
30 November 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Validation of the sensitivity analysis method of coordinate measurement uncertainty evaluation / Wojtyła,
Mirosław; Rosner, Paweł; Płowucha, Wojciech; Forbes, Alistair B.; Savio, Enrico; Balsamo, Alessandro. - In:
MEASUREMENT. - ISSN 0263-2241. - 199:(2022), p. 111454. [10.1016/j.measurement.2022.111454]

Original

Validation of the sensitivity analysis method of coordinate measurement uncertainty
evaluation

Publisher:

Published
DOI:10.1016/j.measurement.2022.111454

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/74420 since: 2022-06-15T15:10:22Z

Elsevier



Measurement 199 (2022) 111454

Available online 10 June 2022
0263-2241/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Validation of the sensitivity analysis method of coordinate measurement 
uncertainty evaluation 

Mirosław Wojtyła a,*, Paweł Rosner a, Wojciech Płowucha a, Alistair B. Forbes b, Enrico Savio c, 
Alessandro Balsamo d 

a University of Bielsko-Biala (Laboratory of Metrology), Bielsko-Biala, Poland 
b National Physical Laboratory, Teddington, UK 
c University of Padova (Department of Industrial Engineering), Padova, Italy 
d INRIM (National Institute of Research in Metrology), Torino, Italy   

A R T I C L E  I N F O   

Keywords: 
Coordinate measuring machines (CMM) 
Measurement uncertainty 
Geometrical product specification (GPS) 
Sensitivity analysis 
GUM uncertainty framework (GUF) 

A B S T R A C T   

The paper presents the results of the tests carried out to validate a new method for evaluating the uncertainty of 
coordinate measurements categorised as the Sensitivity Analysis (SA). This method concerns measuring di
mensions and geometrical deviations. Measurement uncertainty is evaluated on the basis of information given in 
the Maximum Permissible Error (MPE) formula for a Coordinate Measuring Machine (CMM). Measurement 
models express the measured characteristics as a function of differences of coordinates of a small number of 
appropriately selected points of the workpiece. If reverification test results for the CMM used are available, then 
the estimated uncertainty takes into account the actual accuracy of the CMM. General formulae are given to 
calculate the uncertainty of measurement of a circle diameter and coaxiality. The relevant experiment is based on 
ISO 15530-3 recommendations. A calibrated cylindrical square was used for validation. 17 circles’ diameters and 
84 different combinations of datum length and distance of the toleranced element from the datum for measuring 
coaxiality were adopted as validated characteristics. The validation results are presented in tables and graphs and 
the chi-square test for equality of variances was used to confirm that the method is correct. The validation results 
are positive.   

1. Introduction 

Since the publication of the “Guide to the expression of uncertainty 
in measurement” (GUM) [1], there is no need to justify that measure
ment uncertainty is an important component of the measurement result. 
Documents [2] and [3] point out that the information contained in the 
measurement uncertainty has an important practical (and even eco
nomic) aspect. As a certain simplification, it can be said that for this 
reason, the document [4] requires knowledge of the uncertainties of 
measurements carried out in the automotive industry. 

Coordinate measurements have been the basic technique used in 
product control and quality control in the machine industry and, espe
cially, in the automotive and aerospace industries for many years. The 
topic of uncertainty evaluation of coordinate measurements has a long 
history. Already in 2001, in the publication [5], by using the term “task- 
specific uncertainty”, attention is drawn to the specificity of coordinate 

measurements, namely that the various characteristics (dimensions, 
geometrical deviations) [6,7] are measured with various uncertainties. 
Attention is drawn to the large number of factors affecting the accuracy 
of the coordinate measurement. Methods for evaluating uncertainty are 
mentioned, such as sensitivity analysis, expert judgements, experi
mental method using calibrated objects, statistical estimations from 
measurement and computer calculations (virtual CMM, simulation by 
constraints). References contain 124 entries. Both this and other publi
cations and documents (e.g., also GUM [1] and EA-4/02 [8]) use terms 
such as Type A and Type B evaluations (distinguishing that information 
about uncertainty components has been obtained experimentally or 
otherwise), a priori and a posteriori methods (uncertainty evaluated 
already before or after measurements), or finally, “analytical methods”, 
“GUM uncertainty framework (GUF)” and “Monte Carlo method 
(MCM)” as the methods of propagation of the uncertainty components. 

The standardization work carried out by ISO TC 213 resulted in ISO 
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15530–3:2011 [9] and two technical specifications: ISO/TS 
15530–1:2013 [10] and ISO/TS 15530–4:2008 [11]. Technical specifi
cation [10] outlines three techniques for evaluating the uncertainty in 
coordinate measurements: “use of calibrated workpieces or standards”, 
“simulation” and “sensitivity analysis”. The term: “use of multiple 
measurement strategies in measurements of artefacts”, also appears in 
the literature. In [12], one of the uncertainty determination techniques 
is called “using uncertainty budget”. At the same time, some metrology 
institutes use software called “Virtual CMM (VCMM)”, which is supplied 
by PTB [13,14]. Many centres indicate that they use proprietary un
certainty analysis techniques for measuring tasks performed on CMM 
[15–18] (to mention only a few of many listed ones). 

The method described in ISO 15530–3 [9] can be regarded as a 
reference method, meaning that it does not require validation. Other 
methods for evaluating uncertainty should be validated, in particular 
because they use different simplifying assumptions. The need for vali
dation is noted in ISO/TS 15530–4 [11], in particular with regard to 
simulation software, but it may be deemed to refer also to any “uncer
tainty evaluation software (UES)”. 

We still lack a simple, easy-to-use and easy-to-understand technique 
for evaluating the uncertainty of coordinate measurements. Between 
2019 and 2022, three new methods for evaluating the uncertainty: one a 
posteriori method and two a priori methods, were investigated as part of 
the EUCoM project [19]. In this paper, we will focus on the problem of 
validation of one of the a priori methods. The method was developed at 
University of Bielsko Biała (ATH) and is called “sensitivity analysis (SA) 
method”. A lot of information about this method has already been 
published, e.g. in [20,21]. Two important components of this method, 
namely the developing of the measurement model and the proposal for 
the use of information contained in the acceptance and reverification 
test results for the CMM used, will be briefly recalled. The results of 
validation studies are the key content of this paper. 

In this paper, the uncertainty evaluated by the technique described 
in [9] is called “experimental uncertainty” and the validated method is 
called “SA method”. 

2. Basic assumptions of the “SA method” 

In coordinate metrology, geometrical elements such as planes and 
cylinders are the basic components of any measured object. These ele
ments can be combined to create more complex measured values 
(characteristics). For example, an object consists of a pin nominally 
perpendicular to a flat plate and the characteristic measured is the dis
tance between the top surface of the pin and the surface of the plate 
(Fig. 1a) or the position of top plane (Fig. 1b). 

The measured characteristics are related to two elements: the surface 
of the plate and the top surface of the pin. In coordinate measurements, 
the probing points on both elements are associated (association - feature 
operation used to fit ideal feature(s) to non-ideal feature(s) according to 
a criterion, see ([22], (3.4.1.4)) to the ideal elements, which gives two 
planes in this case. The measured characteristic is distance between the 

lower and the upper planes (Fig. 1a) or the position of the upper plane 
related to the datum plane A (Fig. 1b). 

One of the difficulties in evaluating the uncertainty of such mea
surements is the lack of a compact expression for associating the ideal 
elements with the probing points through the best fit. This makes it 
difficult to apply the primary GUF concept, in which the first step is to 
define the measurement model. 

In order to overcome this problem, the new method for evaluation 
uncertainty (SA method) brought the number of points to a minimum, 
relevant from the point of view of the form (size and shape) of the object 
and the measured characteristics. These important points are not 
necessarily taken from those really probed, but rather are artificially 
selected points representing the object and the measured characteristics. 
In the above example of a pin and a flat plate, the representative points 
are three points on the bottom surface and only one on the top surface of 
the pin. The measured value is then the distance between the point on 
the top surface, S, and the plane containing three points, A, B, C. The 
number of significant points is minimal, there is no matching problem 
and the measured value can be expressed in a compact form as a function 
of the coordinates of these significant points. This is an effective mea
surement model and allows conventional uncertainty assessment ac
cording to the GUF by deriving sensitivity factors. In general, these 
points may lie on the integral feature (plane, cylinder, etc.) or on the 
derived feature (e.g., cylinder or cone axes). An example of a model 
where all (three) points lie on the axis of a cylinder/cylinders is the 
coaxiality model used in this paper. 

The exact position of key points is not directly associated with the 
probing strategy. They shall be taken where relevant to the nature of the 
workpiece and in a reasonable manner consistent with the dimensions 
and possible obstacles. In this example, the three key points on a flat 
surface will be spaced as far as possible due to the dimensions of the 
plate and the pin. 

A loose relationship with the actual or planned probing strategy is 
the main approximation on which the SA method is based. There is no 
effect of point redundancy or of the actual positions of individual points. 
The description of the method also ignores the fact that the significant 
points adopted on the derived feature result from a certain number of 
probing points for that feature. A key element of this method is that a 
small number of well-chosen significant points is indeed sufficient for an 
approximate but easy assessment of uncertainty. 

The basic information resulting from the measurements is the dis
tance between the pairs of points. The value measured in the above 
example is clearly the distance, but it can be expressed as the position of 
the face of the pin when the bottom plane is regarded as the datum 
(Fig. 1b). The distances can be broken down into the differences of co
ordinates of particular points. Finally, the measured value can be 
expressed as a function of differences of coordinates of the significant 
points. 

The model from Fig. 1 is to show that the SA method applies to any 
geometric characteristic, in particular to all geometric deviations 
occurring in the ISO 1101 and to show an important element of the SA 

Fig. 1. Example explaining the essence of the SA method: a) pin length (as toleranced dimension), b) top plane position related to datum plane A, c) essential points 
arrangement. 
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method, which is to reduce the number of points of individual surfaces 
to a minimum. 

The CMM’s ability to accurately measure distance is specified as the 
length measurement error, EL. It is the metrological characteristics of 
CMM as defined in ISO 10360 [23], available to most CMMs under a 
metrological confirmation regime. EL (or EL,MPE) is used to determine 
input uncertainties in the measurement model. 

The details of assumptions and the analysis of some models devel
oped for this approach have been published in [20,21]. Their key fea
tures are: 

– According to the classification of uncertainty evaluation techniques 
in coordinate metrology, as given in ISO/TS 15530–1 [10], the method 
presented falls within the sensitivity analysis category. 

– The method is in compliance with the GUF [1]. A model has been 
developed for individual coordinate measurements from which sensi
tivity factors are derived. Input uncertainties are estimated and con
verted into combined uncertainty components by multiplying them by 
sensitivity factors. In other words, the coordinate measurement is 
treated as an indirect measurement based on the minimum number of 
points. According to SA method, assuming that there is no correlation, 
combined measurement uncertainty, uSA, is calculated as follows. 

uSA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
∂l
∂xi

uxi

)2
√

(1) 

– Input standard uncertainties uxi are calculated using method B 
according to the recommendations of ISO 14253–2 ([24], (8.3.2)). The 
maximum permissible error a is multiplied by the factor b, which takes 
into account the known/accepted error probability distribution (if uni
form, then b = 1/

̅̅̅
3

√
, if normal, then b = 1/2 or even b = 1/3): 

uxi = a • b (2) 

– Often, the measurement error is mainly caused by a measuring 
instrument. The standard ([24], (8.4.5)) suggests using the value of the 
maximum permissible error (MPE) assigned to the instrument. For CMM, 
the relevant MPE is EL,MPE (ISO 10360–2 [23]): 

a = EL,MPE (3) 

which results in 

uxi = EL,MPE • b (4) 

– In the absence of other information, as a priori probability distri
bution uniform distribution should be assumed. When the actual results 

Table 1 
Theoretical basis of the SA method.  
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of acceptance test or reverification test for a specific CMM are available, 
values b can be derived from them. Both possibilities are analysed in this 
paper. 

– The most important feature of the SA method is that the input 
values in the measurement model are the distances, namely the differ
ences of the coordinates of the points used to define the particular 
characteristics (dimensions and geometrical deviations). 

– The method is described by means of explicit equations and is 
similar to the cases known from classical geometrical metrology, which 
can be easily demonstrated by comparing the arc radius measurement 
with a microscope (using sagitta and chord lengths) with the coordinate 
measurement [25] (Table 1). 

– The model does not take into account the influence of form de
viations and the number of probing points. Table 1 serves to show that 
the proposed method of estimating the uncertainty of coordinate mea
surements is very similar to the methods previously used in classical 
measurements and therefore should be understandable. 

3. Distance measurement uncertainty 

The standard measurement uncertainty u of the distance between 
two points (or the differences in the coordinates of two points) is 
assumed to be calculated using formula (2). In the simplest but secure 
approach, assuming a uniform distribution b1 = 1/

̅̅̅
3

√
≈ 0.577. The 

value b can take into account the actual accuracy of the CMM. The re
sults of the actual acceptance test and reverification test show that errors 
often represent a small part of the maximum permissible error EL,MPE, 
especially for new CMMs. 

In order to take into account the actual accuracy of the CMM, it is 
proposed that the factor b2 is assessed as the sample second-order 

moment relative to zero ([26], (1.14)) of test results (errors of in
dications) normalized for the range (-1, 1): 

b2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
E2

n,L,i

√
√
√
√ (5) 

where N = 105 (total number of measurements in ISO 10360–2 test) 
and 

En,L,i =
EL,i

EL,MPE,i
(6) 

Fig. 2 shows the results of the CMM reverification test used to vali
date the uncertainty estimation method. The test was performed in 
accordance with ISO 10360–2, using gauge blocks with lengths of 30, 
150, 300, 500, 700 and 1000 mm. In the “measurements” along the 
individual axes, 5 gauge blocks with a length of up to 700 mm were used. 
For “measurements” along the diagonals, a 1000 mm gauge block was 

Fig. 2. Reverification test results for CMM Aberlink with EL, MPE = ±(4 + 6L/ 
1000) μm (outside lines); lines ± 2u are also shown for b calculated according 
to equations (5) (b2 = 0.459). 

Fig. 3. Normalized measurement errors from reverification test: a) graph with EL,MPE and ± 2u (equation (5)), b) histogram.  

Table 2 
An example circle diameter measurement uncertainty budget for the following 
data: EL,MPE = ±(4 + 6L/1000) µm, uniform distribution (b1 = 0.577), D = 80 
mm; in the measurement model, points A, B and C are evenly spaced (every 
120◦).   

xi ∂D/∂xi uxi ∂D/∂xi • uxi 

xAB − 34.64 0.577 2.43 1.40 
yAB − 60.00 − 0.333 2.52 − 0.84 
zAB 0 0 2.31 0 
xAC 34.64 − 0.577 2.43 − 1,40 
yAC − 60.00 − 0.333 2.52 − 0.84 
zAC 0 0 2.31 0 
xCB − 69.28 − 1.155 2.55 − 2.94 
yCB 0 0 2.31 0 
zCB 0 0 2.31 0    

uSA(D) 3.74    
USA(D) 7.49  

Fig. 4. Positions of points for the circle diameter measurement model.  
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used instead of the 300 mm. Normalization of CMM errors was per
formed according to the formula (6). 

Fig. 3 shows normalized errors of indications and lines correspond
ing to ±2u for b2 estimated according to the formulae (5–6). 

The value b2 calculated by the formula (5) is equal to 0.459, namely 
slightly less than for the uniform distribution, where b1 = 0.577. 
Although some asymmetry is visible in Fig. 3, no error value is outside 
the lines defined by ± 2u. 

For validation purposes, the uncertainty uSA evaluated according to 
the SA method will be calculated for two values of factor b: 

– resulting from the assumption of a uniform error distribution for 
CMM (b1 = 0.577) (uSA1), and. 

– resulting from the current accuracy contained in the results of the 
reverification test, calculated by the formula (5) (b2 = 0.459) (uSA2). 

4. Measurement models 

According to recommendation contained in ISO/TS 15530–4, the 
validation of SA method will be performed using the cylindrical square. 
The diameter of the circle and the coaxiality were assumed as the 
measured characteristics. 

4.1. Circle diameter measurement model 

Different formulae are available in the literature to calculate the 
diameter D of a circle based on knowledge of the coordinates of three 
points. The simplest one is the formula for the diameter of a circle cir
cumscribed about a triangle: 

D =
abc
2P

(7) 

where P is the area of the triangle, and a, b, c are the lengths of its 
sides, which can be expressed by the differences of coordinates of the 
points - the vertices of the triangle. In turn, the area of the triangle P can 
be expressed by the cross product of the two sides of the triangle: 

P =
|AB × AC|

2
(8) 

Uncertainty assessment is based on 9 input values (coordinates of 
AB, AC, BC vectors). Sensitivity factors are derived as partial de
rivatives, calculated analytically or numerically. An uncertainty budget 
is shown in Table 2. 

In the example, the circle lies in the xy plane. The positions of points 
A, B, C as shown in Fig. 4. 

The budget presented in Table 2 clearly show that the developed 
method for coordinate measurements is in line with the GUM. The un
certainty components appears in the uncertainty budget with the weight 

value equal to 0.577 for xCB, 0.289 for xAB and xAC, and 0.167 for yAB and 
yAC. Then, general formula for calculating the standard uncertainty 
uS(D) of the circle diameter using SA method, can be presented as:   

All factors in the formula (9) are derived from the partial derivatives 
given in Table 2 and from the trigonometric function values associated 
with the points spaced every 120◦. 

4.2. Coaxiality measurement model 

There are two basic instances of coaxiality tolerance. In the first, the 
toleranced element (axis of the right cylinder, Fig. 5a) is at a certain 
distance from the datum which is the axis of the left cylinder. In the 
latter case, the toleranced element (axis of the central cylinder, Fig. 5b) 
is located between the two datums A and B which establish the common 
datum A-B (common axis of the outer cylinders). 

Coaxiality is the smallest diameter of the cylinder coaxial with the 
cylinder which is the datum (represented by points A and B) and con
taining all the axis points of the toleranced element, represented here by 
point S [6]. So, it takes into account only two points of the datum A and 
B and one point of the toleranced element. Coaxiality CX is therefore 
twice the distance ds of point S from straight line AB: 

CX = 2 • ds(S,AB) (10) 

The formula for the distance of point S from straight line AB is ([22], 
(Table B.7)): 

ds(S,AB) =
⃒
⃒
⃒
⃒BS ×

AB
|AB|

⃒
⃒
⃒
⃒ (11) 

There are 6 input quantities in the model (xAB, yAB, zAB, xBS, yBS and 
zBS) generally designated as xi. An uncertainty budget is shown in 

Fig. 5. Two examples of coaxiality specifications; the toleranced element: a) is at a certain distance from the datum, b) is located between the two datums forming 
the common datum. 

Table 3 
Uncertainty budget for coaxiality; EL,MPE = ±(4 + 6L/1000), µm, uniform dis
tribution (b1 = 0.577), datum length l = 25 mm, distance of toleranced element 
from datum L = 40 mm.   

xi ∂ds/∂xi uxi ∂ds/∂xi • uxi 

xAB 25 0 2.40 0 
yAB 0 0 2.31 0 
zAB 0 − 1.6 2.31 − 3.70 
xBS 40 0 2.45 0 
yBS 0 0 2.31 0 
zBS 0.01 1 2.31 2.31    

uSA(S-AB) 4.36    
uSA(CX) 8.72    
USA(CX) 17.43  

uSA(D) ≈ 2b •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
[
0.289•EL,MPE(0.433D)

]2
+ 2

[
0.167•EL,MPE(0.75D)

]2
+
[
0.577•EL,MPE(0.866D)

]2
√

(9)   
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Table 3. 
The example assumes that the workpiece is oriented along the x-axis. 

The difference in coordinates × of points A and B is indicated as xAB and 
the difference in coordinates of points B and S is indicated as zBS (the S 
point is assumed to be in the xz plane at a short distance from the datum 
axis). Uncertainties of only two (from six) input values (zAB and zBS) are 
not zero. 

The uncertainty components for zBS and zAB occur in the uncertainty 
budget with weights 1 and xBS/xAB respectively (in example xBS/xAB =

1.6). Therefore, the general equation for the standard uncertainty of the 
measurement of coaxiality is: 

uSA(CX) = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

12 +

(
L
l

)2
√

• EL,MPE(0) • b (12) 

where L is the distance of the toleranced element from the datum (| 

BS|), l is the length of the datum (|AB|), EL,MPE(0) is the maximum 
permissible measurement error for zero length. When the toleranced 
element lies outside the datum, the quotient L/l may be (and is usually) 
significantly greater than 1 (this fact was used to obtain a large range of 
measurement uncertainty in validation); when it is between datums A 
and B, that quotient is not greater than 0.5. 

5. Validation 

5.1. Experiment 

Two characteristics, for which the measurement strategy has a sig
nificant impact on the uncertainty: the circle diameter and the 
coaxiality, were selected for the validation of the SA method. In both 
cases, the experiment consisted in a 20-fold measurement of a calibrated 
artefact with a known value of the characteristics. Measurements were 
performed using the Aberlink CMM - Zenith Too with the PH10T 
measuring head and Aberlink 3D software. The CMM accuracy is 
expressed by the specification EL,MPE = ±(4 + 6L/1000) μm. The mea
surements were repeated at longer intervals according to the 

Fig. 6. Measurement of the cylinder square.  

Fig. 7. Drawing of a cylinder with an indication of the datums and toleranced 
elements for coaxiality: a) a toleranced element outside the datum, b) a toler
anced element between the datums (common datum). 

Table 4 
Summary of the experiment plan for coaxiality.  

Symbol Dimension Values Description 

lA Datum length (A) 
(left-most extreme 
part of cylinder) 

(10, 15, 20, 25, 30, 35) 
mm  

lA-B Distance between 
two datums (A-B) 

80 mm  

d Distance of the 
toleranced element 
from the datum (A)  

(5, 10, 15, 20, 25, 30, 
35, 40, 45, 50, 55, 60, 
65, 70) mm 

The smallest length of 
the datum lA = 10 
mm. For longer 
datums, the number 
of toleranced element 
positions decreases 
(to fit in the length of 
the cylinder) 

h Distance of the 
toleranced element 
from the closer 
datum from among 
A and B 

(5, 10, 15, 20, 25, 30, 
35, 40) mm 

Only in the case of the 
common datum A-B;  

U Expanded 
measurement 
uncertainty 

U1, U2, U4W, U4R 

USA1, USA2 

obtained 
experimentally 
obtained using SA 
method 

b Factor b to calculate 
the standard 
uncertainty using 
SA method with EL, 

MPE  

b1 = 1/
̅̅̅
3

√
≈

0.577b2 = 0.459 
(b1) uniform 
distribution 
(b2) comes from 
reverification test 
according to ISO 
10360–2; equation  
(5)  

Fig. 8. Example of PDF charts of the Weibull and Rayleigh distributions 
(matched to the same data) with marked 0.95 quantiles. 
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recommendations in ISO 15530–3 [9]. A cylinder square with a nominal 
diameter of 80 mm (Fig. 6) was used for the tests. 

The diameters and centre coordinates were measured for 17 circles at 
5 mm distances, covering 80 mm of the cylinder length. The results were 
obtained directly for 17 diameters. 

From the coordinates of the circle centres, coaxiality was calculated 
for 7 different datum length and different distances of the toleranced 
element from the datum. The calculations were performed for six datum 
lengths of 10, 15, 20, 25, 30, 35 mm (Fig. 7a). Separate calculations were 
made for the common datum A-B based on two extreme cross-sections 
(Fig. 7b). 

For the case in Fig. 7a, the coaxiality was calculated using the 
extreme left point of the axis and one of the following points as the 
datum and one point from the cross-section on the right-hand side of the 
datum, doing so at ever greater distances from it. This resulted in a total 
of 69 different combinations of the datum lengths and the distances of 

the toleranced element from the datum. For the common datum in 
Fig. 7b, the points from the two extreme cross-sections were used to 
define that datum and the coaxiality calculation was performed for 15 
points from the other cross-sections. 

The experiment plan for coaxiality is summarized in Table 4. 

5.2. Experimental uncertainty 

In the experimental determination of the measurement uncertainty, 
the standard [9] requires to correct the bias bs (the symbol bs was 
introduced to distinguish it from the previously used b denoting a co
efficient depending on the type of distribution), and then to estimate the 
uncertainty as: 

U = 2 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
cal + u2

p + u2
bs + u2

w

√

(13) 

where 
ucal standard uncertainty stated in the calibration certificate of the 

calibrated workpiece; 
up standard deviation of results of experiment; 
ubs standard uncertainty associated with the corrected systematic 

error; 
uw standard uncertainty associated with material and manufacturing 

variations. 
As the reference object is made of steel, it has small form deviations 

and low surface roughness, therefore it was assumed that uw = 0. 
Since correction for the systematic error is not possible, three other 

options were adopted as an alternative. 

U1 = 2 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
cal + u2

p

√

+ |bs| (14)  

U2 = 2 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
cal + u2

p + bs2
√

(15)  

U3 = 2 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
cal + u2

p0

√

with up0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − xcal)
2

n − 1

√

(16) 

The formula for U1 is derived from ISO/TS 15530–3 [27]. According 
to some authors [28] formula (14) is inconsistent with GUM. The for
mula for U2 results from the adoption of the bimodal distribution [12] 
for bs (in [28] the derivation of the formula (15) is given). In the formula 
for U3, bias is included in up (up is indicated as up0 to avoid confusion). 
up0 is calculated as the root of the second-order moment relative to the 
known value xcal (instead of the mean value y). Please note that the 
second and third equations produce practically identical results 
(U2 ≈ U3) and only U2 will be used in subsequent analyses. 

These equations are suitable for errors distributed on both sides of 
the zero, which occurs for characteristics such as dimensions and signed 
distances. 

In the case of errors taking only non-negative values, such as nomi
nally zero distances without a sign (valid in many geometrical specifi
cations), it seems more appropriate to calculate the expanded 
uncertainty U as 95% of the appropriate distribution quantile (U = F- 

1(0.95), where F is the cumulative distribution function). The Weibull 
and Rayleigh distributions are suitable (the Rayleigh distribution is 
characterized by the distribution of the length of a vector in a plane, the 
components of which are independent variables with the normal dis
tribution). This gives the next option (for coaxiality): 

Table 5 
Comparison of the uncertainties assessed experimentally and using the SA method: hypotheses and critical values for the chi-square test; σ and σSA are the standard 
uncertainties evaluated experimentally and using the SA method, respectively.  

Test Null hypothesis H0 Alternative hypothesis H1 Null hypothesis criterion 

Two-tailed σ2 = σ2
0 σ2 ∕= σ2

0 χ2
cr1 ≤ χ2 ≤ χ2

cr2χ2
cr1(0.025,19) = 8.907χ2

cr1(0.975, 19) = 32.852  

Table 6 
Colours to encode chi-square test results.  

Colour Criterion Results obtained using the SA method are… 

yellow χ2 < χ2
cr1 … overestimated 

green χ2
cr1⩽χ2⩽χ2

cr2 … correct 
red χ2 > χ2

cr2 … underestimated  

Fig. 9. Outside diameter. Comparison of experimentally determined uncer
tainty and the SA method. 

Table 7 
The chi-square test to compare the experimental uncertainties U1 and U2 with 
the uncertainties evaluated using the SA method: USA1 = 7.49, USA2 = 5.95; D =
80 mm (the values of bs and up are also given). The test results are colour-coded 
(see Table 6).   

bs, μm up, μm U1, μm χ2
1(b1) χ2

2(b2) U2, μm χ2
1(b1) χ2

2(b2) 

1 0,69 2,80 6,78 16,43 26,00 6,25 13,94 22,05 
2 1,27 2,97 7,67 21,02 33,25 6,89 16,94 26,80 
3 0,22 3,28 7,22 18,58 29,40 7,00 17,52 27,71 
4 0,56 3,12 7,25 18,76 29,68 6,78 16,42 25,98 
5 0,52 3,10 7,18 18,39 29,09 6,74 16,21 25,64 
6 0,71 2,90 6,98 17,39 27,51 6,43 14,75 23,34 
7 0,25 2,84 6,42 14,72 23,29 6,19 13,67 21,63 
8 0,18 2,81 6,30 14,15 22,39 6,13 13,40 21,20 
9 0,10 3,31 7,13 18,14 28,70 7,04 17,67 27,96 
10 0,15 2,99 6,59 15,50 24,53 6,45 14,86 23,51 
11 0,44 2,75 6,44 14,81 23,44 6,07 13,13 20,78 
12 0,22 3,24 7,13 18,14 28,71 6,92 17,09 27,04 
13 − 0,55 3,26 7,49 20,00 31,65 7,03 17,62 27,88 
14 − 0,90 2,92 7,22 18,62 29,45 6,57 15,42 24,40 
15 − 1,57 2,84 7,74 21,37 33,80 6,92 17,09 27,05 
16 − 1,37 3,38 8,54 26,05 41,22 7,68 21,05 33,31 
17 − 1,47 3,01 7,95 22,56 35,69 7,11 18,07 28,59  
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U4 = 2 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

F− 1(0, 95)
2

)2

+ u2
cal

√

(17) 

Both of these distributions will be used. For the purpose of distinc
tion, U4 calculated for the Weibull and Rayleigh distributions are 
marked U4W and U4R respectively. An example PDF charts of the Ray
leigh and Weibull distributions that match the same data are shown in 
Fig. 8. 

Thus, four expanded uncertainty values will be used in further ana
lyses: U1, U2, U4W and U4R. 

5.3. Elaboration of the results – Chi-Square test 

The experimentally determined uncertainties evaluated in accor
dance with [9] were compared to the uncertainties evaluated using the 
SA method. The chi-square test was conducted for the equality of un
certainties calculated using the SA method and the experimental 

Fig. 10. Graphs of expanded uncertainty values for 6 different lengths of the datum lA (10–35 mm) and the common datum lA-B (80 mm). The last graph shows all the 
7 graphs for USA1. 

Fig. 11. Summary of the error and uncertainty values determined using the SA 
method for the “element between datums” case; 5 error values (out of 300) 
exceed USA1 and 14 exceed USA2. 
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method. The chi-square test value is calculated by the formula. 

χ2 =
nσ2

σ2
SA

(18) 

where σ and σSA are the standard uncertainties evaluated experi
mentally and using the SA method, respectively, and n is the size of the 
sample (20). Critical values χ2

cr1 and χ2
cr2 used as the limits in the tests are 

2.5 % and 97.5 % quantiles, respectively, of a chi-square distribution 
with 19 degrees of freedom. The main characteristics of the test are 
summarized in Table 5. 

The chi-square values obtained from the analysis will be highlighted 
in three colours (Table 6). 

5.4. Results for the diameter 

The measurements of all the 17 sections of the cylinder were indi
vidually considered and their diameters were evaluated. The compari
son of the uncertainties evaluated experimentally (either U1 or U2) and 
using the SA method (USA) is reported in Fig. 9. The uncertainty budget 
for b1 is in Table 2. 

Uncertainty values U1 and U2, calculated according to the formulae 
(14) (upper row) and (15) (lower row), are marked with dots on the 
diagram. The USA uncertainty values are marked with vertical lines: on 
the right USA1, and on the left USA2. It can be seen from the graph that the 
USA1 value shows better agreement with the results of the experiment. 
Statistically unambiguous results can be obtained only after applying the 
chi-square test. 

The experimentally obtained uncertainty values U1 and U2 and the 
chi-square test values for comparison with the uncertainties USA calcu
lated using the SA method are shown in Table 7. 

The chi-square test fully confirms the consistency of the results ob
tained by the SA method assuming uniform distribution (USA1 = 7.49), 

both compared with U1 and U2. When included the results of the 
reverification test (USA2 = 5.95) the SA method gives slightly worse 
results: for 17 comparisons 4 negative results were obtained compared 
to U1, and 1 negative results compared to U2. In the all 5 cases, the re
sults obtained using the SA method are considered to be underestimated 
by the chi-square test. In general, the results of the validation tests for 
the circle diameter can be deemed very satisfactory. 

Looking at the bs values in the subsequent sections of the cylinder, it 
cannot be ruled out that the cause is the conicity of the cylinder (the 
method of calibrating the cylinder diameter is not known - the calibra
tion certificate contained one value). 

5.5. Results for coaxiality 

In Fig. 10 for all the lengths of the datum lA and common datum A-B 
for all the distances of the toleranced element from the datum, the 
expanded uncertainties determined experimentally and the un
certainties evaluated using the SA method are shown. The solid lines 
refer to the uncertainties evaluated using the SA method. The upper one 
is the USA1, the lower – USA2 values. The dots represent U1, U2, U4W i U4R 
values. of the experimentally obtained uncertainties. The uncertainty 
budget for one of those points is given in Table 3. 

Please note that the successive graphs use clearly different magnifi
cations. The last graph summarizes the uncertainty USA1. The curves 
illustrate the uncertainties for the successive datum lengths: the highest 
curve (blue) is for lA = 10 mm, the successive datums with their lengths 
increased up to lA = 35 mm for the lowest, penultimate datum (green). 
The lowest (blue) applies to the common datum A-B. 

A important characteristic of the performed tests is the fact that a 
very wide range of measurement uncertainty, from 8 to 66 µm, was 
obtained. The graphs show that the use of different formulae for the 
experimental determination of the measurement uncertainty gives quite 
clear differences in the results. Similarly, including, or not taking into 
account the reverification test results when calculating the uncertainty 
using the SA method, gives a significant difference in the obtained 
results. 

The graphs show a good correlation between the results calculated 
using the SA method and the results obtained by the experiment ac
cording to [9]. This confirms the particular usefulness of the cylindrical 
square in validating different methods for evaluating the uncertainty of 
coordinate measurements. 

Let us also note that the formula for U2 gives the highest values of the 
uncertainty determined experimentally, whereas the formula for U4R 
gives the lowest ones. The range of uncertainty assessments is also 
considerable, particularly in comparison with the difference in the re
sults obtained through the SA method. 

A comparison of the measurement uncertainty calculated using the 
SA method with the results obtained experimentally according to [9] 
may also be presented differently. In Fig. 11, the resulting error values 
are compared against the lines representing the calculated measurement 
uncertainty. An example graph refers to coaxiality relative to a common 
datum. According to the definition of expanded measurement uncer
tainty, it is expected that approximately 95% of the error values should 

Table 8 
Chi-square test results for coaxiality (datum length lA-B = 80 mm, toleranced 
element between datums.  

h, 
mm 

bs, 
μm 

up, 
μm 

U2, 
μm 

USA1, 
μm 
(b1 =

0.577) 

USA2, 
μm 
(b2 =

0.459) 

χ2
1(b1 =

0.577) 
χ2

2(b2 =

0.459) 

5  3.09  2.28  7.93  9.26  7.36  14.68  23.23 
10  2.66  1.03  6.05  9.31  7.40  8.44  13.35 
15  3.02  1.14  6.75  9.40  7.47  10.32  16.33 
20  2.62  1.38  6.25  9.52  7.57  8.61  13.62 
25  3.06  1.21  6.88  9.68  7.69  10.11  16.00 
30  2.50  1.42  6.08  9.87  7.84  7.59  12.01 
35  2.70  1.83  6.83  10.08  8.02  9.17  14.50 
40  4.65  3.16  11.42  10.33  8.21  24.46  38.70 
35  4.26  3.63  11.37  10.08  8.02  25.44  40.25 
30  3.40  3.38  9.80  9.87  7.84  19.72  31.21 
25  3.70  1.94  8.59  9.68  7.69  15.74  24.91 
20  4.09  2.20  9.50  9.52  7.57  19.91  31.50 
15  3.77  2.06  8.82  9.40  7.47  17.61  27.86 
10  3.03  1.72  7.24  9.31  7.40  12.11  19.16 
5  3.08  1.46  7.11  9.26  7.36  11.80  18.66  

Fig. 12. Results of the chi-square test for: a) USA1, b) USA2. The first 4 bars correspond successively to the experimental uncertainties U1, U2, U4W and U4R, the fifth 
bar contains the averaged values. 
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be less than the expanded measurement uncertainty. When looking at 
the results obtained globally, this condition can be considered to be met 
even for the uncertainties USA2, because only 14 from 300 error values 
exceed the uncertainty values, which represents 4.8 % of all values. For 
the remaining cases analysed, the lengths of the datum ranging from 10 
mm to 35 mm, the results obtained were following, respectively (in %): 
0, 5.8, 5.0, 8.2, 8.5 and 9.4. Similar calculations for USA1 give the 
following results: 1.7, 0, 1.2, 2.1, 2.3, 3.5 and 5.0 % (the value of 5 % is 
not exceeded in any case). 

An informal analysis of the test results has been discussed so far. The 
chi-square test for equality of variances was used for the formal 
assessment. Table 8 provides a comparison of the uncertainty U2 with 
two cases of uncertainty USA calculated using the SA method. 

The positive test results are shown in green (no grounds for rejection 
of a hypothesis of variance equality). The instances of significant over
estimation of the uncertainty are highlighted in yellow and the signifi
cant underestimation in red. 

This analysis was performed for all the 17 coaxiality cases (84 in 
total) and all the 4 methods of determining experimental uncertainty. 
The results of this analysis are summarized in Fig. 12. 

It would be good to examine the components of experimental un
certainty in more detail. Table 8 shows (and it is similar for other cases) 
that the largest component of experimental uncertainty is bias bs. 

There are 84 results in total. There are more positive results for USA1. 
Among the negative results, mainly are the underestimations, that are 
acceptable in the uncertainty analyses. The best results were obtained 
when experimental uncertainty was determined using the Rayleigh 
distribution (U4R). The presented results confirm that adopting the 
uniform distribution for distance measurement errors is correct. The 
expected benefit of considering the current CMM accuracy has not been 
proven. In this regard, it is advisable to repeat the tests on the CMM, the 
actual errors of which are clearly lower than the permissible ones. 

6. Conclusions 

The validation of the method for determining the uncertainty (SA 
method) developed at ATH was carried out on one CMM. An accessible 
and easy to calibrate artifact - cylindrical square was used for validation. 
The experiment was designed in such a way that a large range of mea
surement uncertainty is obtained (in the above-mentioned example, for 
various coaxiality measurement strategies, measurement uncertainties 
ranging from 8 µm to 66 µm were obtained). The obtained results 
confirm the correctness of the SA method. 

The experiment is easy to perform (repeat) on any CMM, it only 
requires measurements of the diameter and coordinates of the centre of 
17 circles (measurements should be repeated 20 times at one- or two-day 
intervals) - the processing of the results can be performed in a developed 
and available on request spreadsheet. 

Most of the characteristics appearing in construction drawings are 
geometric deviations, which assume only non-negative values. The ob
tained results indicate that the Rayleigh distribution is well suited for 
the development of the results of the experimental determination of the 
measurement uncertainty of such characteristics. 

The results obtained confirmed that the cylindrical square is ideal for 
the validation of any UES. The measurement itself is short because it 
consists solely of measuring 17 circles – the rest of the calculations can 
be performed in a pre-designed spreadsheet made available by authors. 
A particular advantage is the large range of uncertainties obtained for 
the different variants of datum lengths and toleranced element-to-datum 
distances. 

According to ISO 15530–3 recommendations, the cylindrical square 
measurement described should be repeated 20 times at a minimum of 
one-, two-day intervals, but once fewer repetitions have been per
formed, e.g. 10, reliable information can be obtained. 

The article compares 4 different methods of developing the results of 
the experiment: formulae (15), (16) and (18), and in the case of formula 

(18), 2 different Weibull and Rayleigh probability distributions. The 
performed tests show that in the case of characteristics with both posi
tive and negative values (e.g. diameter deviations), the best results are 
obtained by using the formula (16), and in the case of characteristics 
with non-negative values (geometric deviations) – by using the formula 
(18) and the Rayleigh distribution. 

With regard to the SA method, the article analyses the advisability of 
taking into account the information contained in the CMM calibration 
results (in comparison with the a priori adopted uniform distribution of 
errors). The obtained results do not confirm this purposefulness. It 
should be noted, however, that the observed CMM error distribution 
differed only slightly from the uniform distribution and, in addition, was 
asymmetric. 

As a side note, it is worth mentioning that for some characteristics it 
is possible to derive general formulae for the measurement uncertainty 
for the SA method. The article provides such formulae for the mea
surement uncertainty of concentricity and circle diameter. 

The authors are convinced that the positive result of validation for 
the circle diameter and the coaxiality can be generalized to all charac
teristics for which the measurement uncertainty has been evaluated 
using the SA method described. 

The fact that in majority of industrial measurements it is not possible 
to apply bias correction, as well as the fact that mainly geometrical 
deviations (only non-negative deviations) are measured in industry, 
should be taken into account when amending the ISO 15530-3 standard. 

CRediT authorship contribution statement 

Mirosław Wojtyła: Investigation, Resources, Formal analysis, 
Writing – original draft, Writing – review & editing. Paweł Rosner: 
Investigation, Resources, Formal analysis, Writing – original draft. 
Wojciech Płowucha: Methodology, Supervision, Formal analysis, 
Writing – review & editing. Alistair B. Forbes: Data curation. Enrico 
Savio: Data curation. Alessandro Balsamo: Funding acquisition, Proj
ect administration. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The presented work is part of the EMPIR EURAMET-founded joint 
research project no. 17NRM03 “Standards for the evaluation of the 
uncertainty of coordinate measurements in industry EUCoM” coordi
nated by Alessandro Balsamo, INRIM. 

References 

[1] JCGM 100, Evaluation of measurement data. Guide to the expression of uncertainty 
in measurement, 2008. 

[2] ISO/IEC Guide 98-4, Uncertainty of measurement. Role of measurement 
uncertainty in conformity assessments, 2012. 

[3] ISO 14253-1, Geometrical product specifications (GPS). Inspection by 
measurement of workpieces and measuring equipment - Part 1: Decision rules for 
verifying conformity or nonconformity with specification, 2017. 

[4] IATF 16949, Quality management systems requirements for automotive production 
and relevant service part organizations, 2016. 

[5] R.G.G. Wilhelm, R. Hocken, H. Schwenke, Task Specific Uncertainty in Coordinate 
Measurement, CIRP Annals - Manufacturing Technology. 50 (2001) 553–563, 
https://doi.org/10.1016/S0007-8506(07)62995-3. 

[6] ISO 1101 Geometrical product specifications (GPS) - Geometrical tolerancing - 
Tolerances of form, orientation, location and run-out, 2017. 

[7] Z. Humienny, State of art in standardization in the geometrical product 
specification area - a decade later, CIRP Journal of Manufacturing Science and 
Technology 33 (2021) 42–51, https://doi.org/10.1016/j.cirpj.2021.02.009. 

[8] EA-4/02 M, Expression of the Uncertainty of Measurement in Calibration. 
European co-operation for Accreditation, 2013. 

M. Wojtyła et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/S0007-8506(07)62995-3
https://doi.org/10.1016/j.cirpj.2021.02.009


Measurement 199 (2022) 111454

11

[9] ISO 15530-3, Geometrical product specifications (GPS) - Coordinate measuring 
machines (CMM): Technique for determining the uncertainty of measurement - 
Part 3: Use of calibrated workpieces or measurement standards, 2011. 

[10] ISO/TS 15530-1, Geometrical product specifications (GPS) - Coordinate measuring 
machines (CMM): Technique for determining the uncertainty of measurement - 
Part 1: Overview and metrological characteristics, 2013. 

[11] ISO/TS 15530-4, Geometrical Product Specifications (GPS) - Coordinate measuring 
machines (CMM): Technique for determining the uncertainty of measurement - 
Part 4: Evaluating task-specific measurement uncertainty using simulation, 2008. 

[12] VDI/VDE 2617, Part 11, Accuracy of coordinate measuring machines. 
Characteristics and their checking. Determination of the uncertainty of 
measurement for coordinate measuring machines using uncertainty budgets, 2011. 
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