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Abstract: Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-
loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled
with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing
a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of
chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were
compared as candidate biopolymers for shell manufacturing. The aim of the work was to design
OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release,
and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces,
≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen
encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW,
MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic
activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets
showed very poor biocompatibility. Combining the physico-chemical and the biological results
obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a
skin device to treat chronic wounds.

Keywords: nanodroplets; oxygen; chitosan; chitosan-derivatives; chronic wound; human keratinocytes

1. Introduction

Chronic wounds, including bedsores, burns, and diabetes-associated vasculopathies,
are commonly defined as nonhealing breaks in the epithelial continuity of the skin lasting
for more than 42 days [1]. Notably, chronic wounds have become in the last decades
an alarming emergency, affecting a large fraction of the population worldwide and the
elderly especially, with 1–2% of the population of developed countries being estimated to
experience at least one chronic wound during a lifetime [2]. Therefore, the search and the
development of new cost-effective treatments that might allow a significant percentage
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of chronic wounds to heal quickly and definitively appears extremely urgent, as it would
substantially affect the global healthcare system [3].

From a physio-pathological perspective, these nonhealing lacerations are generally
characterized by persistent hypoxia, exacerbated inflammation, and unbalanced levels
between proteinases and their inhibitors, which are essential to accomplish the re-modeling
phase of healing [4–6]. In addition, microbial infection can represent a recurrent severe
complication [7]. In particular, the management of extreme hypoxia in chronic wounds
represents a major limit to overcome, and oxygen supply and tension in the wound bed
are both crucial issues that need to be addressed in order to promote physiological wound
healing. A minimum tissue oxygen tension of 20 mmHg is required for a wound to heal;
however, oxygen tension runs at around 5 mmHg in nonhealing wounds [8,9]. Notably,
when the arterial blood cannot supply cells with relevant amounts of oxygen, the risks for
inflammation, infection, and scarring in wounds are enhanced, since responses to hypoxia
are virtually involved in all wound healing and re-modeling processes, including collagen
deposition, epithelialization, fibroplasia, angiogenesis, and resistance to infections [8,9].
Another important issue revolves around medical therapy, as the effectiveness of treatments
often decreases while tissue necrosis can develop in hypoxic conditions [9]. Oxygen tissue
levels can be adequately bolstered by hyperbaric oxygen therapy (HBOT) [10], while an
alternative therapy is represented by topical oxygen therapy (TOT) [11]. Unfortunately,
either HBOT or TOT display various backwards. On the one hand, the HBOT approach
is relatively expensive, uneasy, and even dangerous due to fire accident risks [12]. Ad-
ditionally, it may cause severe side effects, including myopia, brain toxicity associated
with seizures, and pneumothorax [13]. On the other hand, TOT—which is cheaper and
associates with lower toxicity—often fails to effectively trespass the stratum corneum of the
skin and to deliver oxygen adequately to fibroblasts, keratinocytes, and inflammatory cells
for restoring their functions [12]. For these reasons, intensive research has been focused in
the recent years on the development of new oxygen carriers, including hemoglobin-based
carriers and perfluorocarbon-containing formulations [14]. Among perfluorocarbon emul-
sions of the first generation, Fluosol® is the only medical device approved by the Food and
Drugs Administration and unfortunately no perfluorocarbon-based oxygen emulsion of
the second generation is currently approved for clinical uses [15].

In this context, nanomedicine has become a major area of interest for oxygen delivery
due to its many unique characteristics [16–19]. Interestingly, the physico-chemical prop-
erties of nanocarriers, including their high surface-to-volume ratio, small size, stability,
and controlled drug release enhance their chances to trespass barriers such as the skin and
to reach the biological target [20]. In addition, several nanocarriers can be endowed with an
inherent antimicrobial activity, thus synergizing with the antimicrobial efficacy of a coupled
antibiotic [21]. All these findings appear extremely intriguing, since they may be exploited
to produce innovative and nonconventional nanotherapies for wound management [22,23].

In particular, over the last decade our collaborating interdisciplinary research network
has been working to develop new platforms of oxygen carriers to be employed either
for diagnostic or for therapeutic purposes, leading to the production of so-called oxygen-
loaded microbubbles (OLMBs) [24], nanobubbles (OLNBs) [25,26], and nanodroplets (OL-
NDs) [27–31]. Structurally, these carriers display a typical core/shell architecture. For the
manufacturing of the outer shell, several alternative polysaccharides (chitosan or dextran
usually) can be employed, whereas specific oxygen-solving fluorocarbons (perfluoropen-
tane (PFP) for OLMBs or OLNBs, and 2H,3H-decafluoropentane (DFP) for OLNDs) have
been selected for the inner core.

Among all three platforms, to date OLNDs are likely to represent the more effective
oxygen-releasing carrier to be potentially employed for the treatment of hypoxia-related
pathologies. Indeed, the DFP peculiar structure allows oxygen molecules to solubilize
not only through van der Waals forces, as for PFP, but also by establishing hydrogen
intermolecular bonds [32]. As a consequence, DFP incorporates biatomic oxygen more
effectively than PFP while its release by diffusion appears slower and sustained over
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time [27,28]. Nevertheless, nanodroplets still conserve all the peculiar characteristics of
nanobubbles, including nanometric size, surface charge, stability, biocompatibility, and re-
sponsiveness to ultrasounds (US) [27,28]. The latter property appears crucial, since it allows
the nanocarriers to trespass biological barriers through sonophoresis [33]. Interestingly,
US irradiation was reported to induce DFP vaporization [34], thus promoting the transfor-
mation of nanodroplets into nanobubbles and allowing them to undergo cavitation and
sonophoresis. This is consistent with either in vitro or in vivo data showing US-dependent
effective trespassing of skin layers by nanodroplets [27,28,35,36] along with higher and
more time-sustained oxygen release from oxygen-loaded nanodroplets (OLNDs) with
respect to oxygen-free nanodroplets (OFNDs) [27,28]. Due to all these properties, chitosan
OLNDs have been proposed as potential therapeutic tools to treat hypoxia-associated
pathologies, including chronic wounds, preeclampsia, and cancer. In this context, a se-
ries of studies were conducted to investigate the effects of hypoxia and OLNDs on the
regulation of cellular secretion of inflammation- and matrix degradation-related soluble
factors. Encouragingly, chitosan OLNDs proved to be able to abrogate the dysregulating
effects induced by hypoxia, promoting a normoxia-like phenotype in all the hypoxic cells or
tissues under investigation [37,38]. Moreover, chitosan-shelled OLND have been shown to
be effective against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans
infections—two recurring complicating agents in chronic wounds—due to chitosan natural
antimicrobial properties [35].

To further optimize chitosan OLND effectiveness for the potential treatment of chronic
wounds, in the present work we aimed at investigating different types of chitosan as
a candidate biopolymer to be used as OLND shell’s component. A series of chitosan
OLNDs such as low weight (LW), medium weight (MW), glycol-(G-), or methylglycol-
(MG-) chitosan-shelled OLNDs were prepared and in vitro characterized comparing their
physico-chemical properties, efficacy in oxygen releasing, and biocompatibility with human
skin cells.

2. Results
2.1. Characterisation of Chitosan-Shelled ND Formulations

ND formulations were prepared by employing different types of chitosan, such as LW,
MW, G-, and MG-chitosan. Figure 1 showed the chemical structure of the different types of
chitosan used.
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Figure 1. Chemical structure of chitosan (low weight (LW-), medium weight (MW-c)), glycol chitosan (GC-c), methylglycol
chitosan (MG-c).

After manufacturing, chitosan-coated oxygen-loaded nanodroplet (cOLND) formula-
tions were characterized physico-chemically by TEM, and dynamic light scattering analyses.
The physico-chemical characteristics of cOLNDs are reported in Table 1.
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Table 1. Physico-chemical characterization of chitosan-coated oxygen-loaded nanodroplets (cOLNDs). LW, MW, G-, and MG-
cOLNDs were characterized for average diameter, polydispersity index, and zeta potential by dynamic light scattering.
Osmolarity and viscosity were measured using an osmometer and an Ubbelohde capillary viscosimeter, respectively.
Results are shown as mean ± SD from ten preparations. See also Figure 1 for further details on nanodroplet structure
and morphology.

Chitosan Average Diameter
(nm ± SD)

Polydispersity
Index ± SD

Zeta Potential
(mV ± SD)

Osmolarity
(mOsm ± SD)

Viscosity
(cP ± SD)

LW 418.2 ± 22.3 0.20 ± 0.02 +32.4 ± 3.5 282 ± 0.6 1.32 ± 0.01
MW 502.1 ± 16.8 0.19 ± 0.01 +30.2 ± 2.8 284 ± 0.5 1.38 ± 0.02
G- 437.2 ± 23.7 0.22 ± 0.01 +22.9 ± 5.4 285 ± 0.4 1.35 ± 0.02

MG- 456.4 ± 27.4 0.24 ± 0.02 +40.5 ± 3.7 290 ± 0.8 1.34 ± 0.02

Figure 2 shows representative images of cOLND morphology.
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Figure 2. TEM images displaying chitosan-shelled oxygen-loaded nanodroplets (OLND) spherical morphology and shell-
core structure. LW and MW cOLNDs were comparatively analyzed by TEM. Results are shown as representative images
from ten different preparations. (A) LW cOLNDs. (B) MW cOLNDs. Magnification: 28,500×.

All OLNDs displayed spherical shapes with a core-shell structure, as emerged from
TEM analyses. All sizes were in the nanometer range (~400–500 nm as average diameters),
with LW cOLNDs being the smallest and MW cOLNDs the largest. All polydispersity in-
dexes were included between 0.19 and 0.24. Zeta potentials ranged from +22.9 (G-cOLNDs)
to +40.5 mV (MG-cOLNDs). Oxygen content was similar in all cOLND formulations
(~45 mg/L). Figure 3 shows the FTIR spectra of the four chitosan-shelled OLND formu-
lations compared to free chitosan and non-shelled OLNDs. As a control the spectrum of
dipalmitoylphosphatidylcholine (DPPC) was also reported.

The characteristic peaks of DPPC at 2857 and 2919 cm−1 corresponding to CH2
symmetric and asymmetric stretching vibrations, respectively, and at 1735 cm−1 attributed
to C = O stretching were clearly detected in the spectrum of non-shelled OLNDs, indicating
the presence of the phospholipids on the outer surface of the nanostructure. On the contrary,
a shift or disappearance of DPPC peaks were observed for shelled ND formulations,
indicating the strong interaction of chitosan with the phospholipid monolayer. Moreover,
peak modifications at 1589 cm−1 corresponding to the N–H bending of the primary amine
were observed among free chitosan and chitosan-shelled OLNDs.
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Figure 3. FTIR spectra of chitosan-shelled OLND formulations compared to free chitosan, non-shelled OLNDs, and di-
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OLND formulations proved to be physically stable over time, as confirmed by long-
term checking of their physico-chemical parameters. Indeed, the obtained values did not
remarkably change up to six months after the manufacturing of the formulations stored
at 4 ◦C (data not shown). The mucoadhesive properties of cOLND formulations were
evaluated by in vitro mucin adhesion assay. The percentage of mucin adhesive to cOLNDs
was higher than 80% for all the cOLND formulations, indicating the interaction between
cOLNDs and the mucin. The presence of oxygen did not affect cOLND mucoadhesive prop-
erties, indeed similar results were obtained with chitosan-coated oxygen-free nanodroplet
(cOFND) formulations.

2.2. In Vitro Oxygen Release from cOLND Formulations

LW, MW, G-, and MG- cOLND as well as oxygen solution (OSS) abilities to release
oxygen in vitro were comparatively evaluated by oximetry. Results are shown in Figure 4.

When the nanoformulations were immersed in the hypoxic solution, a prolonged
oxygen release profile up to 24 h for all the cOLNDs was observed. There were no significant
differences among all four cOLND formulations, proving that they were able to release
oxygen through a passive diffusion mechanism, independently from the polysaccharide
chosen for the shell. On the contrary, oxygen coming from OSS diffused rapidly in the
hypoxic solution, being immediately available, but it led to a great dip-off quite early.
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Figure 4. In vitro oxygen release from chitosan-shelled OLNDs and oxygen solution (OSS). LW,
MW, G-, and MG-cOLND nanosuspensions as well as OSS were comparatively monitored up to
24 h through an oximeter for oxygen release by diffusion in a hypoxic phase. Results are shown as
means ± SD from three independent experiments.

2.3. ND Internalisation by Human Keratinocytes

The mechanical interaction between MW, LW, G-, and MG-cOLNDs or cOFNDs and
human keratinocytes was investigated through analysis by confocal microscopy. As shown
in Figure 5, all ND formulations were avidly internalized into the cytoplasm of human
keratinocytes after 24 h of incubation, independently from the type of polysaccharide
chosen for the shell and from the presence or absence of oxygen within the core.
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Figure 5. ND internalization by human keratinocytes. Human keratinocyte (HaCaT) cells were left untreated or treated with
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Magnification: 60×.
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2.4. Chitosan and ND Biocompatibility with Human Keratinocytes

The biocompatibility of MW, LW, G-, and MG-cOLNDs or cOFNDs as well as free
chitosan solutions with human keratinocytes was evaluated over time up to 24 h by using
a series of complementary biochemical assays. Specifically, cell viability was checked by
MTT assay, treatment cytotoxicity was analyzed by LDH assay, and cell metabolic activity
was measured by ATP assay. As shown in Figure 6 (A: MTT; B: LDH; and C: ATP assays,
respectively), all the treatments containing MW, LW, or G-chitosan appeared to be highly
compatible with viability, health, and metabolism of human keratinocytes.
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Figure 6. Biocompatibility of chitosan-shelled OLNDs or oxygen-free nanodroplets (OFNDs) with
human keratinocytes in vitro. HaCaT cells were left untreated or treated with 10% v/v MW, LW, G-,
or MG-chitosan free solution, cOLNDs or cOFNDs for 24 h. Thereafter, cell viability (A), treatment
cytotoxicity (B), and cell metabolic activity (C) were measured through MTT, LDH, and ATP assays,
respectively. Results are shown as means± SEM from three independent experiments. Data were also
evaluated for significance by ANOVA. (A) Versus untreated cells: * p < 0.05; ** p < 0.005; *** p < 0.0005;
**** p < 0.0001. (B) Versus untreated cells: * p < 0.02; ** p < 0.01; **** p < 0.0001. Versus cells treated
with free chitosan solution: ◦◦◦ p < 0.001. (C) Versus untreated cells: ** p < 0.01; **** p < 0.0001. Versus
cells treated with free chitosan solution: ◦◦◦ p < 0.0005. Versus cells treated with cOLNDs: # p < 0.05.
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On the contrary, the treatments containing MG-chitosan appeared to be highly toxic
to cells. Interestingly, for each chitosan species or derivative considered, no significant
differences in biocompatibility were highlighted between ND formulations (either with or
without oxygen in the core) and the free solution counterpart.

3. Discussion

Chitin and chitosan have emerged as promising polysaccharides to be employed as can-
didate biomaterials for the development of new nanomedical devices [39,40]. Chitin, a long-
chain polymer composed of repeated units of β-D-(acetylamino)-2deoxy-glucopyranose
(N-acetyl-D-glucosamine), represents the second ubiquitous natural polysaccharide on
Earth after cellulose. This very common polysaccharide can be found either in the exoskele-
ton or the internal structures of various invertebrates, such as crustaceans and insects [41].
Upon N-deacetylation of chitin, chitosan is generated. However, it should be noted that
“chitosan” is quite a collective term, as it sums up together a wide spectrum of linear
polysaccharides with different molecular weight, viscosity, and degree of deacetylation
(ranging from 40% to 98%) [42]. Generally speaking, chitosan can be defined as an amino-
polysaccharide composed of randomly distributed β-(1→4)-linked units of deacetylated
and acetylated chitin (D-glucosamine and N-acetyl-D-glucosamine, respectively). This natu-
rally abundant and renewable cationic polysaccharide displays excellent physico-chemical
and biological properties, which are strongly influenced by its molecular weight and degree
of deacetylation [43]. Chitosan stands out for its strongly basic nature, due to the proto-
natable amino groups present in the polymer chains [41]. The protonation constant (pKa)
of chitosan is of about 6, depending on its molecular weight and degree of deacetylation.
For this reason, it is soluble in acidic aqueous solutions [44]. The number of N-acetyl groups
in chitosan strongly affects its solubility, crystallinity, and viscosity, as well as its optical
properties [45]. Furthermore, the reactivity of chitosan depends on the available amino
and hydroxyl groups. In particular, chitosan derivatives can be easily obtained by reacting
chitosan primary amino groups as well as its primary or secondary hydroxyl groups [44].
Chitosan derivatives have been designed to improve specific properties of native chitosan,
such as solubility [46]. Glycol-chitosan (G-chitosan), soluble at physiological pH, represents
a paradigmatic example of a soluble chitosan derivative that has been widely exploited
either for diagnostic [47] or therapeutic [48,49] applications in the nanomedical field. Chi-
tosan biocompatibility and biodegradability were largely demonstrated [50]. Chitosan
species and/or derivatives are also known to exert direct bacteriostatic or fungistatic ac-
tivity against several microorganisms (including Staphylococcus spp., Streptococcus spp.,
and Candida spp.) [51]. Therefore, it has been widely exploited for the preparation of drug
delivery systems for the treatment of chronic wounds, such as hydrogels, sponge-like dress-
ings, films, and development of novel nanotherapeutics (nanoparticles, nanocomposites,
and nanofibers) [52,53].

Based on these preconditions, the present work aimed at investigating and selecting
the best candidate chitosan for OLND shell manufacturing in order to optimize OLND for-
mulation parameters and stability. Here, four types of chitosan (i.e., LW, MW, G-, and MG-
chitosan) were evaluated for the development of fine-tuned and well-characterized formu-
lations in order to design a multivalent oxygen nanoreservoir for future potential treatment
of chronic wounds in human patients. LW, MW, G-, and MG-cOLND nanoformulations
were produced following a purposely tuned protocol as previously described [27] and
were comparatively evaluated for physico-chemical properties, oxygen releasing abilities,
and biocompatibility with human keratinocytes.

The chitosan shell was selected for its intrinsic properties and because it may be
suitable for future drug loading, exploiting either chemical conjugation or electrostatic
interactions with the functional groups of chitosan [54–56].

All chitosan-shelled OLNDs showed spherical morphology characterized by a well-
defined core-shell structure. The presence of chitosan as an external coating can allow the
oxygen release to be controlled and prolonged. All nanodroplets displayed average diame-
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ters lower than 500 nm, except for MW cOLNDs. Specifically, LW cOLNDs showed the
smallest average diameters with a value of about 400 nm. This result can be due to the pres-
ence of a greater concentration of chitosan polymer at the external ND surface, compared
to MW cOLNDs. In any case, all size values are suitable for skin application [57,58].

Zeta potential values ranging from +23 (G-cOLNDs) to +41 mV (MG- cOLNDs) were
measured. Interestingly, cationic nanocarriers can be suitable for topical treatments as their
positive charges interact strongly with the anionic surface of the skin, as demonstrated
by Wu and colleagues [59] in a study showing that cationic fluorophore PMI-conjugated
PS-NH3+ amino functionalized polystyrene latex nanoparticles displayed brighter fluo-
rescence at the skin surface than anionic PMI-conjugated PS-CO2-carboxyl-functionalised
polystyrene nanoparticles.

Positive values of zeta potential showed the presence of chitosan on the OLND
shell surfaces. Indeed, charged polysaccharides can be adsorbed by the phospholipid
interfacial monolayer present at the ND interface, as previously shown [60,61]. Chitosan
can interact with phospholipids mainly through electrostatic interactions, but also including
H-bonding and hydrophobic forces [60,61]. The formation of a tight chitosan/DPPC
monolayer on the OLND surface was confirmed by FTIR analysis. The different types
of chitosan can markedly influence these interactions and affect the nanostructure at the
interface. In addition, the presence of a charged shell can play a key role for system
physical stability. Indeed, the surface charge is a crucial parameter to predict the stability
of a nanocarrier, as it measures charge repulsion or attraction among particles. Taking into
account a cationic polymer, zeta potential values higher than +20 mV are usually required
for stability of colloid systems [62]. Interestingly, the cOLND zeta potential values are high
enough to avoid ND aggregation phenomena. The physical stability of the formulations
was confirmed by additional monitoring of cOLND physico-chemical parameters up to
6 months. G-cOLNDs appeared to be the least stable out of four formulations, showing a
slight size increase over time. This result may be due to their lowest zeta potential value.
On the contrary, LW cOLNDs displayed the highest stability because they did not show
any size modification up to 6 months.

In addition, all the formulations showed a marked in vitro mucoadhesive activity.
It is worth noting that chitosan is a mucoadhesive polymer. This property, due to the
capability to establish ionic, hydrogen, and hydrophobic bonds with the negatively-charged
mucin, was maintained in all the formulations. This feature can be exploited to enhance
the residence time of cOLNDs in the wound area allowing an intimate contact between
cOLNDs and skin lesions [63,64].

All the nanoformulations displayed similar oxygen storing capacity (~45 O2 mg/L).
The oxygen was slowly released from the internal core of the nanoformulations, delivering
clinically relevant amounts of oxygen in a time-sustained manner by passive diffusion
through the ND shell. This evidence confirmed cOLND suitability for topical treatment of
chronic wounds, as normoxia-like phenotypes of hypoxic skin tissues might be restored
due to the prolonged oxygen release. We can speculate that the OLNDs can be incorporated
in a topical gel formulation for long-lasting oxygen release for wound care.

Clearly, OLND biocompatibility with human skin cells represents a crucial issue,
since the potential use in vivo of oxygen nanocarriers might be compromised by their
toxicity to eukaryotic cells. Interestingly, LW chitosan as such (especially chitosan with
molecular weight <10000 Da) has been reported to be associated with lower toxicity and
higher water solubility compared to chitosan molecules characterized by higher molecular
weight [65]. Moreover, chitosan antimicrobial activity related to nanocarriers has been
reported to depend on the molecular weight and degree of deacetylation of the chitosan
employed during formulation manufacturing [66]. To assess OLND biocompatibility and
to discern whether any cytotoxic effects might be related to a shell’s chitosan species or
derivatives, LW, MW, G-, and MG-chitosan-shelled nanodroplets as well as free LW, MW,
G-, and MG-chitosan aqueous solutions were incubated for 24 h with human keratinocytes.
Interestingly, the production of keratinocyte matrix metalloproteinases, playing crucial
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roles during the remodeling phase of wound healing, was demonstrated to be altered by
hypoxia. In addition, taking into account that the donor’s age is a key factor [67], the human
keratinocyte cell line employed here (HaCaT cell line) was immortalized from a 62-year-old
donor, therefore fitting as a reasonable in vitro model for our studies. Biocompatibility
was checked through three different yet complementary assays, measuring cell viability,
treatment toxicity, and cell metabolic activity. Results from all three studies were consistent,
showing that LW, MW, or G-chitosan (either free or as nanodroplet coating) were highly
compatible with viability, health, and metabolism of human keratinocytes, whereas MG-
chitosan was not.

The higher cytotoxicity of MG-cOLNDs can be ascribed to the presence of quaternary
ammonium groups belonging to MG-chitosan that are protonated at any pH values.

Further analyses by confocal microscopy were also carried out to discern the mech-
anisms of interaction between cOLNDs and human cell surfaces (i.e., lack of contact,
adhesion, or internalization). According to the obtained results, all nanodroplet formu-
lations were avidly uptaken by HaCaT cells after 24 h of incubation. This evidence is
in line with previous results obtained with dextran OLNBs in monkey fibroblastoid kid-
ney cells [25], with dextran OLNDs in human endothelial cells [30], keratinocytes [28],
and monocytes [31], and with MW cOLNDs in human keratinocytes [37] and breast cancer
cells [38]. Additionally, the internalization of chitosan/cyclodextrin nanoparticles by ep-
ithelial cells [68] have been reported. Further studies aimed at clarifying the mechanisms
underlying the physical interaction between cOLNDs and human keratinocytes will be
performed. Nevertheless, it is legitimate to speculate that after interacting with human
cells, nanoparticles might be engulfed in invaginations of the cell membrane and then
be internalized by cells through time-, concentration-, and energy-dependent pinocytic
processes [69]. Macropinocytosis, clathrin-mediated endocytosis, caveolae-mediated endo-
cytosis, and mechanisms independent of clathrin and caveolin are examples of these uptake
mechanisms [70,71]. These processes can activate several intracellular signaling pathways,
thus paving the way for different cellular fates, from proliferation and survival to apoptosis
and cell death [72,73]. Chitosan intracellular degradation has been suggested to be associ-
ated with lysosomes [74]. Specific receptors for chitosan have not been reported to date,
suggesting that the mechanism of chitosan’s cellular binding might be a nonspecific electro-
static interaction with the negatively charged cell membrane. Interestingly, keratinocytes
have been reported to expose several anionic residues on their membranes, supporting
the present data on chitosan-shelled OLND cellular internalization after adhering on cell
plasma membrane. Future studies aiming at elucidating the processes underlying cellular
internalization and trafficking of nanodroplets will be considered.

4. Materials and Methods
4.1. Materials and Instruments

Sterile plastics were from Costar (Corning, NY, USA), Jet Biofil (Guangzhou, China),
and VWR (Radnor, PA, USA); ethanol (96%) was provided by Carlo Erba (Milan, Italy);
soybean lecithin (Epikuron 200®) was from Cargill (Hamburg, Germany); the 1–800 Mil-
lipore system to obtain ultrapure water was from Millipore (Molsheim, France); Ultra-
Turrax SG215 homogenizer was from IKA (Staufen, Germany); the optical microscope
XDS-3FL Optika from Ponteramica, Italy; the Philips CM10 electron microscope was from
Philips (Eindhoven, Netherlands); the Nanobrook 90Plus Particle Size Analyzer was from
Brookhaven (New York City, NY, USA); the Hach Lange LDO oximeter was from Hach
Lange (Derio, Spain); the Beckman Coulter Allegra 64R Centrifuge was from Beckman
Coulter (Brea, CA, USA); the Orion Model 420A pH Meter was from Thermo Scientific
(Waltham, MA, USA); the HaCaT cells were from Cell Line Service GmbH (Eppelheim, Ger-
many); Dulbecco’s Modified Eagle Medium (DMEM) and RPMI 1640 medium were from
Invitrogen (Carlsbad, CA, USA); streptomycin was from Cambrex Bio Science (Vervies, Bel-
gium); the humidified CO2/air-incubator was from Thermo Fisher Scientific Inc. (Waltham,
MA, USA); the LSM710 inverted confocal laser scanning microscope equipped with Plan-
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Neofluar 63 × 1.4 oil objective was from Zeiss (Oberkochen, Germany); the Synergy HT
microplate reader was from Bio-Tek Instruments (Winooski, VT, USA; the CellTiter-Glo®

Kit was from Promega (Madison, WI, USA); Prism version 8.0 software was from Graph-
Pad Software (San Diego, CA, USA). 1,1,1,2,3,4,4,5,5,5-Decafluoropentane (purity ~60%),
chitosan low molecular weight (degree of deacetylation 75–85%, 50–190KDa), chitosan
medium molecular weight (degree of deacetylation 75–85%, 190–310 KDa), glycol chitosan
(degree of polymerization ≥400, purity ≥60%), and methyl glycol chitosan (≥70%) were
obtained from Sigma–Aldrich (St. Louis, MO, USA). Any additional materials that are not
listed here were from Sigma–Aldrich, St. Louis, MO, USA.

4.2. Development and Manufacturing of Formulations
4.2.1. Preparation of OLND and Control Formulations

OLNDs were prepared following a multi-step protocol that was previously designed,
patented, and described by the present research group [27]. Briefly, 300 µL of an ethanol
solution containing Epikuron® 200 and palmitic acid (1% w/v) were added to 500 µL of
DFP under magnetic stirring to obtain a pre-emulsion. Then, 4.8 mL of ultrapure water
was added, and the system was homogenized using an Ultra-Turrax SG215 homogenizer
for 2 min at 24,000 rpm. Thereafter, the sample was saturated with O2 for 10 min. Finally,
to obtain the polymeric NDs, 300 µL of LW, MW, G-, or MG-chitosan aqueous solution
(1% w/v, pH 5.0) was added drop-wise under magnetic stirring. Control formulations
(free MW, LW, G-, or MG-chitosan solutions, OFND suspensions, and oxygen-saturated
solution (OSS)) were prepared by following shortened versions of the above-described
protocol: Briefly, free chitosan solutions were obtained through proper dilution of MW, LW,
G-, or MG-chitosan (1% w/v) in order to reach chitosan concentrations that were equivalent
to those contained in ND formulations, whereas OFND formulations were obtained by
omitting during ND manufacturing protocol the addition of O2. For biological experiments,
all formulations were prepared in phosphate buffer saline (PBS) pH 7.4 instead of ultrapure
water. For confocal microscopy experiments, fluorescent NDs were obtained by adding
6-coumarin (1 mg/mL) to the DFP core.

4.2.2. Sterilization of the Formulations

Firstly, the sterilization of the glassware and the components was carried out at 121 ◦C
and at a pressure of 2 bar. Subsequently, the formulations were sterilized by exposure
to UV-C for 20 min. At the end, UV-C-treated materials were incubated with cell culture
RPMI 1640 medium in a humidified CO2/air-incubator at 37 ◦C for up to 72 h, in order to
check any microbial contamination via optical microscopy.

4.3. Characterisation of Formulations
4.3.1. Characterization of ND Formulations

The average diameter, polydispersity index, and zeta potential of cOLNDs were
acquired by dynamic laser scattering (DLS). The measurements were carried out using
a particle size analyzer at a scattering angle of 90◦ and at 25 ◦C. ND nanosuspensions
were diluted in deionized filtered water before the analyses. The determination of the
zeta potential was obtained by placing the diluted ND formulations in the electrophoretic
cell, in which a 15-V/cm electric field was applied. The morphology of formulations
was observed by transmission electron microscopy (TEM). ND aqueous suspensions were
sprayed on a Formwar-coated copper grid and air-dried before analysis. The osmolarity of
the ND formulations was determined at 25 ◦C using a Knauer osmometer, whereas their
viscosity was determined at 25 ◦C using a Ubbelohde capillary viscosimeter (Schott Gerate,
Mainz, Germany).

Fourier transformed infrared (FTIR) analysis was performed using a Perkin Elmer
Spectrum 100 FT-IR (Perkin Elmer, Branford, CT, USA). The FTIR spectra of the samples
were collected in the region 4000−1–650−1. Data acquisition was carried out using spectrum
software version 10.03.05 Perkin Elmer Corporation.
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A DSC/7 differential scanning calorimeter (Perkin–Elmer, Branford, CT, USA) equipped
with a TAC 7/DX instrument controller and the Pyris program were used for thermal
analysis. Before performing the analyses, the instrument was calibrated with indium for
melting point and heat of fusion. A heating rate of 10 ◦C/min was set in the 25–200 ◦C
range. Analyses were carried out in triplicate on about 20 mg of sample aqueous suspen-
sion placed in standard aluminum sample pans for liquids (Perkin–Elmer) under nitrogen
purge. An empty aluminum pan was used as the reference standard.

4.3.2. OLND and OSS Oxygen Content

The oxygen content of OLNDs and OSS was determined by adding known amounts of
sodium sulphite and measuring the generated sodium sulphate, according to Reaction (1):

Na2SO3 +
1
2

O2 → Na2SO4 (1)

The amount of sodium sulphate was estimated by gravimetric method after the
addition of barium chloride. Briefly, an excess of barium chloride was added to the sample
under stirring. The formed precipitate was collected on a filter, washed, and, after drying,
was weighted.

4.3.3. ND Stability over Time

The physical stability of NDs was investigated by morphological analysis and by size
and surface charge determination over time for up to six months. ND morphology was
observed by TEM to confirm the integrity of ND structure.

4.3.4. Mucoadhesion Test

The in vitro mucin adhesion assay was selected to evaluate the ND mucoadhesive
properties. For this purpose, the mucin and ND interaction was determined by turbidi-
metric analysis. The ND nanosuspensions were mixed with a mucin solution (1 mg/mL)
at a 1:1 (v/v) ratio and left under magnetic stirring for 30 min. Then, the sample was
centrifuged for 5 min at 20,000 rpm and the transmittance of the supernatant was measured
at 500 nm with an UV spectrophotometer (Du730 spectrophotometer, Beckman, Coulter,
Fullerton, CA, USA) to determine the amount of free mucin. The concentration of mucin
was calculated using an external standard method. A calibration curve in the concen-
tration range between 0.1 to 1 mg/mL was obtained by analyzing the transmittance of
aqueous stock standard solutions. The amount of mucin bound to NDs was determined by
subtracting the free mucin content in the supernatant from the total amount of mucin.

4.4. In Vitro Oxygen Release

The in vitro oxygen release was evaluated by a dialysis method. The cOLND formu-
lations were sealed in a dialysis bag (cut-off 12,000–14,000 Da) immersed in the hypoxic
receiving phase (NaCl 0.9% w/v solution with an oxygen concentration reduced up to
1 mg/L by a N2 purge). The concentration of oxygen released from the different cOLND
formulations and OSS into the hypoxic solution was measured up to 24 h through Hach
Lange LDO oximeter, displaying an accuracy of 0.01 mg/L. Before each measurement,
the oximeter was calibrated in air, until stable temperature and humidity conditions
were reached.

4.5. Human Biocompatibility Studies
4.5.1. Human Keratinocyte Cell Cultures

For the studies presented here we used the HaCaT, a spontaneously transformed line
of adult human skin keratinocytes from a 62-year-old Caucasian male donor [75]. Cells,
used for the assessment of chitosan and ND biocompatibility, were grown as adherent
monolayers in DMEM supplemented with 10% fetal bovine serum, 100 U/mL penicillin,
100 µg/mL streptomycin, and 2 mM/L glutamine at 37 ◦C in a humidified atmosphere
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containing 5% CO2. Before starting the experiments, cells were washed with PBS1x,
detached with trypsin/ethylenediaminetetraacetic acid (0.05/0.02% v/v), resuspended,
and plated with fresh DMEM at standard cell densities, as detailed in the following sections.

4.5.2. ND Internalization by Human Keratinocytes

Confocal microscopy was used to evaluate the ND internalization by human ker-
atinocytes. HaCaT cells (6 × 104 cells/mL in 24-well plates) were divided into untreated or
treated with 10% v/v 6-coumarin-labeled MW, LW, G-, or MG-chitosan-shelled OLND or
OFND nanosuspensions for 24 hours under normoxic condition (20% O2) in a humidified
CO2/air-incubator at 37 ◦C. Then, HaCaT were fixed with 1% paraformaldehyde solution
for 15 min at RT and were incubated with 15 µg/mL propidium iodide (PI) to visualize
nucleic acids. Confocal images were acquired by using an Olympus IX70 inverted laser
scanning confocal microscope, and captured using FluoView 200 software (Olympus Amer-
ica Inc., Melville, NY, USA). Wavelengths of 488 and 568 nm were used to detect NDs or
the labeled nuclei, respectively. The acquisition time was 400 ms.

4.5.3. Human Keratinocyte Cell Viability

Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. HaCaT cells (105 cells/mL in 96-well plates) were left untreated
or treated with 10% v/v MW, LW, G-, or MG-chitosan free solution or chitosan-shelled
OLND/OFND nanosuspensions. After incubation for 24 h under 5% CO2 at 37 ◦C,
the medium was discarded and 20 µL of MTT in PBS (5 mg/mL) were added to the
cells for 3 additional hours at 37 ◦C. After plate centrifugation and cell supernatant dis-
carding, the dark blue formazan crystals were dissolved using 100 µL of sodium dodecyl
sulphate (SDS). The absorbance of the resulting solutions was measured at 550 nm using a
Synergy HT microplate reader at a reference wavelength of 650 nm. Data were expressed
as percentage of viability.

4.5.4. Chitosan and ND Cytotoxicity on Human Keratinocytes

The potential cytotoxic effects of free chitosan solutions and chitosan-shelled ND
suspensions were quantitated measuring lactate dehydrogenase (LDH) release from the
cells into the extracellular medium. HaCaT cells (1.5 × 105 cells/mL in 6-well plates)
were left untreated or treated with 10% v/v MW, LW, G-, or MG-chitosan solutions or
chitosan-shelled OLND/OFND nanosuspensions for 24 hours under normoxic condition at
37 ◦C. Then, the culture supernatant (1 mL) was harvested and centrifuged at 13,000× g for
30 min. Cells were washed with fresh medium, detached with scraper, washed with PBS
1×, resuspended in 1 mL of 82.3 mM triethanolamine solution, pH 7.6 (TRAP), and son-
icated on ice with a 10 s burst. Then, 5 µL of cell lysates and 50 µL of cell supernatants
were diluted with TRAP supplemented with 0.5 mM sodium pyruvate and 0.25 mM nicoti-
namide adenine dinucleotide reduced form (NADH). The Synergy HT microplate reader
was used to monitor the reaction, measuring absorbance at 340 nm (37 ◦C). The intracel-
lular and extracellular LDH activities, expressed as µmol of oxidized NADH/min/well,
was determined and the cytotoxicity was eventually calculated as the net ratio between
extracellular and total (intracellular + extracellular) LDH activities.

4.5.5. ATP Production by Human Keratinocytes

The number of metabolically active cells in culture was evaluated by determining
the levels of adenosine triphosphate (ATP) secreted by the cells into the culture medium.
HaCaT cells (6 × 104 cells/mL in 24-well plates) were left untreated or treated with
10% v/v MW, LW, G-, or MG-chitosan solutions or cOLND/cOFND nanosuspensions for
24 h in a humidified CO2/air-incubator at 37 ◦C. Then, cell supernatants were collected
and ATP levels were measured by using the CellTiter-Glo® Luminescent Cell Viability
Assay Kit, following the manufacturer’s instructions [76].
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4.6. Statistical Analysis

At least three independent experiments, each one in duplicate or triplicate, were per-
formed for every investigational study. Results are shown as means ± SD for descriptive
results or as means ± SEM for inferential results. Imaging data are shown as representative
pictures. Numerical data were also analyzed for significance by a two-way analysis of
variance (ANOVA) followed by Tukey’s post-hoc test through GraphPad Prism 8 software
(GraphPad, San Diego, CA, USA), with p < 0.05 being considered as significant.

5. Conclusions

In the present study, four different types of chitosan (LW, MW, G-, and MG-chitosan)
were challenged as candidate biopolymers for OLND shell manufacturing. The aim of the
work was to develop fine-tuned and well-characterized OLNDs, in order to identify an
optimized formulation for topical application in wound healing. cOLNDs were analyzed
for their physico-chemical characteristics, oxygen releasing abilities, and biocompatibility as
well as interaction with human keratinocytes. All chitosan-shelled nanodroplets displayed
spherical morphology, cationic surfaces, and diameters in the nanometer range, with LW
cOLNDs being the smallest one. They showed mucoadhesive properties and the capability
to store and release oxygen in a sustained manner. After cellular internalization, MG-
cOLNDs proved to be highly toxic to human keratinocytes, whereas all other OLND
formulations were well tolerated. Based on these findings, LW chitosan appears to be
the best candidate biopolymer for OLND shell manufacturing, as it associates with the
smallest sizes, the highest stability, and the lowest toxicity of nanodroplets. For these
reasons, LW chitosan should be employed as the polysaccharide of choice in any future
studies aimed at testing the effectiveness of cOLNDs as potential skin devices to treat
chronic wounds.
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