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Abstract—Huge quantities of low-cost analogue or digital 

MEMS sensors, in the order of millions per week, are produced 

by manufacturers. Their use is broad, from consumer electronic 

devices to Industry 4.0, Internet of Things and Smart Cities. In 
many cases, such sensors have to be calibrated by accredited 

laboratories to provide traceable measurements. However, at 

present, such a massive number of sensors cannot be calibrated 

and large-scale calibration systems and procedures are still 

missing. A first step to implementing these methods can be based 
on the distribution of the sensitivities of the large batches 

produced. Such distribution is also useful for sensor network 

end-users who need a single sensitivity, with the associated 

uncertainty, to be attributed to the whole network. Recently, a 

large batch of 100 digital 3-axis MEMS accelerometers was 
calibrated with a primary calibration system developed at 

INRiM and suitable for 3-axis accelerometers. Distributions of 

their sensitivities as a function of axis and frequency were 

analyzed and their non-normal behaviour was shown. However, 

in the preliminary phase of the study, the calibration 
uncertainties were not considered in these distributions. 

Therefore, in this paper, a mixture distribution modelling, based 

on Monte Carlo simulations and aimed at including the 

calibration uncertainties in the sensitivity distributions, is 

implemented and the resulting distributions are compared to 
the previous ones in histogram form. These distributions are 

also fitted with Johnson's unbounded and bimodal functions to 

get continuous distributions. This paper represents a further 

step towards the development of large-scale statistical 

calibration methods. 

Keywords— Digital MEMS accelerometers, large-scale, 

sensitivity, mixture distribution 

I. INTRODUCTION  

In recent years, the production of sensors, in particular 
MEMS ones, exponentially increased, reaching a massive 

quantity, in the order of millions per week. At present, these 
sensors are mainly used in electronic consumer device 

applications, such as accelerometers, pressure, gyroscopes, 
microphones, humidity and temperature sensors. However, as 

underlying technical performance improves, the reliability  

and accuracy of these sensors are becoming comparable to 
those of traditional measuring instruments, at least within 

specific boundary conditions or for certain measuring ranges, 
while maintaining significantly reduced costs. This feature 

makes such sensors attractive for measurement applications, 

such as those rapidly developing in the field of Industry 4.0, 
Internet of Things (IoT) and Smart Cities, where a large 

number of traceable sensors is required [1-3]. However, due 

to the huge amount of produced MEMS, it is not possible to 
calibrate every single sensor, as currently done in “traditional” 

metrology. For this reason, it is necessary to define large-scale 
calibration methods, schemes or procedures. These can be 

based on suitable statistical sampling approaches or through 
in-line calibration systems, as also emphasized in the BIPM 

CCAUV strategy document 2019-2029 [4]. In both cases, it is 
fundamental to characterize the distribution of the sensitivities 

of these sensors, produced in large batches, to  address a 

traceability strategy. Such distributions are also useful for 
sensor network end-users. As a matter of fact, sensor networks 

consist of tens, hundreds, if not thousands of transducers, thus 
attributing a sensitivity to each transducer and for each 

parameter of influence (e.g. frequency and axis, for 3-axis  
accelerometers) might be difficult to be managed in 

numerical, computational and consumption terms by end-

users in actual applications [5] and a single sensitivity value 
to be attributed to the whole sensor network, together with an 

associated expended uncertainty based on the distribution of 
the sensitivities, is more preferable.  

Recently, a large batch of 100 digital 3-axis MEMS 
accelerometers was calibrated at INRiM and the individual 

main and transverse sensitivities were provided for each 

sensitive axis at frequencies between 5 Hz and 1000 Hz [6,7]. 
It was found that the distribution of the sensitivities for each 

frequency and each vibrating axis is significantly non-normal 
in the considered frequency range. However, in these 

distributions, the calibration uncertainties were not 
considered, thus they are not accurate enough for representing 

the actual variability, essential to implement large-scale 
methods or to attribute an uncertainty or a variability to a 

sensor network composed of these sensors .  

For this reason, in this paper, a method to include the 
calibration uncertainties in the sensitivity distributions is 

implemented. Such method is based on the modelling of a 
mixture distribution resulting from the normal distributions of 

the sensitivities of the individual sensors , having a standard 
deviation equal to their calibration uncertainty. The resulting 

mixture distributions are compared to the previous simple 



ones (raw data without calibration uncertainty). These 

distributions are also fitted with two different families of 
probability distributions  (Johnson's [8] and a mixture of two 

normal distributions [9]). Results are shown and compared.  

II. THE DIGITAL 3-AXIS MEMS ACCELEROMETERS BATCH

The batch under study is composed of 100 digital 3-axis
MEMS accelerometers (Fig. 1). 

Fig. 1. The 100 digital 3-axis MEMS accelerometers (left) and the external 
microcontroller (right). 

These sensors were calibrated with a specific system 
suitable for the simultaneous amplitude calibration of digital 

3-axis MEMS accelerometers in the frequency domain, by 
comparison to a reference transducer (in analogy to ISO 

Standard 16063-21 [10]), traceable to the SI and developed 
and validated at INRIM [11-16]. Main and transverse 

sensitivities were provided for each sensitive axis at 

frequencies of 5 Hz, 10 Hz, 20 Hz, 40 Hz, 80 Hz, 160 Hz, 315 
Hz, 630 Hz and 1000 Hz, at nearly-constant peak amplitude 

of 10 m/s2. The outputs of the digital MEMS are given in 
Decimal16-bit-signed (hereinafter abbreviated as D16-bit-signed) 

where the digit unit is a signed 16-bit sequence converted into 
a decimal number. Sensitivities along x- and y-axis range 

between 615 D16-bit-signed/(m/s2) and 1025 D16-bit-signed/(m/s2), 

with relative expanded uncertainties around 1.2 % at 5 Hz, and 
around 0.4 % from 10 Hz to 1 kHz, whereas z-axis sensitivities 

decrease at increasing frequencies and range between  
251 D16-bit-signed/(m/s2) and 896 D16-bit-signed/(m/s2), with relative 

expanded uncertainties around 0.9 % at 5 Hz and 0.3 % from 
10 Hz to 1 kHz. It was found that the simple distribution of 

the sensitivities for each frequency and vibrating axis is 
significantly non-normal in the considered frequency range. 

An example is shown for z-axis at 5 Hz in Fig. 2. 

Fig. 2. Simple distribution of the 100 MEMS z-axis sensitivities at 5 Hz. 

III. MIXTURE DISTRIBUTION MODELLING 

The preliminary investigated histograms refer to the 
sample distribution of the sensitivity values, Si, each 

pertaining to the ith MEMS, without the inclusion of the 
associated expanded uncertainty U(Si). As a matter of fact, 

MEMS sensitivities are more accurately represented by a set 
of normal distributions, whose dispersions depend on the 

associated calibration uncertainties u(Si), as schematically 

shown in Fig. 3, rather than by a set of single values. 

Fig. 3. Schematic representation of the sensitivity of each MEMS, in terms 
of normal distribution, whose dispersion depends on the associated 
calibration uncertainty. 

To include the calibration uncertainties in the distribution 

of the sensitivities of the experimental batch, a mixture 
distribution [17] modelling is implemented. The mixture 

distribution is obtained from the collection of 100 normally-

distributed variables (assigned to the sensitivities of each 
MEMS in the batch), all having the same weight within the 

mixture. 

The modelling of the mixture distribution is performed  

through R software by implementing the “rmvnorm” function 
[18] that generates data from the multivariate normal 

distributions, given a vector of mean values, i.e. the 100 

sensitivities of the MEMS, and a covariance matrix, i.e. a 
100×100 matrix where the diagonal terms are represented by 

the calibration uncertainties  of each MEMS, in terms of 
combined square uncertainty, and the out-of-diagonal terms 

are represented by the covariance terms. Since each MEMS is 
calibrated with the same system, whose associated variance 

weights 50 % of the overall combined square uncertainty as 

shown in [11,19], out-of-diagonal covariance terms are 
calculated assuming a constant correlation coefficient of 0.50 

for all couples of MEMS. This process is numerically  
performed through a Monte Carlo method: for each of the 100 

normal distributions, 105 values are extracted and combined 
into a 105×100 matrix of randomly generated numbers. Each 

column of this matrix represents the probability density 
function of the individual MEMS, correlated with each other. 

Putting all these data together, i.e. mixing the simulated 107 

sensitivity values, the final mixture distribution of the possible 
sensitivity values of the whole MEMS batch is obtained. Such 

operation can be performed for the sensitivities related to a 
specific axis and a specific frequency, or for larger groupings, 

e.g. without any distinction between axis or frequency. As an 
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example, the mixture distributions (with calibration 

uncertainties) of the main sensitivities along x-, y- and z-axis 
at 5 Hz are shown and compared to the simple distribution 

(without calibration uncertainties) in Figs. 4-6. It is worth 
noting that the dispersion of the mixture distributions is 

generally higher than that of the simple distributions due to the 
inclusion of the individual calibration uncertainties. At higher 

frequencies, calibration uncertainties along the three sensitive 

axes are lower, thus the impact on the mixture distribution is 
less noticeable, as shown in Fig. 7 along x-axis for 1000 Hz. 

Fig. 4. Mixture and simple distribution of the 100 MEMS x-axis main 
sensitivities at 5 Hz. 

Fig. 5. Mixture and simple distribution of the 100 MEMS y-axis main 
sensitivities at 5 Hz. 

Fig. 6. Mixture and simple distribution of the 100 MEMS z-axis main 
sensitivities at 5 Hz. 

Fig. 7. Mixture and simple distribution of the 100 MEMS x-axis main 
sensitivities at 1000 Hz. 

IV. INFLUENCE OF THE COVARIANCE TERMS ON MIXTURE

DISTRIBUTIONS 

As previously described, to rigorously get the mixture 

distributions, covariance terms should not be neglected since 
the same calibration system is used for all MEMS. The 

uncertainty contribution due to the calibration system, in terms 

of variance, weights around 50 % of the overall combined 
square uncertainty. A comparison of the mixture distribution 

obtained by considering correlated or uncorrelated calibration 
results is performed. In the second case, covariance terms are 

set to 0 and the effects on the resulting distributions are shown. 
By way of example, the mixture distributions of correlated and 

uncorrelated Szz sensitivities at 5 Hz are shown in Fig. 8. It is 

found that the impact of the correlation is minimal compared 
with the mixture distribution of uncorrelated values.  

Fig. 8. Mixture distributions of the 100 MEMS z-axis main sensitivities at 
5 Hz for uncorrelated or correlated values. 

V. FITTING OF THE MIXTURE DISTRIBUTIONS 

The above-reported distributions in histogram form, given 

their highly non-normal behaviour, are then fitted with 
Johnson’s  unbounded SU and bimodal distributions  (the latter 

obtained as a mixture of two normal distributions) in order to 
get continuous distributions. As an example, Johnson’s  and 

bimodal functions fitting is applied to the mixture 
distributions of x-axis sensitivities at 5 Hz and 1000 Hz, which 

represent two different cases . Results are shown in Figs. 9 and 

10, respectively. In general, it is found that a mixture of two 
normal distributions fits the data trends histogram more 

accurately, especially when it is evident a bimodal distribution 
of the data. 
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Fig. 9. Mixture distribution of the 100 MEMS x-axis main sensitivities at 5 Hz 
with Johnson’s and bimodal distribution fittings 

Fig. 10. Mixture distributions of the 100 MEMS x-axis main sensitivities at 
1000 Hz with Johnson’s and bimodal distribution fittings. 

VI. CONCLUSIONS 

Accurate batch sensitivities distributions are the basis for 

developing large-scale statistical calibration methods required 
for low-cost sensors to guarantee traceable measurements. In 

this work, a mixture distribution modelling of the sensitivities 
related to a batch of 100 digital 3-axis MEMS accelerometers 

is implemented. The batch is calibrated along the three axes in 
a frequency range from 5 Hz to 1000 Hz, hence sensitivities 

can be expressed as function of axis and frequency. The 

mixture distribution allows taking into account the calibration 
uncertainties, associated with each MEMS, as well as the 

correlations between MEMS sensitivity values . It is found that 
differences between the mixture and the simple sensitivities 

distributions (the latter without the inclusion of uncertainties 
or correlations) are higher at increasing relative uncertainties, 

as expected. This confirms the necessity to include the 

uncertainties in the evaluation of the batch sensitivities 
distribution, although methods to reduce them are under 

development [20]. Correlation does not seem to play a crucial 
role, in the present example, but it is important to consider it 

in the mixture model for the sake of general applicability of 

the proposed procedure. Mixture distributions are then fitted 

with Johnson’s and bimodal probability density functions. It 
is found that bimodal one is more accurate to represent the 

batch sensitivity distributions. Such behaviour provides also 
important information to the manufacturer about the MEMS 

production process. 
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