. Power consumption is kept

low as well because of lower power absortion of single board computers with respect to conventional

computers.

Controller

Arduino

Application

USB

Arduino

Application

USB

Arduino

Application

USB

Controller Arduino

Application

I2C bus

Arduino

Application

Arduino

Application

USB

Bus Master Bus Slave Bus Slave

9

Another use case is a flexible control of the rack by a WiFi connection which grants access to mobile devices

(tablets, PDAs, smartphones, etc) in the same Location B of the experiment.

A positive side effect of using a conventional I2C bus to interconnect the Boards is that additional I2C chips

or third party boards can be integrated in a rack, for example to monitor the supply voltages and the

temperature of the rack itself.

Single Board PC
Remote

Controller

I2C bus

Arduino

Application

Arduino

Application

USB /
 Ethernet /

Other

Bus Master Bus Slave Bus Slave

Optional

Rack in Location B Location A

10

Firmware Architecture
The firmware is organized into layers and sublayers as depicted in Figure 5.

FIGURE 5 - FIRMWARE LAYERS

The resources of the board are handled by the board object, shown in Figure 6, which is the core of the

firmware and has control of the internal and external resources.

FIGURE 6 - BOARD OBJECT OVERVIEW

Figure 7 shows an example of the increasing abstraction given by the firmware when a user software sets

the board name through a write access to register #20.

First the write register operation is turned into a call to the Set() method of the board. As the board name is

stored in the non-volatile Arduino memory, the Set() method uses the board resource Storage which

abstracts the EEPROM data transfer.

After finding the address at which the board name will be stored, the Set() method calls the method store()

of the Storage object. Finally the Storage object calls the Arduino library function EEPROM.write() which

performs the write operation.

Application
Specific

Functionalities

Board resources

Dedicated
Hardware
(e.g. DDS)

Base board layer Specialized board layer

Base
Functionalities

Board
resources

Serial link
(USB)

I2C Bus

Message
handler

Communication sublayer Resources sublayer

Message object

IncomingData

object array

Storage object

Other
Properties

Methods

ProcessMessage()
Set()
Get()
begin()
spi()
…

Properties

Board object

11

Although the EEPROM write operation itself is quite simple, the organization of the firmware shows how to

turn an abstract request into an access to an hardware resource.

FIGURE 7 – EXAMPLE OF ABSTRACTION

Register access
The board presents the available resources as a set of registers which can be read and/or written. The

read/write operations are performed by means of commands which are exchanged with the board.

FIGURE 8 - REGISTER SET ACCESS

As the extended board will inherit the set of registers from the base board, only the base set needs to be

specified in this phase of the design.

Board registers

Board resources

Board functions

Hardware access

In
cr

ea
si

n
g

ab
st

ra
ct

io
n

“Name” REG[20]

Set(20, “Name”)

Storage.store(buffer. Address, length)

EEPROM.write (…)

Registers

set

Extended registers

set

Read
 /

Write

Board
Resources

User Application Board internals

12

Implementation of the Base Board Layer
This layer implements the generic board with some basic functionalities which can be divided into two

sublayers: communication layer and resources layer

Communication sublayer
The board has some bus interfaces devoted to the exchange of requests and replies. Although all the

interfaces can be used to transfer data to/from the board, each of them has been chosen for a specific

purpose. The primary interface is a serial link over USB and it should be used to easily connect the board to

an external computer which acts as a controller. Another interface is a I2C controller and it is intended to be

used to interconnect many boards together in a complex system. Other communication interfaces could be

added for special purposes. The main communication functionalities implemented in the communication

sublayer are

 data transfer to/from every board regardless of the physical connection (USB or I2C or other)

 decoding of a set of messages exchanged on the bus

 request of execution of decoded messages

 data forwarding from one bus to another when are data addressed to other boards

Board messages
In the current implementation, messages are text strings. Although the ASCII representation gives more

overhead with respect to binary encoding, the chosen representation gives the immediate advantage of

assuring the compatibility between the board and the communication software. Indeed any existing

program able to send and receive text over a serial line, is suitable to operate the board without installation

of any additional software. This avoids also the concern of debugging the client side of the application

during the development phase of the firmware.

Messages are part of the messaging layer of the firmware and are defined as c defines in classmessage.h

The protocol provides for a reply to every message addressed to the board.

When a message to the board does not return a value, for example a board reset request, a reply is anyway

generated depending on the command execution success or failure.

The reply to a successfully executed message is defined by PROTOCOL_ACCEPTED, and a rejected command

(for example a wrong command or a message with missing/invalid parameters) gets a PROTOCOL_FAIL reply.

The current Communication Protocol is identified as “ASCII 1” (textual data, protocol version 1).

#define PROTOCOL_VERSION "ASCII 1"

// MESSAGES WITHOUT PARAMETERS
#define PROTOCOL_PROTOCOL "p"
#define PROTOCOL_WHO "?"
#define PROTOCOL_ACK "a"

// MESSAGES WITH ADDRESS AND/OR PARAMETERS: MSG [reg [val]]
#define PROTOCOL_IDENTIFY "i"
#define PROTOCOL_SYS "*"
#define PROTOCOL_SET "w"
#define PROTOCOL_GET "r"
#define PROTOCOL_REPLY "-"
#define PROTOCOL_REMARKS "#"

#define PROTOCOL_ACCEPTED "ok"
#define PROTOCOL_FAIL "fail"

13

The board messages are listed in Table 1 and a short description of the message and an example of data

exchange are given as well.

Code Mnemonic Description Example

p PROTOCOL Request the Board Communication

protocol

Request the protocol
Command: p

Reply: - ASCII 1

? WHO Request the Board ID Request the ID to board #37
Command: ?

Reply: - 37

* SYSTEM [op] Request a special operation Reboot the board
Command: * restart

Reply: - rebooting

w SET <reg> <val> Write a register Set the board name
Command: w 20 This is a board

Reply: - ok

r GET <reg> Read a register Get the board name
Command: r 20

Reply: - This is a board

- REPLY <data> Inform that the message is a reply

to a previous command

Request the ID to board #37
Command: ?

Reply: - 37

REMARKS <data> Inform that a part of the message

should be ignored

Read register 50 in a SPI debug session
Command: r 50

Reply:

spi(2 bytes) Tx: 00 12 Rx: 00 00

spi(5 bytes) Tx: 84 00 00 00 00

Rx: 00 00 83 12 6F

- 1.000000047 (Actual reply)

?? LIST Show the IDs of the boards

connected to the I
2
C bus

Boards #40, 50 on I2C bus
Command: ??

Reply: - 40 50

i IDENTIFY <id> Start and identification process

The process ends with ACK

Assign ID 40
Command: i 40

Reply: - ok

a ACK An ID has been accepted or the

identification process must end

Stop the identification
Command: a

Reply: - ok

f FORWARD <id> Forward the messages to the

specified board
1

Board #37 connected to USB,

forward messages to board #68
Command: r 20

Reply: - This is a board

Command: f 68

Reply: - ok

Command: r 20

Reply: - This is another board

TABLE 1 - BOARD MESSAGES

A detailed description of the commands can be found in

1
 As many debug functions are embedded in the test release of the firmware, the message-forwarding feature has

been temporarily disabled in order to reduce firmware size and RAM usage.

14

Appendix.

Message structure and line terminator convention

Each message sent from the external controller to the board must end with a line terminator. In order to

resolve the compatibility among different software implementations of line terminator sequences

(Window, OSX, Unix, Linux, etc), the terminator character can be both ASCII character 10 or 13. The first

received character terminates the line and if the second character is present, it is ignored. The resulting

structure of a message sent to the board is

Identifier Data Line terminator

Any character sequence among
“p” “?” “*” “w” “r” “-” “#”

“??” “i” “a” “f”

blank Sequence of characters

(if present)

CHR(10) or CHR(13)

or both in any order

1 or 2 bytes 1 byte Variable length 1 or 2 bytes

The structure of the messages is the same also for the replies from the board but the line terminator is one

single character, ASCII code 10 (newline or ‘\n’ in c convention).

Identifier Data Line terminator
 “-” or “#” blank Sequence of characters CHR(10)

1 byte 1 byte Variable length 1 byte

Board Messages execution
Due to the different board interconnections configurations discussed in section “Arduino Nano board

overview and interconnections”, there are two message passing situations as depicted in Figure 9 and

Figure 10.

Messages in Single Board Mode

When the Board is operating in Single Board Mode, there is a point to point connection between the board

and the controller. Thus every message sent from one device is intrinsically addressed to the other one.

FIGURE 9 - MESSAGES IN SINGLE BOARD MODE

Controller

(PC)
Board 1

USB

Message

15

Messages in Bus Connected Mode

When the Boards are operating in Bus Connected Mode there are situations where the receiver of a

message is not the intended final destination. With respect to Figure 10, for example when the Controller

needs to send a message to Slave Board 2, the Board 1 is the only physical connection between the two

points so it needs to forward the message. The same mechanism must be implemented also when the

Board Slave 2 sends back a reply to the Controller. In these situations Board 1 must enter into a Master

Board Mode which allows forwarding the messages to/from the I2C bus.

FIGURE 10 – MESSAGES IN BUS CONNECTED MODE

For this reason a dedicated register has been implemented in the board object which is accessed through

the dedicated FORWARD command.

When a board receives a FORWARD <id> message, the board changes its role into Master and the received

id is stored in an internal register.

When the board is in Master mode, the forwarding algorithm acts in two ways according to the direction of

the data flow.

 Message from Master to Slave: the Master receives the message, after having checked the message
type, the Master forwards to the I2C bus. No reply is sent back at this point.

 Reply from Slave to Master: the Master receives the reply message and sends it as is via the USB
connection.

In Master mode, the massages are not automatically forwarded and a check must be performed to avoid

undesired behaviour of the devices on the bus.

The diagram below shows an example of a unexpected condition.

The external controller sends two forwarding requests:
 f 2

 f 3

Controller
(PC)

Master
Board 1

I2C bus

Slave
Board 2

USB

Message Forwarding

Message

Intended Message

Controller

(PC)
Master

Board 1

I2C bus

 Slave

Board 2 USB

3

Slave

Board 3

16

Upon receiving the first request, Board 1 becomes the master and Board 2 remains a Slave and this is

correct.

If no message check is performed, after receiving the second request, the message is executed on the

currently addressed board (Board 2) which becomes itself Master.

In the end, the status of the system is as follows

 The Controller knows that the Master is Board 1 because it is connected through USB

 Board 1 acts as a Master and it is not informed about the Master role of Board 2

 Board 2 acts as a Master and it is not informed about the presence of another Master (Board1)

 Board 3 knows that the master is Board 2

The result of the multi-hop message forwarding is the loss of the Board 3 reply.

Although the forwarding algorithm could be corrected in order to gather the incoming messages in Board 2

and sending them to the I2C bus instead of USB, there is no immediate advantage in having a multi-hop

routing of packets and it would lead to ambiguity of the system and complexity of the firmware.

For these reason, some messages need not to be forwarded by the Master even when forwarding is

enabled and they must be processed and executed locally on the USB-attached board.

Message Action on the Master when forwarding is enabled

WHO

LIST

ACK

IDENTIFY

FORWARD

Execute locally. No forwarding.

SYSTEM

GET

SET

REPLY

REMARKS

Forward to the other bus.

Controller

(PC)
Master

Board 1

I2C bus

 Slave

Board 2 USB

3

Slave

Board 3

Desired Path

1st hop 2ndt hop

Reply is lost USB

17

Resources sublayer
The base layer grants access to the board resources through a set of messages which are decoded by the

communication layer. Upon an execution request the decoded command is then executed in the resources

sublayer through dedicated callback functions.

The functionalities implemented in the resources sublayer can be

 board hardware access (SPI interface, GPIO lines, AD channels, embedded timers, EEPROM, etc)

 access to virtual registers used to abstract the board capabilities

 system-related functions (e.g. board identification on the bus, debug and firmware information)

At this point, the base board layer implements all the functions required by a generic board to operate in

both a standalone or bus-connected configuration.

This approach offers some advantages in terms of future development time and reliability

 it allows to develop and debug the code even in absence of the application-specific hardware

 once the base code has been tested, its development can be frozen and the stable version can be
reused for new applications

Base Board Registers
The following registers have been defined in the header file of the board class

A detailed description of the registers can be found in

#define STO_EEPROM_FORMAT 0 // Format of registers and data in e2prom
#define STO_BOARD_ID 1 // I2C Address of Board
#define REG_FW_DRIVER 2 // Name of driver class
#define REG_FW_NAME 3 // Firmware name
#define REG_FW_VER 4 // Firmware version
#define REG_FW_BUILD 5 // Firmware build date
#define REG_EEPROM_ADDRESS 6 // EEPROM Access Address (Autoincrement)
#define REG_EEPROM_DATA 7 // EEPROM Access Data r/w
#define REG_BOARD_MASTER 8 // I2C Address of Master Board
#define REG_DBG_RAMDATA 9 // RAM Data
#define REG_DBG_RAMADDRESS 10 // RAM Address
#define STO_DBG_LEVEL 11 // Set debug verbosity
#define REG_DBG_INFO 12 // Free memory and board status
#define REG_DBG_SUPPORTED 13 // Debug has been enabled in firmware
#define REG_DBG_LASTBOOT 14 // Last board restart (= millis())
/*
 ADDRESS RANGE FOR FUTURE DEFINITION OF OTHER REGISTERS
*/
#define REG_BOARD_PARAM_STATE 18 // Parameters' state, used to detect changes
#define STO_BOARD_RESET_MODE 19 // Reset mode
#define STO_BOARD_NAME 20 // Board name
#define REG_BOARD_ADC6 21 // ADC CH 6 Value
#define REG_BOARD_ADC7 22 // ADC CH 7 Value
#define REG_BOARD_D2 23 // Arduino D2 pin
#define REG_BOARD_D3 24 // Arduino D3 pin
#define REG_BOARD_D4 25 // Arduino D4 pin

18

Appendix.

The above C code snippet has been generated by a code-generator written in Python, fed by the

description of the data though an Excel file shown in Figure 11.

19

A detailed description of the code generator is given in (5).

FIGURE 11 - SAMPLE OF CODE GENERATOR INPUT

The Specialized board layer
This layer acts as an extension to the Base board layer and it is intended to give access to the application-

specific hardware functionalities of the board through a set of virtual registers specific.

A detailed description of a DDS-Board specialization can be found in report (4).

Register

Base

Number

Register

Group

Name

Instance

ID

Register

Name

Size

(bytes)

Type Description Stored in

EEPROM

Volatile

Register

Alternate

Register

Selection

Main

Register

Address

regnum group instid name size type description eeprom app alternate

int str str str int str str str str str

0 EEPROM FORMAT 1 Int Format of registers and data in e2prom x 0

1 BOARD ID 1 Int I2C Address of Board x 1

2 FW DRIVER 32 Text Name of driver class x 2

3 FW NAME 32 Text Firmware name x 3

4 FW VER 32 Text Firmware version x 4

5 FW BUILD 32 Text Firmware build date x 5

6 EEPROM ADDRESS 2 Int EEPROM Access Address (Autoincrement) x 6

7 EEPROM DATA 1 Int EEPROM Access Data r/w x 7

8 BOARD MASTER 1 Int I2C Address of Master Board x 8

9 DBG RAMDATA 1 Int RAM Data x 9

10 DBG RAMADDRESS 2 Int RAM Address x 10

11 DBG LEVEL 1 Int Set debug verbosity x 11

12 DBG INFO 2 Text Free memory and board status x 12

13 DBG SUPPORTED 1 Int Debug has been enabled in firmware x 13

14 DBG LASTBOOT 4 Int Last board restart (= millis()) x 14

18 BOARD PARAM_STATE 4 Int Parameters' state to detect changes x

19 BOARD RESET_MODE 1 Int Reset mode x 19

20 BOARD NAME 32 Text Board name x 20

21 BOARD ADC6 2 Int ADC CH 6 Value x 21

22 BOARD ADC7 2 Int ADC CH 7 Value x 22

23 BOARD D2 1 Int Arduino D2 pin x 23

24 BOARD D3 1 Int Arduino D3 pin x 24

25 BOARD D4 1 Int Arduino D4 pin x 25

20

Top level file of the Firmware

The main tasks of the Firmware are

 the Initialization of the board at boot time – Arduino environment setup() function

 the repeated handling of messages from all busses – Arduino environment loop() function

 handling of time-critical tasks inside an Interrupt Service Routine – ISR(TIMER1_COMPA_vect)

FIGURE 12 - FIRMWARE MAIN FILE

The complexity of the application is hidden in the class ClassExtendedBoard which extends the base class
ClassBoard.

Figure 13 graphically shows the program flow of the main loop of the firmware. With reference to the

diagram, the abstract operations on the left (ProcessIO and Process the Message Queue) are turned into

access to resources on the right through callback functions, each accessing the physical resources when

needed.

The program flow also shows that two tasks run in parallel, as well. The first pushes messages in the

appropriate Message Queue when there are new incoming data on a bus. The other task serves the time

critical portion of the firmware trough the interrupt handler.

// ArduinoNano - DDS Board controller
// Written by Claudio Francese - 2017

#include <Arduino.h>
#include "utils.h"

// FIRMWARE INFORMATION
char* __MAIN_FILE_NAME__ = __FILE__; // NAME OF THIS FILE
char* __FW_DRIVER__ = "dds"; // DRIVER NAME
char* __FW_VERSION__ = "1.0"; // FIRMWARE VERSION
char* __FW_NAME__ = "DDS BASE"; // FIRMWARE NAME / SHORT DESCRIPTION

#include "classextendedboard.h"
ClassExtendedBoard *Board = new ClassExtendedBoard(); // POINTER TO ARDUINO BOARD EXTENDED OBJECT

ISR(TIMER1_COMPA_vect) { // FUNCTION FOR INTERRUPT SERVICE ROUTINE - RUNS @ 4 kHz
 // PWM FOR ONBOARD ARDUINO LED
 static uint8_t counter=0;
 counter ++;
 digitalWrite(LED_ATTENTION, Board->LedLevel>counter?HIGH:LOW);
}

void setup() { // SETUP THE OBJECTS, ARDUINO PERIPHERALS, DDS
 Board->begin();
}

// MAIN APPLICATION LOOP
void loop() {
 Board->ProcessIO(); // READ, PROCESS AND UPDATE THE ARDUINO I/O SIGNALS

 // (FRONT AND REAR PANEL)
 Board->ProcessMessage(USB); // PROCESS MESSAGES IN FIFO 1
 Board->ProcessMessage(I2C); // PROCESS MESSAGES IN FIFO 2

}

21

FIGURE 13 – FIRMWARE MAIN FILE PROGRAM FLOW

A description of the involved classes follows.

Class ClassBoard
This class is the core of the applications because it serves many purposes and provides

 a base board able to operate standalone or in bus-connection mode with a fully functional
messaging mechanism accessed with only one function call per bus

 support to up to 8 bus connections for message exchange

 a set of standard registers accessible via read/write messages and/or dedicated messages

 handle of the internal state of the board (e.g. identification, normal operation)

 support to the parameter change detection, useful with concurrent accesses to the board

 mechanism to assign the ID to the board

ClassBoard

ProcessIO

Process
Message
Queue

Read Panel
Update Panel

Handle Identification

Message Parse

Message Execute

Add Message
to Queue

New character received

Done

Serve
Interrupt

Timer Interrupt

Done

Main loop

Misc

Parallel tasks

ClassBuffer

ClassEeprom

Access Queue
of Messages

ClassBoard access

ClassMessage

Access
resources

Array of callback functions

 MSG_PROTOCOL cb_PROTOCOL()
 MSG_WHO cb_WHO()
 MSG_IDENTIFY cb_IDENTIFY()
 MSG_ACK cb_ACK()
 MSG_RESET cb_SYSTEM()
 MSG_SET cb_SET()
 MSG_GET cb_GET()
 MSG_REPLY cb_REPLY()
 MSG_FORWARD cb_FORWARD)

22

The declaration of ClassBoard is shown in Figure 14

FIGURE 14 - CLASSBOARD.H

Among the methods declared in the class, three are worth to be cited: begin(), ProcessIO() and

ProcessMessage() because they are used in the main file of the firmware as shown in Figure 12.

class ClassBoard {
 public:
 ClassBoard();// Class constructor, initializes obj properties

 // Virtual methods overridden by derived class to add application-dependant functionalities
 virtual void begin(void); // Initialize Arduino and board peripherals
 virtual void System(void); // Reset handler for RESET message
 virtual void Recall(void); // Recall parameters from EEPROM
 virtual void Store(void); // Store parameters to EEPROM

 // Default GET / SET handler for unknown register
 virtual bool DefaultSet(addtype reg, addtype eeaddr, uint8_t size, char* string);
 virtual bool DefaultGet(char* retval, addtype reg, addtype eeaddr, uint8_t size, char* value);

 // Convert a numeric (32 bit integer) value to / from physical units
 virtual void ConvertFromPhysicalUnits(addtype reg, char* string);// Convert from physical units
 virtual void ConvertToPhysicalUnits(addtype reg, char* string) ; // Convert to physical units

 // Base board methods
 void ProcessMessage(bustype);
 bool Set(addtype Reg, char* value); // Write Value string to Board Register,
 // returns TRUE on success, FALSE on failure
 bool Get(char*, addtype reg, char*); // Read Board Register as String,
 // returns TRUE on success, FALSE on failure

 void ReplyToSerial(char* string); // Send a message to serial
 void SendReply(C_STRING Reply) ; // Send a message
 void ProcessIO(); // Acquire the front panel
 valtype getID(); // Read the board ID
 void setID(valtype) ; // Write the board ID

 // STORE / RETRIEVE len BYTES TO / FROM EEPROM
 void store(uint8_t *buf, addtype addr, uint8_t len);
 void retr (uint8_t *buf, addtype addr, uint8_t len);

 void spi(uint8_t cspin, uint8_t *data, unsigned char len) ; // SPI Transmit / Receive
 void StopIdentification(); // Terminate identification process
 void AcceptIdentifier(); // Accept the transmitted ID, send ACK
 void ParameterGroupChange(uint8_t group); // INCREMENT PARAMETER-CHANGES COUNTERS

 uint8_t LedLevel; // Brightness of Arduino LED (PWM in ISR)
 uint8_t DebugLevel; // Debug level (set debug verbosity)
 bool WarmBoot : 1; // True if Arduino was reset upon serial reconnection.
 // False after a cold boot.
 bool Identification : 1; // True if the board in identification mode
 uint8_t IdentificationID; // Proposed ID for board identification
 void StartIdentification(unsigned char); // Start identification, enable led blinking
 ClassMessage *Msg; // MESSAGE HANDLING CLASS
 ClassBuffer IncomingData[2]; // ALLOCATE 2 FIFOs FOR INCOMING DATA CHANNELS

 ClassEeprom Storage; // EEPROM STORAGE FOR PERMANENT BOARD PARAMETERS
 uint8_t ResetMode; // BOARD RESET MODE

 private:
 uint16_t RamAddress; // USED FOR RAM READ/WRITE
 uint16_t E2PromAddress; // USED FOR EEPROM READ/WRITE
 uint16_t LedFlashCounter; // USED TO MAKE A LED BLINK IN IDENTIFICATION MODE
 uint8_t cached_boardid; // ID OF THE BOARD (REDUCES THE NUMBER OF EEPROM R/W OPERATIONS)
 bool Key_ID : 1; // USED FOR IDENTIFICATION
 bool Key_IDLast : 1; // USED FOR IDENTIFICATION
 bool ConditionAcceptedID : 1; // TRUE WHEN THE PROPOSED ID HAS BEEN ACCEPTED

 protected:
 uint32_t parametergroupcounter; // STATE OF SOME PARAMETERS, USED TO DETECT CONCURRENT CHANGES
 } ;

23

Board setup : ClassBoard::begin()

Following the Arduino naming convention, this functions sets up the internals of the Board. So, after

instantiating the Board object and having initialized the objects’ properties by means of the constructor

ClassBoard(), the firmware calls the begin() method which is used to initialize the Arduino onboard

peripherals and the application all at once. As visible in Figure 14, the begin() method is marked with the

virtual specifier, thus allowing the derived class to override it to extend the method’s functionalities.

Board acquisition and update of I/O signals: ClassBoard::ProcessIO()

The ProcessIO() method reads all the front panel inputs and updates the outputs. This method provides

also support for the identification mechanism by updating the ConditionAcceptedID flag when it detects a

keypress during identification. The identification mode is shown by making the on-board led blink fast.

void ClassBoard::begin(void) { // Initialize Arduino board
 // SET ARDUINO ONBOARD PERIPHERALS
 Serial.begin(115200); // INITIALIZE SERIAL PORT

 Storage.retr((uint8_t*) &DebugLevel, EE_DBG_LEVEL, 1); // RECALL LAST DEBUG MODE
 Storage.retr((uint8_t*) &ResetMode, EE_BOARD_RESET_MODE, 1); // RECALL RESET MODE

 pinMode(SWITCH_ID, INPUT); // Arduino reads the Switch
 digitalWrite(SWITCH_ID, HIGH); // Enable internal pullup

 // SETUP TIMER 1
 TCCR1A = 0; // normal operation
 TCCR1B = bit(WGM12) | bit(CS10); // CTC, no pre-scaling
 OCR1A = 1999; // compare A register value
 TIMSK1 = bit(OCIE1A); // interrupt on Compare A Match

 pinMode(LED_ATTENTION, OUTPUT); // Enable led

 setID(getID()); // Calls i2c setup

 // DETECT WARM / COLD BOOTSTRAP
 if (strcmp(BootstrapSignature, COLD_BOOT_MAGIC_STRING) == 0)
 WarmBoot = true;
 else {
 strprintf(BootstrapSignature, "%s", COLD_BOOT_MAGIC_STRING);
 WarmBoot = false;
 }
 if (DebugLevel == 255) WarmBoot = false;
}

void ClassBoard::ProcessIO() {
 // KEYS USED FOR IDENTIFICATION ACK
 Key_IDLast = Key_ID;
 Key_ID = digitalRead(SWITCH_ID);

 ConditionAcceptedID = Key_IDLast ^ Key_ID;

 // accept identification if requested by the user
 if (Identification && ConditionAcceptedID) AcceptIdentifier();

 /*
 * If in identification mode, check the panel button(s), blink the led(s)
 */
 static bool flag = false;

 if (LedFlashCounter > (Identification?50:400)) {
 if (flag? (LedLevel<250):(LedLevel>1)) LedLevel = LedLevel + (flag?+4:-1);
 else flag = !flag;

 LedFlashCounter = 0;
 }
 LedFlashCounter++;
}

24

Board messages handler: ClassBoard::ProcessMessage()

This method has one parameter, a bus identifier. When called, the method checks if a pending message

exists for the given bus. If available, the method decodes the message and tries to execute it returning the

result of the operation to the bus. The message queue associated to the bus is cleared upon message

execution.

Such a class provides the functions necessary to operate a generic board which is connected to a USB and

to an optional I2C bus as shown in the main file of the firmware in Figure 12.

Extending the Register Set

As stated before, the base board capabilities need to be extended by extending the set of registers. At

design time of the base class, the set of new registers which will be added in future is not known so the

register handler must be implemented as a switch statement divided into two parts: the first part handles

the known registers, while the default case calls a default handler for unknown registers. Figure 15 shows

the implementation of the read access through the Get() method of the base class.

FIGURE 15 - REGISTER ACCESS IMPLEMENTATION FOR EXTENSION

The default handler has an empty implementation in the base class ClassBoard because the actual object

instantiated in the firmware will be of class ClassExtendedBoard and the called method which will have to be

called is the ClassExtendedBoard::DefaultGet() not ClassBoard::DefaultGet(). The same applies to write

void ClassBoard::ProcessMessage(bustype bus) {
 if (IncomingData[bus].Ready) {
 C_STRING NewMessage; // CHARACTER BUFFER FOR NEW INCOMING MESSAGE
 IncomingData[bus].pop(NewMessage);
 Msg->Parse(bus, NewMessage);
 Msg->Exec();
 }
}

bool ClassBoard::Get(char* retval, addtype reg, char* extravalue) { // Read Board Register as a string

// INITIALIZATION CODE OMITTED

switch (reg) {
 // ACCESS REGISTERS KNOWN AT DESIGN TIME
 case REG_EEPROM_ADDRESS:
 value = E2PromAddress;
 break;
 case REG_EEPROM_DATA:
 Storage.retr((uint8_t*) &value, E2PromAddress, 1);
 E2PromAddress++;
 break;
 case STO_DBG_LEVEL:
 value = DebugLevel;
 break;

 // ... OTHER BASE BOARD REGISTERS

 case REG_BOARD_PARAM_STATE:
 value = parametergroupcounter;
 break;

 case REG_DBG_LASTBOOT:
 value = millis();
 break;

 // HANDLE REGISTERS NOT KNOWN TO THE BASE CLASS
 default:
 if (DefaultGet(retval, reg, eeaddr, size, extravalue)) { // operations … }
 }
}

bool ClassBoard::DefaultGet(char* retval, addtype reg, addtype eeaddr, uint8_t size, char* value) {
 return false;
} // Virtual method overridden in derived class

25

access. This is the reason why the methods DefaultGet() and DefaultSet() are marked as virtual in the base

board class.

As an example, Figure 16 shows the implementation of the ClassExtendedBoard ::DefaultGet() method.

FIGURE 16 - EXAMPLE OF DEFAULTGET FOR A DDS

The graphical flow of the code is shown in Figure 17.

FIGURE 17 - CODE FLOW FOR A REGISTER READ ACCESS

bool ClassExtendedBoard::DefaultGet(char* retval, addtype reg, addtype eeaddr, uint8_t size, char* extravalue) {
 // Handles read access to registers not handled by the base class

 // INITIALIZATION OMITTED

 bool retstatus = true;
 valtype value = 0;

 switch (reg) {

 case REG_CH0_FREQ:
 case REG_CH1_FREQ:
 case REG_CH2_FREQ:
 case REG_CH3_FREQ:
 value = GetFrequency(reg-REG_CH0_FREQ);
 break;

 case REG_CH0_AMPL:
 case REG_CH1_AMPL:
 case REG_CH2_AMPL:
 case REG_CH3_AMPL:
 value = GetAmplitude(reg-REG_CH0_AMPL);
 break;

 case REG_CH0_PHAS:
 case REG_CH1_PHAS:
 case REG_CH2_PHAS:
 case REG_CH3_PHAS:
 value = GetPhase(reg-REG_CH0_PHAS);
 break;

 default:
 retstatus = false;
 }

 if (retstatus) strprintf(retval, "%lu", value);

 return retstatus;
}

DefaultGet()
not called
because
virtual

Get()

DefaultGet()

. . .

ClassBoard

Get() (inherited)

DefaultGet() (overridden)

. . .

Other methods

ClassExtendedBoard
Read a register
defined in the
Extended Board

26

Parameter change detection

When the board is operated in a more complex system, a dedicated machine could run a gateway software

among the USB-connected Master Board and the controlling user software. The connection type between

the gateway and the user application is not part of this report and will be discussed in (6).

In this concurrent configuration, a user application could not be aware whether some board’s parameters

have been changed by another user application. Fort this reason a write-access counter to the registers has

been implemented. The registers are grouped in 4 sets according to priority and 4 counters are available,

one for each priority group.

When a register in a group is written, the corresponding counter is increased by one. A user application

can poll the register counter and verify which groups of registers should be reloaded.

Table 2 shows the association among registers and counters of the base board.

Register Priority group

STO_BOARD_ID

STO_DBG_LEVEL

PARAM_GROUP_PRIORITY_LOW

STO_BOARD_NAME PARAM_GROUP_PRIORITY_LOWEST

TABLE 2 - REGISTERS ACCESS PRIORITY GROUPS

The four counters are actually stored into a single 32-bit register REG_BOARD_PARAM_STATE which can be

read with the command GET.

The value of a counter is updated by calling the ClassBoard::ParameterGroupChange() method with the given

priority group as a parameter

#define PARAM_GROUP_PRIORITY_HIGHEST 0
#define PARAM_GROUP_PRIORITY_HIGH 1
#define PARAM_GROUP_PRIORITY_LOW 2
#define PARAM_GROUP_PRIORITY_LOWEST 3

void ClassBoard::ParameterGroupChange(uint8_t group) { // INCREMENT THE COUNTER OF PARAMETER-GROUP CHANGES
 // 8 bit FOR EVERY COUNTER
 // 0: BOARD LOW LEVEL PARAMETERS
 // 1: BOARD HIGH LEVEL PARAMETERS
 // 2: APPLICATION LOW LEVEL PARAMETERS
 // 3: APPLICATION HIGH LEVEL PARAMETERS

 uint32_t mask = ((uint32_t) 0xFF) << (8*group);
 uint8_t count = (parametergroupcounter & mask) >> (8*group);
 parametergroupcounter = (parametergroupcounter & ~mask) | ((uint32_t) (count + 1) << (8*group)) ;
 }

Board 1

I2C bus

Board 2

Board 3

USB

Master Slave Slave

Application 1

Application 2

Application 3

Application 4

Gateway

27

The method ClassBoard::ParameterGroupChange() is called in the firmware where the concerned registers

are accessed. For example, the following code inside the ClassBoard::Set() method performs the job at

each write access to any of the three specified registers.

Other registers can be added to other groups by inserting a similar code in the relevant part of the

firmware, for example in the derived Board object.

Class ClassBuffer
This class implements a FIFO which is used to queue the incoming data from the bus and to yield the data

to the upper layer of the software (ClassMessage) which decodes the message. In addition to the

constructor, three methods have been implemented to add a new character, retrieve the buffer, clear the

data buffer. An access to the millis() function of Arduino, grants the receive timeout handling capability. In

case of timeout during data reception, the buffer is automatically cleared.

Class ClassEeprom
This class implements the Read/Write access to the Arduino internal EEPROM memory. Currently two

methods have been implemented to read / write an arbitrary number of bytes from/to the EEPROM.

 switch (reg) {
 case STO_BOARD_ID:
 case STO_DBG_LEVEL:
 ParameterGroupChange(PARAM_GROUP_PRIORITY_LOW);
 break;
 case STO_BOARD_NAME:
 ParameterGroupChange(PARAM_GROUP_PRIORITY_LOWEST);
 break;
 }

ClassBuffer::ClassBuffer() {
 flush();
 lastrx = millis();
}

// Add a character to the buffer
// When Newline is received, set Ready = true
void ClassBuffer::push(char inChar) {
 if ((unsigned long) (millis() - lastrx) >= 1000) flush(); // RX TIMEOUT = 1.0 s
 int buflen = strlen(Buf);
 if (((inChar == '\n') | (inChar == '\r'))) { // WIN/UNIX COMPATIBILITY
 if (buflen > 0) Ready = true;
 }
 else // add it to the inputString:
 {
 Buf[buflen] = inChar;
 Buf[buflen + 1] = '\0';
 }
 lastrx = millis(); // UPDATE THE TIMEOUT COUNTER
}

// return the buffer and prepare for new incoming data (clear buffer, set Ready=false)
void ClassBuffer::pop(char* retbuf) {
 strcpy(retbuf, Buf);
 flush();
}

void ClassBuffer::flush() {
 Ready = false;
 for (int i = 0; i < STRING_MAXLEN; i++)
 Buf[i] = '\0';
}

28

void ClassEeprom::store(uint8_t *buf, addtype addr, uint8_t len) { // STORE len BYTES TO EEPROM
 uint8_t tmp;

 for (int i=0; i<len; i++) {
 tmp = *(buf+i);
 EEPROM.write(addr+i, tmp);
 }
 }

void ClassEeprom::retr(uint8_t *buf, addtype addr, uint8_t len) { // RETRIEVE len BYTES FROM EEPROM TO BUFFER
buf
 for (int i=0; i<len; i++) {
 *(buf+i) = EEPROM.read(addr+i);
 }
 }

29

Class ClassMessage
This class serves many purposes related to messages

 defines the format of messages

 provides a method to decode a message verifying the correct number of parameters

 provides an entry point to execute the decode message by means of callback functions

 associates a callback function to every expected type of message

FIGURE 18 - CLASSMESSAGE DECLARATION

As the board supports multiple bus connections for messages, the class also associates the identifier of the

bus which the massage was received from (field bustype Bus).

The implementation of the Parse() function, which decodes the received message, is quite simple yet

annoying. Thus only a snippet of code is reported here as an example

void ClassMessage::Parse(bustype source, C_STRING inputString) { // Parse the input message,

splitting it in fields

 Bus = source;

 CanExecute = false;

 Message = MSG_UNKNOWN;

 Parameter = 0;

 Value[0] = (char) 0;

 strcpy(string, inputString);

 char tok[16];

 // PARSE INPUT STRING AND FIND THE NUMERIC ID OF THE COMMAND/MESSAGE

 if (tokenizer(inputString, tok, ' ', STRING_MAXLEN)) {

 if (!strcmp(tok, PROTOCOL_WHO))

 Message = MSG_WHO;

 else if (!strcmp(tok, PROTOCOL_IDENTIFY))

 Message = MSG_IDENTIFY;

enum messages { // KNOWN MESSAGES
 MSG_WHO,
 MSG_LIST,
 MSG_IDENTIFY,
 MSG_ACK,
 MSG_RESET,
 MSG_SET,
 MSG_GET,
 MSG_MASTER,
 MSG_REPLY,
 MSG_UNKNOWN // MUST BE THE LAST ELEMENT OF messages ENUM
 };

class ClassMessage { // MESSAGE MANAGING (PARSING AND EXECUTION)
 public:
 ClassMessage(ClassBoard *b);
 void Parse(bustype source, C_STRING inputString); // SPLIT THE MESSAGE INTO COMPONENTS
 void Exec(); // EXECUTE THE COMMAND
 void RegisterCallback(messages m, MessageCallback *c); // ASSOCIATE A CALLBACK
 // FUNCTION TO A COMMAND

 C_STRING string; // COPY OF INPUT MESSAGE
 bool CanExecute : 1; // TRUE IF THE COMMAND IS CORRECT
 bustype Bus : 3; // SOURCE BUS OF MESSAGE - 3 bits : 8 Busses
 messages Message : 4; // MESSAGE TOKEN : 16 Messages
 uint16_t Parameter; // REGISTER OR BoardID (IF PRESENT IN MESSAGE)
 C_STRING Value; // DATA (IF PRESENT IN MESSAGE)

 MessageCallback *callbacks[MSG_UNKNOWN + 1]; // ARRAY OF COMMAND CALLBACK FUNCTIONS
 bool tokenizer(char* input, char * tok, char sep, uint8_t maxlen) ; // SPLIT A STRING
 // INTO TOKENS
 private:
 ClassBoard *Board;
 };

30

 else if (!strcmp(tok, PROTOCOL_ACK))

 Message = MSG_ACK;

 else if (!strcmp(tok, PROTOCOL_SYS))

 Message = MSG_RESET;

 else if (!strcmp(tok, PROTOCOL_SET))

 Message = MSG_SET;

 else if (!strcmp(tok, PROTOCOL_GET))

 Message = MSG_GET;

 else if (!strcmp(tok, PROTOCOL_REPLY))

 Message = MSG_REPLY;

 }

 else return; // EMPTY COMMAND

 switch (Message) { // ACK and RESET are always enabled

 case MSG_ACK:

 case MSG_RESET:

 CanExecute = true;

 break;

 default: // ENABLE/DISABLE OTHER MESSAGES DURING IDENTIFICATION

 CanExecute = !Board->Identification;

 break;

 }

 if (CanExecute) {

 switch (Message) { // GET 1st PARAMETER (Register or BoardID)

 case MSG_SET:

 case MSG_GET:

 case MSG_IDENTIFY:

 CanExecute = strcmp(inputString, ""); // MISSING PARAMETER

 if (!CanExecute) {

 Message = MSG_UNKNOWN;

 break;

 }

// … continues …

As shown in Figure 19, the execution of a command specified in a message can take place only if the

decoder marked if as executable (field bool CanExecute) or if the received message was unknown (MSG_UNKNOWN

== Message). In the latter case, the callback function associated to the message must handle the condition,

typically sending an error code back to the source of the message.

FIGURE 19 - MESSAGE EXECUTION

The method which associates a message to its callback function quite simply stores the function pointer in

the callback-functions array.

typedef void (MessageCallback)(void) ; // CALLBACK PROTOTYPE FOR MESSAGES HANDLING

void ClassMessage::RegisterCallback(messages m, MessageCallback *c) {

 callbacks[m] = *c;

} // Associate a callback function to a given message_id

void ClassMessage::Exec() { // Execute the last parsed command
 if (CanExecute | (MSG_UNKNOWN == Message)) { // MESSAGE IS ADDRESSED TO THIS BOARD
 // OR HAS NO ADDRESS OR IT IS UNKNOWN -> EXECUTE
 if (this->callbacks[Message])
 this->callbacks[Message](); // USE REGISTERED CALLBACK FUNCTION
 }
}

31

Operating the board
Once connected the Arduino board to an external controller via the USB cable, the board is seen as a serial

communication device.

Serial port
In a Windows Operating System, the device manager can be used to show the name of the port to connect

to.

The serial port settings are:

Baudrate 115200 kbaud

Data size 8 bit

Parity None

Stop 1

Flow Control None

Communication Protocol
Before starting to use the Board, the communication protocol version should be checked. Currently only

version “ASCII 1” has been implemented but future releases could define new data transfer encodings and

protocols.

Identification procedure
Every board must have a unique ID on the I2C bus. Some method could be used to set the ID (hardcoding in

the firmware, using a dedicated configuration tool to transfer the information into the non volatile memory

of each board through the serial port, etc) but none is comfortable for the end user, especially when there

are many boards installed inside a rack and/or the only accessible USB connector is on the master board.

For these reasons it has been decided to implement the ID assignment function in the board firmware. This

allows to reconfigure the boards’ IDs without connecting them to any programming tool.

In the identification process, the bus master sends to all the listening boards a Start of Identification

message followed by the numeric ID which has been proposed for assignment.

32

For example:

 i 40

Each board enters in the Identification Mode and waits for an action on any of its front panel switches.

During this phase, all the boards keep on listening at the bus without sending any message.

The user decides which board to assign the ID to by acting any panel switch on the chosen board.

Immediately after this operation, the board sends a broadcast message onto the bus to inform all the other

boards and the controller that the ID has been accepted.

After sending the message, the board stores the ID into its EEPROM and reverts to the Normal Mode.

The identification process can also be interrupted by injecting an acknowledgment message onto the bus.

Typically this can be done by the external controller upon software or user request. Receiving the message

puts all the other boards in the Normal Mode again and ends the assignment process of that ID.

FIGURE 20 - STATE DIAGRAM OF THE BOARD ID ASSIGNMENT

Received ACK (sent by any board)

Identify

Wait for button

or ACK

RESET

Normal
mode IDENTIFY

mode

Send ACK
Save

33

Appendix

Board Simulator
During the development of the firmware, the board simulation environment shown in Figure 21 was

developed as well. The environment is written in Python / wxPython and it was used in Windows 7 OS.

The purpose of the simulator was the test of the protocol and board abstraction during their definition.

FIGURE 21 - BOARD SIMULATOR

The simulator is able to mimic the behaviour of boards acting both as a Master or Slaves. It implements the

base registers as stored values in a table and the effect of those registers which do not require a dedicated

hardware (i.e. signal generation, data conversion, etc)

The simulator of the Master Board is launched with the command in Windows 7

where the parameters mean: Board ID 10, Master Mode, mimic a board which responds “dds” when

queried for its driver type, connect the board to the serial port cncb0. This serial port, actually, is a virtual

serial port emulated by the Operating System (7). So, the emulated virtual port allows to connect an

application on the other hand of the “virtual cable” without having two physical ports. In this case, the

other end is cnca0 which is accessed through a terminal emulator (KiTTY).

The emulated board system is competed by launching the other board simulator instances as Slaves.

start boardsimulator -i 10 --master --driver=dds --serial=cncb0

start boardsimulator -i 11 --driver=dds
start boardsimulator -i 13 --driver=dds
start boardsimulator -i 15 --driver=dds
start boardsimulator -i 19 --driver=dds

Master Board Slave Boards

34

The board to board interconnection in the physical system is the I2C bus but it is not available in the

emulated environment, so also the I2C bus communication has been emulated by letting every

boardsimulator instance send and receive broadcast UDP datagrams.

As Figure 22 shows, the User Application (in this case KiTTY) through the serial access to the Master, can

control all the boards connected to the system.

FIGURE 22 - BOARD SIMULATOR RESULTS

This allows also to start the development of the User Applications or Mid-Tier applications (6) even when

the firmware has not been completed yet.

Virtual
Serial
Ports
(OS)

boardsimulator

UDP

Serial
Link

Bus Master Bus Slave Bus Slave

Networking Support (OS)

UDP UDP

boardsimulator

boardsimulator

Serial Terminal
(KiTTY)

Serial
Link

35

Board commands
Command PROTOCOL – Request Communication Protocol

SYNOPSIS

 p

Request the implemented communication protocol to the Board.

In a complex system, the controlling software should send this command before starting to send other

messages in order to verify the compatibility or to adapt to the given protocol.

Example. Request the communication protocol to a Board with ASCII version 1 implementation

Command WHO – request the board ID
SYNOPSIS

 ?

The WHO command is used to query the connected board for its numeric ID used for I2C addressing. The

valid addresses are in the range starting from 8 to 119.

The board ID is stored in EEPROM and is R/W accessible through Register #1 as well.

Example. Request ID to USB-connected Board with ID = 37

The I2C addressing scheme is 7 bit. Although 128 addresses are possible, 16 of them are reserved according

to the following table leaving 112 available addresses for normal the bus operation.

Slave Address R/W Bit Address Range Description

000 0000 0 0 General call address

000 0000 1 0 START byte

000 0001 X 1 CBUS address

000 0010 X 2 Reserved for different bus format

000 0011 X 3 Reserved for future purposes

000 01XX X 4 … 7 Hs-mode master code

111 10XX X 120…123 10-bit slave addressing

111 11XX X 124 … 127 Reserved for future purposes

p
- ASCII 1

?
- 37

36

For further details about the I2C bus, please see (8).

Command LIST – list the I2C attached boards
SYNOPSIS

 ??

The LIST command, asks the Master to scan the I2C for attached devices.

The ID of the Master board is not included in the results.

The scan process is performed at a low-level by addressing a device and waiting for an I2C-acknowledge,

thus a device can be both an Arduino board running the described firmware or any I2C compatible device

(including bare integrated circuits).

Example. Boards 37, 40, 41 connected through I2C; Board 37 connected via USB as well. Request the list of

boards connected to Board with ID = 37

Command FORWARD - Enable Message Forwarding
SYNOPSIS

 f ID

 f

Upon receiving the FORWARD Message, the Message Forwarding mode is enabled on the Master Board.

In this mode, the messages SYSTEM, GET, SET, REPLY, REMARKS forwarded and executed on the addressed

board. The remaining messages WHO, LIST, ACK, IDENTIFY, FORWARD are executed on the Master Board.

Receiving the FORWARD message without the Board ID or a SYSTEM RESET terminate the Forwarding Mode

and successive commands are execute locally.

Example. Address successive messages to Board 60

??
- 40 41

f 60
- ok

37

Command SYSTEM – issue a special command to the board
SYNOPSIS

 *

 * parameters

The SYSTEM command requests a special board function.

The currently system messages for the base board are

* reset Board RESET Reboots the board.

* recall Parameters RECALL Retrieves the base board parameters from the EEPROM

Example. Restart the Arduino Board

Command IDENTIFY - Start Identification
SYNOPSIS

 i ID

Upon receiving a IDENTIFY message, the board enters in Identification Mode. In the operating mode, the

execution of commands is disabled. The only permitted Messages are ACK and SYSTEM.

Example. Start the identification process trying to assign ID 50

Command ACK - Identification Acknowledge
SYNOPSIS

 a

Upon receiving an ACK message, the board exits the Identification Mode (is enabled). If the board was

already in Normal Mode, the message has no effect.

Example. Stop the identification process by sending a message to the Master

Example. Message reported by the Master via USB when an ID is accepted by any of the boards during an

Identification process

*
- rebooting ...

i 50
- ok

a
- ok

a

38

Command GET - Read a Register
SYNOPSIS

 r REG

 r REG FORMAT

Read the contents of the specified register REG.

If the register is numeric and FORMAT is specified, a conversion is applied according to the following table

FORMAT RESULT

None Physical units

d Decimal output

x

X

h

$

Hexadecimal output

Example. Read the frequency register (# 50) of a 1 MHz generator in native units (MHz)

Example. Read the frequency register (# 50) of a 1 MHz generator in tuning word units (decimal)

Example. Read the frequency register (# 50) of a 1 MHz generator in tuning word units (hexadecimal)

r 50
- 1.000000047

r 50 d
- 8589935

r 50 x
- 0083126F

39

Command REPLY - Following Data are a Reply
SYNOPSIS

 - data

Informs that the following data are a Reply to a previous Message.

Example. Read the board name

Command REMARKS - Following Data can be discarded
SYNOPSIS

 # data

Informs that the following data are remarks (mainly used for debugging purposes).

Example. Debug the SPI data transfer with a DDS when reading the channel 0 frequency

r 20
- Board Name

r 50
spi(2 bytes) Tx: 00 12 Rx: 00 00
spi(5 bytes) Tx: 84 00 00 00 00 Rx: 00 00 83 12 6F
- 1.000000047

40

Command SET - Write a Register
SYNOPSIS

 w REG VALUE

 w REG FORMAT VALUE

Write the value VALUE into register REG.

If a FORMAT prefix is prepended (without spaces) to the VALUE, a conversion is applied according to the

following table

FORMAT RESULT

None Physical units

d Decimal input

x

X

h

$

0x

Hexadecimal input

Example. Set the frequency register (# 50) of a generator to 1 MHz

Example. Set the frequency register (# 50) of a generator to decimal 8589935 (tuning word)

Example. Set the frequency register (# 50) of a generator to hexadecimal 0083126F (tuning word)

w 50 1
- ok

w 50 d8589935
- ok

w 50 0x0083126F
- ok

41

Board internals
Detecting the Board Reset type
The default bootloader installed in the Arduino boards simplifies the programming process through the USB

connection to the external development workstation. Figure 23 and Figure 24 show part of the schematic

of an Arduino Nano and Arduino Uno Boards.

FIGURE 23 - ARDUINO NANO SCHEMATICS

FIGURE 24 - ARDUINO UNO SCHEMATICS

In both cases, the MCU running the user software (in this case the Base Board firmware) can be reset by the

USB-Serial converter when data are received from the connected workstation. While this is good in order to

ease the code-program-debug lifecycle, on the other hand can be annoying because the MCU gets reset

every time the USB connector is plugged or, even worse when the external software is executed on the USB

connected pc.

Application MCU USB-Serial converter

MCU Reset

MCU Reset

Application MCU USB-Serial converter MCU

MCU Reset

42

In a situation where an external hardware must be initialized only at power-up (for example a

programmable power supply or a continuous signal generator), this problem cannot be tolerated2. A

hardware modification of the Arduino board can solve the problem for the Arduino Nano or a software

modification of the code in the auxiliary MCU of the Arduino Uno which acts as a USB-Serial converter but

these approaches go against the design philosophy of using only standard Arduino boards. Thus a software

solution has been found to detect the type of reset. The Board firmware is restarted anyway but it can

perform different types of initialization depending on the reset type: Cold Boot (upon first Power-Up) or

Warm Boot (after a USB connection or a new data exchange session).

The solution is making the firmware check for the presence of a signature in a specific region of RAM

memory at reset. Finding the signature means a Warm Boot. Otherwise if the match is not found, the reset

is due to a Cold Boot and the signature is written in the memory region.

As all the statically declared variables are automatically initialized at reset by default, the memory region

containing the signature must belong to a special segment named .noinit . This is done with this snippet of

code in the classboard.cpp source.

So, in the remaining part of the firmware, the WarmBoot property of the Board class, can be used to perform

different operations at reset

2
 For example, when In a Windows7 64 bit is connected, after powering-up the PC the Board is reset three times: at

powerup, at the Windows login screen, after the user login. Attaching and detaching a USB peripheral to the PC, reset

the Arduino board as well.

// DETECT WARM / COLD BOOTSTRAP
 if (strcmp(BootstrapSignature, COLD_BOOT_MAGIC_STRING) == 0)
 WarmBoot = true;
 else {
 strprintf(BootstrapSignature, "%s", COLD_BOOT_MAGIC_STRING);
 WarmBoot = false;
 }

C_STRING BootstrapSignature __attribute__ ((section (".noinit"))); // ALLOCATE IN NON-INITIALIZED DATA SEGMENT

if (WarmBoot) { // Normal operations }
else {
 // 1st time initialization
 Recall(); // Recall the configuration of external hardware
 }

43

Description of the Base Set Registers
The Board registers are grouped in three sets

General Registers

Register 0: STO_EEPROM_FORMAT - Format of registers and data in e2prom

This register contains the code of the data format which is stored in EEPROM by the firmware. It should be

used to track data storing at different addresses or format across different firmware releases.

Register 1: STO_BOARD_ID - I2C Address of Board

This register contains the address of the Board used for I2C communications.

Register 8: REG_BOARD_MASTER – Master Board I2C Address

This is the I2C address of the Master Board and it is stored in the Slave which is addressed through the

FORWARD message. The Slave sends to the Master Board the replies to messages.

Register 18: REG_BOARD_PARAM_STATE - Parameters' state, used to detect changes

This is a 32 bit-long register, organized in 4 counters. Each counter is associated to a group of registers of

the Board according to a firmware-defined priority policy. When a register belonging to one of the 4 groups

is changed, the corresponding counter is incremented as well.

In an environment where the Master Board is controlled by many concurrent applications, polling the

REG_BOARD_PARAM_STATE allows an application to detect registers changes, in this case the registers set

can be reloaded.

The four groups are defined as

each having a different weight in the REG_BOARD_PARAM_STATE register.

Example. Register 50 belongs to the priority group PARAM_GROUP_PRIORITY_HIGH. The register

REG_BOARD_PARAM_STATE is incremented by 256 every time register 50 is written.

Register 19: STO_BOARD_RESET_MODE - Reset mode

The register can be used to specify special operations which need to be executed upon reset (for example

different types of initialization of an external hardware).

The base board currently does not use this register.

#define PARAM_GROUP_PRIORITY_HIGHEST 0 // WEIGHT 0x00000001 (1 decimal)
#define PARAM_GROUP_PRIORITY_HIGH 1 // WEIGHT 0x00000100 (256 decimal)
#define PARAM_GROUP_PRIORITY_LOW 2 // WEIGHT 0x00010000 (decimal 65536)
#define PARAM_GROUP_PRIORITY_LOWEST 3 // WEIGHT 0x01000000 (decimal 16777216)

r 18
- 0
w 50 1
- ok
r 18
- 256

44

Register 20: STO_BOARD_NAME - Board name

This register contains the ASCII representation of the board name/description. The maximum length of the

name is 32 characters.

Register 21: REG_BOARD_ADC6 - ADC CH 6 Value

Reading this register, yields the 10-bit ADC value read by the Arduino Board on channel 6.

Register 22: REG_BOARD_ADC7 - ADC CH 7 Value

Reading this register, yields the 10-bit ADC value read by the Arduino Board on channel 7.

Register 23: REG_BOARD_D2 - Arduino D2 pin

This register is reserved for future expansion of the Board functions, for example reading/writing a value to

the Arduino Board digital pin D2.

Access to this register currently has no effect.

Register 24: REG_BOARD_D3 - Arduino D3 pin

This register is reserved for future expansion of the Board functions, for example reading/writing a value to

the Arduino Board digital pin D3.

Access to this register currently has no effect.

Register 25: REG_BOARD_D4 - Arduino D4 pin

This register is reserved for future expansion of the Board functions, for example reading/writing a value to

the Arduino Board digital pin D4.

Access to this register currently has no effect.

Firmware information
The Firmware Information Group registers, are read only registers and can be used to obtain information

on the installed firmware version.

Register 2: REG_FW_DRIVER – Firmware, name of driver class

This register informs the external user application about the Type of a connected Board. The idea is to

structure the user application into two layers, the first layer depends on the connected hardware and

provides board drivers, the second layer accesses the board though the drivers. A sample of Python code

to support DDS boards in a system of I2C interconnected boards a can be found in (6).

Register 3: REG_FW_NAME - Firmware name

This register contains the name of the main source file of the firmware. For example fw_dds_1_0_small.cpp

Register 4: REG_FW_VER - Firmware version

This register contains the release information of the firmware. Example 1.0 DEBUG 1

Register 5: REG_FW_BUILD - Firmware build date

This register contains the date and time of the firmware build. Example Dec 18 2017 11:47:22

45

Debugging and Special Registers

Register 6: REG_EEPROM_ADDRESS - EEPROM Access Address (Autoincrement)

This registers sets the pointer to the EEPROM memory for direct access of stored parameters.

Each access to the EEPROM data automatically increments the address by one.

Register 7: REG_EEPROM_DATA - EEPROM Access Data R/W

This register allows a user application to access the EEPROM data, for example for backup/restore

operations of the board parameters or for data inspection during a debug session.

The memory contents pointed by the REG_EEPROM_ADDRESS register can be read or written by getting or

setting the REG_EEPROM_DATA register. Data are 8-bit organized.

Each access to the EEPROM data automatically increments the address by one.

Register 9: REG_DBG_RAMDATA - RAM Data

This register allows a user application to access the RAM memory data during a debug session.

The memory contents pointed by the REG_DBG_RAMADDRESS register can be read or written by getting or

setting the REG_DBG_RAMDATA register. Data are 8-bit organized.

Each access to the RAM data automatically increments the address by one.

Register 10: REG_DBG_RAMADDRESS - RAM Address

This registers sets the memory pointer for RAM direct access.

Each access to the RAM data automatically increments the address by one.

Register 11: STO_DBG_LEVEL - Set debug verbosity

This register sets the verbosity level of debug information. The register values contents are checked by the

debug macro defined in utils.h .

Example. Debug of a Board GET operation.

The macro _D_ is inserted in the “GET” callback function with the required debuglevel parameter set to 10.

Performing GET operations with different debug verbosities has these effects

void cb_GET() { // get internal variable // Get
 C_STRING tmp;
 bool retval = Board->Get(tmp, Board->Msg->Parameter, Board->Msg->Value);
 D(10, "This is a test")
 Board->SendReply(retval ? tmp : PROTOCOL_FAIL);
}

46

Register 12: REG_DBG_INFO - Free memory and board status

This register shows the contents of the Stack Pointer, Heap Pointer and free RAM memory.

Register 13: REG_DBG_SUPPORTED - Debug has been enabled in firmware

This register shows whether the debug information / macros have been enabled in the firmware.

Register 14: REG_DBG_LASTBOOT - Last board restart

Reading this registers shows the time in milliseconds elapsed since the last Arduino reset (both Warm and

Cold boot).

w 11 9
- ok
r 11
- 9
w 11 10
- ok
- r 11
This is a test
- 10
r 20
This is a test
- The board name

47

Debug tool Example: Memory leakage in ClassMessage::Parse()
During the development of the firmware instability was observed and the software used to stop responding

after some command executions. The number of messages triggering the undesired behavior was random.

As the Arduino and Eclipse lack a debugging environment, some trace tools have been defined and inserted

into the firmware to track memory during code execution. Adding some debug macros in messages.cpp

helped to find the programming error which lead to memory leakage.

Then a simple yet flexible tool was written in Python / wxPython (9) to ease the debug operation and to

allow faster reprogramming with respect to the two mentioned IDEs.

The command WHO (“?”) was sent many

times to the board and it showed that the

memory usage was increasing at each

command execution.

By tracking the information, a bug was

discovered in the source file and the

memory leakage was due to the variable

tok which was allocated in the heap and

not released at the end of the function

call.

Using a local variable
char tok[16];

solved the problem.

 TRACE(1, "enter")

 Bus = source;
 CanExecute = false;
 Message = MSG_UNKNOWN;
 BoardID = 0;
 Register = 0;
 Value[0] = (char) 0;
 strcpy(string, inputString);
 _ TRACE_(1, "after strcpy()")

 char *tok = new char[16];

 _ TRACE_(1, "before tokenizer()")
 inputString = tokenizer(inputString, tok, ' ');

 _ TRACE_(1, "before if else if ... ")
...

48

Conclusions
Arduino is a low-cost, low-consumption, simple yet flexible platform for small-medium size applications

where an electronic device need to be remotely controlled. For other applications, the low pin count, low

memory and MCU speed of the board can limit the complexity of the application and of the devices which

can be connected.

Nevertheless, if needed the firmware described in this report can be ported to other platforms providing

better performances. Research on this topic is in progress in order to develop other scalable applications.

49

Bibliography
1. Arduino. Arduino Nano. [Online] Arduino, 2017. https://store.arduino.cc/arduino-nano.

2. Atmel Corporation / Microchip. ATmega328P. Microchip / Atmel Corporation. [Online] 2017.

http://www.microchip.com/wwwproducts/en/atmega328p.

3. Python Software Foundation. Python Homepage. Python Software Foundation Website. [Online] 2017.

http://www.python.org.

4. Francese, Claudio. Flexible Arduino-Based board - Firmware Extension for DDS. INRIM. 2017. Technical

Report. TR 25/2017.

5. —. Templating and Automatic Code Generation. INRiM. 2017. Tecnical Report. TR 27/2017.

6. —. Flexible Arduino Board - Mid-Tier and Application Software. INRiM. 2017. Technical Report. TR

26/2017.

7. com0com. Null Modem Emulator. [Online] http://com0com.sourceforge.net/.

8. I2C Bus. I2C Bus Organization. I2C Bus Organization. [Online] 2017. https://www.i2c-bus.org.

9. The wxPython Team. WxPython Homepage. [Online] 2017. http://www.wxpython.org.

	Abstract
	Arduino Nano board overview and interconnections capabilities
	Design of the Firmware
	Abstraction of the board
	Board operating modes
	Single board Configuration (Mode 1)
	Single Point Controlled System with Bus Connected Boards through I2C (Mode 2)
	Standalone System with Bus Connected Boards through I2C (Mode 3)

	Firmware Architecture
	Register access

	Implementation of the Base Board Layer
	Communication sublayer
	Board messages
	Message structure and line terminator convention

	Board Messages execution
	Messages in Single Board Mode
	Messages in Bus Connected Mode

	Resources sublayer
	Base Board Registers

	The Specialized board layer
	Top level file of the Firmware
	Class ClassBoard
	Board setup : ClassBoard::begin()
	Board acquisition and update of I/O signals: ClassBoard::ProcessIO()
	Board messages handler: ClassBoard::ProcessMessage()
	Extending the Register Set
	Parameter change detection

	Class ClassBuffer
	Class ClassEeprom
	Class ClassMessage

	Operating the board
	Serial port
	Communication Protocol
	Identification procedure

	Appendix
	Board Simulator
	Board commands
	Command PROTOCOL – Request Communication Protocol
	Command WHO – request the board ID
	Command LIST – list the I2C attached boards
	Command FORWARD - Enable Message Forwarding
	Command SYSTEM – issue a special command to the board
	Command IDENTIFY - Start Identification
	Command ACK - Identification Acknowledge
	Command GET - Read a Register
	Command REPLY - Following Data are a Reply
	Command REMARKS - Following Data can be discarded
	Command SET - Write a Register

	Board internals
	Detecting the Board Reset type

	Description of the Base Set Registers
	General Registers
	Register 0: STO_EEPROM_FORMAT - Format of registers and data in e2prom
	Register 1: STO_BOARD_ID - I2C Address of Board
	Register 8: REG_BOARD_MASTER – Master Board I2C Address
	Register 18: REG_BOARD_PARAM_STATE - Parameters' state, used to detect changes
	Register 19: STO_BOARD_RESET_MODE - Reset mode
	Register 20: STO_BOARD_NAME - Board name
	Register 21: REG_BOARD_ADC6 - ADC CH 6 Value
	Register 22: REG_BOARD_ADC7 - ADC CH 7 Value
	Register 23: REG_BOARD_D2 - Arduino D2 pin
	Register 24: REG_BOARD_D3 - Arduino D3 pin
	Register 25: REG_BOARD_D4 - Arduino D4 pin

	Firmware information
	Register 2: REG_FW_DRIVER – Firmware, name of driver class
	Register 3: REG_FW_NAME - Firmware name
	Register 4: REG_FW_VER - Firmware version
	Register 5: REG_FW_BUILD - Firmware build date

	Debugging and Special Registers
	Register 6: REG_EEPROM_ADDRESS - EEPROM Access Address (Autoincrement)
	Register 7: REG_EEPROM_DATA - EEPROM Access Data R/W
	Register 9: REG_DBG_RAMDATA - RAM Data
	Register 10: REG_DBG_RAMADDRESS - RAM Address
	Register 11: STO_DBG_LEVEL - Set debug verbosity
	Register 12: REG_DBG_INFO - Free memory and board status
	Register 13: REG_DBG_SUPPORTED - Debug has been enabled in firmware
	Register 14: REG_DBG_LASTBOOT - Last board restart

	Debug tool Example: Memory leakage in ClassMessage::Parse()

	Conclusions
	Bibliography

