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Abstract: In designing a new drug, considering the preferred route of administration, various re-
quirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable
drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided
alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature
since scientists and clinicians invested in the optimization of materials and methods capable of
regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers,
lipid nano vesicular ones successfully support clinical candidates approaching such problems as
insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as
the blood–brain one. In this review, the authors discussed the structure, the biochemical composi-
tion, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, pronio-
somes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and
extracellular vesicles.

Keywords: lipid vesicles; niosomes; proniosomes; ethosomes; transferosomes; pharmacosomes;
ufasomes; phytosomes; catanionic vesicles; extracellular vesicles

1. Introduction

Despite relevant technological improvements, developing an effective and safe drug
can be a complex, low success rate, time-consuming, and costly practice. As reported
on the official webpage of the US Food and Drug Administration (FDA), only a small
number of treatment tools (active molecules, nanoparticles, and so on) proposed as skilled
medical products, after early testing, result as eligible for further study. In 2020, the FDA’s
Center for Drug Evaluation and Research (CDER) authorized 53 novel therapeutics, more
than double what happened from 2006–2010. More in details considering the three major
therapeutic areas, the new approved drugs are 18 (34%) cancer products, 8 (15%) Neurology
products, and 6 (11%) infectious diseases treatments. The average projected peak sales of
a just approved drug in 2020 was about USD 700 million, and this is below a long-term
average of USD 1.3 billion and a median of USD 500 million [1].

The constant development of technologies and materials resulting from the collab-
oration between sectors such as bioengineering, physics, chemistry, materials science,
pharmacology, and not least medicine, has allowed the advancement of increasingly effi-
cient drug delivery tools. Researchers and clinicians from all over the world daily pursue
the design and implementation of increasingly personalized, safe, and cheap care solutions
as new pharmacologically active molecules and nanoparticles. Recently, the application
of nanoparticles (NPs) has been established to develop drug delivery efficiency. Nano-
materials generally refer to a material characterized by having at least one dimension
in the nanometer scale (1–100 nm) [2], include nano-drug delivery systems that thanks
to their morphological, optical, mechanical, and electrical characteristics can improve
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drugs’ stability and solubility by extending their blood circulation time and enhancing
their delivery efficiency.

Metallic, polymeric, organic, and inorganic nano scaled materials including den-
drimers, nanotubes micelles, and quantum dots (QDs) have been recently assessed as drug
delivery carriers (DDC) [3–5].

Among the already numerous nanoscale DDCs, nanovesicles represent highly-promising
effective approaches to setting up therapies against cancer, inflammation infection, and
degenerative disorders.

In this review, we described the most modern lipid-based nanovesicular systems,
whether they are of biological or synthetic origin, used for the most distinct biomedical
and clinical applications. We left liposomes, already the subject of numerous and recent
scientific publications, out of the topics covered in this review, to make room for other lipidic
nanovesicles, perhaps less known, but increasingly the target of studies for drug delivery
applications such as niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes,
ufasomes, phytosomes, and catanionic vesicles. Last, but certainly not least, the type of
Lipid NanoVesicles (LNV) discussed in this review are the extracellular vesicles (EVs) and
their increasingly wide application as DDC of inorganic NPs, drugs, and nucleic acids.
For each type of LNV category covered by the discussion, we provided an updated table
listing in a very detailed way, the biochemical composition of each vesicle, its cargo, and
the application for which it has been designed and studied referring to the in vitro and
in vivo drug delivery applications of the last 10 years.

2. Proniosomes and Niosomes

Niosomes and proniosomes are LNV systems characterized by distinctive amphiphilic
structures able to improve poorly soluble drugs bioavailability. Their uniqueness is in
having a nonionic surfactant backbone while their multilamellar and unilamellar vesicles
structures appear similar to that of liposomes [6] (Figures 1 and 2).
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Figure 2. Structure of niosomes lipid vesicular systems.

It is assumed that lipophilic molecules are confined within the lipid bilayers while the
hydrophilic ones are retained in the niosomes’ aqueous partitions. This efficient compart-
mentalization improves the stability of the enclosed drugs preventing their chemical and
enzymatic degradation [7]. Proniosomes are nonionic dehydrated structured provesicles
in the powdered form or in the gel states. Provesicles are water soluble dry free-flowing
granular products that can be immediately rehydrated before use avoiding many issues
related to aqueous vesicular dispersions. Proniosomes and niosomes can be produced by
using cholesterol, non-ionic surfactants (Tween 20, 40, 80, Span 20, 40, 60, 80, 85), solvents
as chloroform and methyl and ethyl alcohols and lecithin. Usually, surfactants utilized
to produce niosomes and proniosomes are characterized by low aqueous solubility but
Tween can be successfully used to produce micelles on hydration [8].

Niosomes are similar to liposomes, but they are cheaper, exhibit a higher stability,
encapsulation efficiency, and permeability for small molecules, avoid the degradation of
phospholipids by oxidation, and are easier to store and handle. Indeed, niosomes display
some drawbacks, such as aggregation, fusion, and leakage of drugs, while proniosomes
can overcome these issues contrasting leakage, aggregation, or hydrolysis of drugs while
optimizing their storage and biodistribution, adding the possibility of sterilization, room
temperature storage, and being rehydrated instantly to create niosomes [9].

Proniosomes have several pluses over niosomes, contrasting leakage, aggregation, or
hydrolysis of drugs while optimizing their storage and biodistribution.

Although the first applications of non-ionic surfactant nanovesicles were cosmetic
ones [10,11], in Tables 1 and 2, we report the numerous and recent drug delivery applica-
tions for proniosomes and niosomes, respectively.
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Table 1. Proniosomes’ drug delivery applications.

Composition Cargo Application Reference

Cholesterol, Span 60 and maltodextrin Aceclofenac Anti-inflammatory in osteoarthritis [12]

Cholesterol, Span 60, maltodextrin
and stearylamine Acemetacin Anti-inflammatory [13]

Cholesterol, lecithin, Span 60 and
Span 40 Atenolol Hypertension treatment [14]

Cholesterol, lecithin and Tween 80 Atorvastatin calcium Anti- hyperlipidemic [15]

Cholesterol, lecithin and Span 40 Boswellic acid Anti-inflammatory [16]

Cholesterol, lecithin and Span 60 Caffeine Migraine treatment [17]

Cholesterol and Span 60 Cilostazole Anti-platelet [18]

Cholesterol, lecithin and Span 60 Clozapine Treatment of psychiatric disorders [19]

Cholesterol, lecithin and cremophor
RH Curcumin Against ocular inflammation [20]

Cholesterol, Span 60 and Tween 80 Ciprofloxacin Anti-inflammatory [6]

Cholesterol, Span 40 TPGS Docetaxel Anticancer treatment [21]

Cholesterol and Span 60 Famotidine H2 receptor antagonist [22]

Cholesterol, Sorbitol and Span 80 Flurbiprofen Anti-inflammatory [23]

Cholesterol and Brij35 D-limonene Cancer therapy [24]

Cholesterol, Span 60 Itroconazole Antimicotic against
candida albicans [25]

Cholesterol, lecithin and cremophor
RH 40 Lacidipine Treatment of hypertension

and atherosclerosis [26]

Cholesterol, Tween 80, sorbitol
and sucrose Letrozole Breast cancer [27]

Cholesterol, Span 80 and lecithin Lignocaine Hydrochloride Dental anesthesia [28]

Cholesterol, Span 60 and Tween 60 Lomefloxacin HCl Treatment of bacterial conjunctivitis [29]

Cholesterol, lecithin and Lutrol F68 Lornoxicam
Anti-inflammatory for rheumatoid

arthritis, osteoarthritis
and surgeries

[30]

Cholesterol, lecithin and Span 60 Embelin Analgesic and anti-inflammatory [31,32]

Span 40, Span 60, and Brij series 72 Fluconazole Management of dental pain [33]

Cholesterol, lecithin and Span 60 Naproxen Anti-inflammatory [32]

Cholesterol, Span 60 and maltodextrin Pentazocine Management of cancer pain [34]

Cholesterol, Span 60, maltodextrin,
pullulan and DPPH Resveratrol

Controlling free radicals causing
oxidative stress-induced
cardiovascular diseases,
atherosclerosis, cancer

[35]

Cholesterol, Span 60, lecithin
and stearylamine Risperidone Treatment of schizophrenia and

other psychiatric disorders [36]

Cholesterol, lecithin and Span 80 Tramadol Anti-inflammatory
and antinociceptive [37]

Cholesterol, Span 60, lactose
and mannitol Vismodegib Carrier for the pulmonary route [38]
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Table 2. Niosomes’ drug delivery applications.

Composition Cargo Application Reference

Span 60, cholesterol and bile salt Acetazolamide Decrease ocular pressure in
glaucoma patients [39]

Span 60, cholesterol, HMPC and carbopol Acetazolamide and carvedilol Decrease ocular pression in
glaucoma patients [40]

Cholesterol, lecithin, Span 60 and Tween 60
Acyclovir Antiviral

[41]

Span60, Cholesterol and DCP or Span60,
Cholesterol and TPGS [42]

Cholesterol and Span 40 Betaxolol Glaucoma treatment [43]

Ergosterol, Span 60 and Tween 60 Carum Anticancer [44]

Cholesterol and Span/Tween 60

Carvedilol

Congestive heart failure, coronary artery
disease, postmyocardial settings [45]

Bile salt-enriched vesicles, with 20% sodium
cholate and 30% sodium taurocholate

Beta receptor blocking activity to preclude
angina and cardiac arrhythmias [46]

Cholesterol, Span 60 and Tween 60 Cephalexin Antibacterial [47]

Cholesterol, Span 40 and Tween 40
Ciprofloxacin Antibacterial

[48]

Cholesterol, Span 60 and Tween 60 [49]

Cholesterol, span and tween 20 Curcumin Antinociceptive and anti-inflammatory [50]

Cholesterol, Span 80, PEG Daunorubicin and anti-CD123 Treatment of acute myeloid leukemia [51]

Cholesterol, Span 40 and tween 40 D-limonene Cancer therapy [52]

Pluronic L64, Tween 60, EMG 707 Ferrofluid
Doxorubicin

Therapy against chronic
myelogenous leukemia [53]

Pluronic L64, Cholesterol and transferrin Cancer therapy [54]

Cholesterol, Span 40 and tween 40 Doxorubicin
and Hydrophobin-1 Cancer therapy [55]

Cholesterol and Span 60 Doxorubicin and
N-lauryl glucosamine Targeted cancer therapy [56]

Cholesterol, Span 60 and Tween 60 Doxycyclin Treatment of infection-associated
prostate cancer [57]

Cholesterol and Span 60 Doxycyclin hyclate Management of ocular diseases [58]

Cholesterol, Span 60 and phospholipid 90G Embelin Diabetes treatment [59]

Span 40, Span 60, and Brij series 72 Fluconazole Antifungal treatments [60]

Cholesterol and Span 60 Flurbiprofen Anti-inflammatory [61]

Cholesterol, Span 60 and Tween 65 Gemcitabine and cisplatin Lung cancer treatment [62]

Cholesterol, Span 40 and Tween 80 Levofloxacin Antibacterial [63]

Cholesterol and Span 60 Linezolid Antibacterial [64]

Cholesterol, Span 80 and Tween 80

Methotrexate Solid tumor treatment

[65]

Span 60, PVA and cremophor RH40 [66]

Cholesterol and glucopyranoside [67]

Cholesterol and Span 40 Metformin hydrochloride Avoid Metformin-associated lactic acidosis
in the treatment of diabetes mellitus [68]

Cholesterol and Span 60 Minocyclin Antibacterial coating of dental implants [69]

Cholesterol and Tween 60 Moxifloxacin Antimicrobial [70]

Cholesterol and tyloxapol Nevirapine HIV treatment [71]

Cholesterol, Span 60 and SolulanC24 N-palmitoylglucosamine Brain targeting of dynorphin-B [72]

Cholesterol, Span 60 and PEG
Simvastatin

Against myocardial
ischemia/reperfusion injury [73]

Cholesterol, Span 20 and Span 60 Pediatric transdermal
dyslipidemia treatment [74]
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Table 2. Cont.

Composition Cargo Application Reference

Cholesterol and sorbitan monostearate Tamoxifen citrate
Incorporated in hydrogel as a

pH-responsive drug delivery for breast
cancer treatment

[75]

Cholesterol and Span 20 Tamoxifen citrate
and doxorubicin Breast cancer treatment [76]

Cholesterol, Span60, PEG and TAT peptide Tenofovir HIV treatment [77]

Cholesterol, Span 60 and Tween 40

Timolol maleate Glaucoma treatment

[78]

Cholesterol and Span 60 [79]

Cholesterol and Span 40

Cholesterol and Span 60 Timolol maleate and
Brimonidine tartrate Glaucoma treatment [80]

Cholesterol, Span 60 and Tween 60 Tobramycin Antibacterial [81]

Cholesterol, Span 60 and Tween 40
Vancomycin

Antibacterial [82]

Cholesterol and Span 60 Antibacterial coating for bone plates [83]

Cholesterol and Tween 40 Zolmitriptan Migraine treatment [84]

Cholesterol and Span 60 Chlorotoxin
and temozolomide Targeting and treatment of glyomas [85]

Cholesterol, Span 60 and PEG Doxorubicin, curcumin and
tLyp-1 peptide Glioblastoma treatment [86]

PEG, Tween 80, Octadecylamine Akt 1 siRNA, Au NPs
and Thymoquinone Treatment of resistance in breast cancer [87]

Span 80 and PEG

BBIQ [Toll-like receptor (TLR)
7 agonist] and D-1MT

[Indoleamine2, 3-dioxygenase
(IDO) inhibitor]

Cancer vaccine [88]

Tween 80 and DTPA-Cl BMP-7 plasmid Bone regeneration [89,90]

Cholesterol and Span 60 CD9 and CD63 tetraspanins Exosomes immunoassays [90]

Cholesterol, monopalmitin and Dicetyl phosphate Influenza antigen Vaccine and immune response [91]

Cholesterol, Span 80 and Tween 80 NLS-Mu-Mu fusion protein Gene delivery [92]

Tween 60, DOTMA and lycopene pCMS-EGFP plasmid Gene delivery to the brain [93]

Cholesterol, Span 20 and plier-like cationic
lipid A (PCL-A) pDNA or siRNA Nucleic acid delivery [94]

DOTMA, Tween 20 and Squalene pEGFP, pGFP, MC-GFP Treatment of inherited retinal diseases [95]

Cholesterol and Span 20 pH (Low) insertion peptide
(pHLIP) Tumor targeting [96]

Cholesterol, Tween 20 and cationic lipid
(N1,N1-dimyristeroyloxyethyl-spermine)

plasmid DNA-encoding
ovalbumin (pOVA) Skin vaccination [97]

2,3-di(tetradecyloxy)propan-1-amine cationic lipid,
squalene and Tween 80 Plasmid pCMS-EGFP Delivery of genetic materials to the retina [98]

Cholesterol and Span 60
Protective antigen (PA) and

PA domain 4 (D4) of
Bacillus anthracis

prophylaxis against anthrax [99]

Span 80, DOTAP, TPGS and indocyanine green siGFP, anti-miR-138 Promote osteogenesis in hMSCs,
theranostic applications [100]

Cholesterol, Tween 85 and DDAB siRNA Melanoma treatment [101]

Cholesterol, Span 20 and plier-like cationic
lipid B (PCL-B)

siRNA against anti-apoptotic
genes (Mcl-1, Bcl-2 and

survivin) and doxorubicin
Breast cancer therapy [102]

Cholesterol, Span 60 and PEG siRNA/proteamine and iron
superparamagnetic NPs Breast cancer therapy [103]
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Table 2. Cont.

Composition Cargo Application Reference

Cholesterol, DOTAP, PEG and Tween 60
siRNA targeted the CDC20

mRNA, doxorubicin
and quercetin

Cancer treatment [104]

Cholesterol and Tween 80 Ciprofloxacin, rifabutin and
lignin Ag NPs Antibacterial [105]

Cholesterol and Span 80 Curcumin and Ag/Cu NPs Antibacterial [106]

Ergosterol, Span 60 and Tween 60 Protamine-condensed DNA
and Fe3O4 NPs

Magnetic properties and
cargo-targeted delivery [107]

Thanks to their capability to store and deliver both hydrophilic and hydrophobic medi-
cations through topical, oral, transmucosal, pulmonary, ocular, and parenteral/intravenous
administration, niosomes and proniosomes are increasingly used as vaccines and treat-
ments for infection, inflammation, cancer, and many other acute or chronic diseases.

3. Ethosomes

Ethosomes were designed and developed in 2000 by Touitou et al. [108] as an ad-
vanced noninvasive passive lipid-based delivery system. As represented in Figure 3, these
carriers are lipid bilayers composed of phospholipids, water, and high concentrations
of ethanol which gives them remarkable transdermal permeability skills. Ethanol and
lipid molecules act in the polar head group region increasing membrane fluidity and
permeability. Ethosomes have significantly improved skin delivery, carrying the active
compounds in the deeper layers of the skin in occlusive and non-occlusive conditions. In
addition, they display high deformability, encapsulation efficiency, stability, biocompatibil-
ity, and a negative charge due to ethanol that leads to small vesicles size, enhancing the
bioavailability of the compounds. Despite these advantages, there are some drawbacks
caused by the volatile nature of ethanol, such as problems related to system instability,
drug leakage, and skin irritation [109]. These vesicles are successfully used for topical
administration of a considerable variety of drugs such as antifungals, antivirals, antibiotics,
anti-inflammatories, and many others as detailed in Table 3.
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Table 3. Ethosomes’ drug delivery applications.

Composition Cargo Application Reference

Soy lecithin 5-Aminolevulinic acid Treatment of hypertrophic scars [110]

Soy phosphatidylcholine 5-fluorouracil Treatment of skin cancers [111,112]

Soy lecithin and cholesterol Apixaban Anticoagulant [113]

Soy phosphatidylcholine Azelaic acid Treatment of acne [114]

Soy phosphatidylcholine and cholesterol Boswellic acid Anti-inflammatory [115]

Phosphatidylcholine Caffeic acid Antioxidant [116]

Soy lecithin Curcumin and
glycyrrhetinic acid Psoriasis treatment [117]

DSPE-PEG2000, hydrogenated soy
phospholipids and cholesterol

Curcumin, hyaluronic acid
and CD44 Psoriasis treatment [118]

Soy phosphatidylcholine, polyethylenimine
and sodium cholate

Doxorubicin
and curcumin Melanoma treatment [119]

Lecithin and Tween 80 Fenretinide Chemopreventive for breast cancer [120]

Soy phosphatidylcholine, cremophor-A25
and chitosan Ferrous chlorophyllin Photodynamic therapy for the

treatment of squamous cell carcinoma [121]

Phospholipid 90G Fisetin Skin cancers treatment [122]

Soy phosphatidylcholine Flurbiprofen Anti-inflammatory [123]

Soy phosphatidylcholine Griseofulvin Antifungal treatment [124]

Cholesterol and lecithin Hyaluronic acid Transdermal delivery of drugs [125]

Soy phosphatidylcholine, cholesterol HRP IgG Transdermal delivery of vaccines [126]

Soy phosphatidylcholine, cholesterol and
deoxycholic acid Indomethacin Treatment of pain and inflammation

in rheumatoid arthritis [127]

Soy lecithin and cholesterol Luteolin Anti-tumor activity in
hepatocellular carcinoma [128]

Soy lecithin Methotrexate Treatment of psoriasis [129]

Soy phosphatidylcholine Methoxsalen Treatment of vitiligo [130]

Soy phosphatidylcholine, cholesterol
and mannitol Paenolol Anti-inflammatory, antidiabetic

and pain-relieving [131]

Soy phosphatidylcholine Paeoniflorin Arthritis therapy [132]

Soy phosphatidylcholine and cholesterol Phenylethyl resorcinol Skin Lightening Applications [133]

Soy phosphatidylcholine, stearylamine and
propylene glycol Resveratrol Antioxidant [134]

Phosphatidylcholine Retinyl palmitate Acne treatment [135]

Soy phosphatidylcholine Sulforaphane Treatment of skin cancers [136]

Soy phosphatidylcholine Terbinafine hydrochloride Antifungal treatment [137]

Phospholipid 90G Thymoquinone Treatment of acne [138]

Soy phosphatidylcholine and cholesterol Thymosin β-4 Wound repair [139]

4. Transfersomes

Many drug delivery systems have been designed over the past decades for trans-
dermal administration, which offers many advantages over other routes thanks to its
capability of escaping presystemic metabolism, tune drug release reducing variation in
drug levels, enhancing pharmacological response. Compared to most other transdermal
delivery methods including chemical permeation enhancers, sonophoresis, microneedles,
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lipid vesicles thanks to their distinctive composition can transport both hydrophilic and
lipophilic drugs [140].

Among the LNV, transfersomes, first proposed in the early 1990s, are ultra-deformable
elastic vesicles successfully employed as a non-occluded method able to permeate skin
through the stratum corneum reaching the dermis and blood circulation [141]. As schema-
tized in Figure 4, they are firstly characterized by an aqueous core enclosed by a lipid
bilayer of amphipathic constituent as phosphatidylcholine, lecithin, or a mixture of lipids.
In addition to a very low percentage of alcohol (3–10%), they are made with 10–25% of
bilayer-softening complexes, surfactants, or edge activators as Tweens, Spans, sodium
cholates, and deoxycholate. The appropriate phospholipids/surfactants ratio tunes transfer-
osomes’ membrane elasticity reducing vesicles’ rupture chances through the skin [142,143].
By having edge activators in their structure, thanks to their remarkable elastic proper-
ties, transfersomes defeat many main liposomes’ weaknesses resulting in more apt to
squeeze themselves through the skin barrier [144]. Despite these advantageous properties,
transfersomes exhibit also some drawbacks, i.e., chemical instability due to the oxidative
degradation and expensiveness in the precursors and manufacturing [143].
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Thanks to their enhanced skin-penetration abilities, transfersomes are competent to
set up skin drug storage area for continuous therapeutic molecules delivery releasing low,
as well as high, molecular weight drugs as antioxidants, chemotherapy, anti-Inflammatory,
and corticosteroids (Table 4).



Nanomaterials 2021, 11, 3391 10 of 38

Table 4. Transfersomes’ drug delivery applications.

Composition Cargo Application Reference

Soy lecithin and Span 80 Aceclofenac Anti-inflammatory in osteoarthritis [145]

Soy phosphatidylcholine and Tween 80 Baicalin Treatment of skin wounds [146]

Soy phosphatidylcholine and Tween 80 Carvedilol Prevent skin carcinogenesis [147]

Phospholipon® 90G and sodium cholate Cilnidipine Treatment of hypertension [148]

Soy phosphatidylcholine Deferoxamine Treatment of pressure ulcers [149]

DPPC, cholesterol, TPGS and folate Docetaxel Treatment of glioblastoma multiforme [150]

Soy phosphatidylcholine and sodium cholate Epigallocatechin-3-gallate
and hyaluronic acid Anti-aging and antioxidant [151]

Soy phosphatidylcholine and Tween 80 Eprosartan mesylate Treatment of hypertension [152]

Soy phosphatidylcholine and Span 80 Genistein (GEN-TF2) Therapeutic or preventive strategy
against neurodegenerative diseases [153]

Soy lecithin and Sodium Lauryl Sulphate Ivabradine HCl Treatment of stable angina pectoris [154]

Soy lecithin and Tween 80 Mangiferin Treatment of skin wounds [155]

Phospholipon (PL) 90H and Span 60 Natamycin Antifungal [156]

Phospholipon 90 G® and sodium cholate Pentoxifylline Treatment of intermittent claudication
and chronic occlusive arterial diseases [157]

Lecithin and Tween 20/80 Resveratrol Antioxidant [158]

Soy phosphatidylcholine, Tween 80 and
ceramide III Retinyl palmitate Antioxidant [159]

Soy phosphatidylcholine and emu oil Tamoxifen Transdermal therapy for breast cancer [160]

Soy lecithin and Tween 80 Taxifolin Antioxidant [161]

Soy phosphatidylcholine and Tween 80 Tocopherol Antioxidant [162]

Soya lecithin and Tween 80 Zolmitriptan Migraine treatment [163]

Soy lecithin and sodium deoxycholate Human growth hormone Transdermal hormone delivery [164]

Egg phosphatidylcholine, stearylamine and
Tween 20 PnPP-19 peptide Treatment of erectile dysfunction [165]

5. Pharmacosomes

The name pharmacosomes refers to the amphiphilic, zwitterionic, stoichiometric
complexes of polyphenolic compounds with phospholipids, as schematized in Figure 5.
The success in the use of pharmacosomes is explained by the surface and bulk interactions
of lipids with drugs since the latter possess an active hydrogen atom as –OH, -COOH,
-NH2, which can be esterified to the lipid causing an amphiphilic compound [166,167].

The use of pharmacosomes in drug delivery has several advantages over that of
other vesicles such as niosomes, transferosomes, and liposomes. More in detail, any
active molecules in which a carboxyl group is present can be esterified without a spacer
chain as opposed to those characterized by the presence of amino or hydroxyl groups
which, in order to be esterified, require spacer groups. Pharmacosomes design is based
on the phospholipids/water superficial and bulk interaction; the drug molecule and
the connected lipid molecule, respectively, behave like the polar head group and the
lipidic chain giving the molecule an amphipathic character. Thanks to their hydrophilic
and lipophilic properties, these lipid LNV improve drugs’ dissolution in gastrointestinal
fluid, increasing the bioavailability of low soluble treatments avoiding leak and rupture
release [168,169]. Pharmacosomes’ in vivo pharmacokinetic performances are conditioned
by vesicles’ dimension, by the drug molecule’s functional groups, by the lipids’ fatty acid
chain length, and, last but not least, by the spacer groups’ availability. The high tunability
of each of the components listed above makes these types of vesicles excellent candidates
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for the effective delivery of a wide range of active molecules including anti-cancer and
anti-inflammatory remedies (Table 5) [170].
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Among the few limitations relating to the use of pharmacoses, reference should be
made to their susceptibility to hydrolyzation, fusion, or aggregation during storage or
engineering processes [171,172].

Table 5. Pharmacosomes’ drug delivery applications.

Composition Cargo Application Reference

Doxifluridine and DOTAP miR-122 Treatment of hepatocellular
carcinoma [173]

Etoricoxib and
phosphatidylcholine

Rheumatoid
arthritis treatment [174]

Folic Acid-Modified
2-Deoxyglucose and

amino ethanol
Targeting anti-tumor therapy [175]

Ibuprofen and
Phosphatidylcholine

from soy
Anti-inflammatory [176]

Levodopa, egg lecithin
and chitosan Parkison’s treatment [177]

Naproxen and soy lecithin Rheumatoid
arthritis treatment [178]

Rosuvastatin, soy lecithin
and cholesterol Hyperlipidemia treatment [179]

6. Ufasomes

Unsaturated fatty acid vesicles preparation, more commonly known as ufasomes, was
first reported in 1973 by Gebicki and Hicks [180]. In a controlled pH range, from 7 to 9,
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they are a closed lipid bilayered suspension, made from unsaturated fats and their ionized
species. In detail, fatty acid molecules’ hydrocarbon tails are directed toward the deeper
membrane layer while the carboxyl heads are in contact with water [181], as schematized
in Figure 6. Oleic and linoleic acid (cis, is-9,12-octadecadienoic acid), the major ufasomes’
constituents, confer to these nanovesicles a more versatile nature than that of the other LNV,
by ranking them between different nanosystems formed from double-chain amphiphiles
and from single-chain surfactants micelles. Their biochemical composition makes them
easily to assemble and real biocompatible [182,183]. By enhancing ufasomes stability
with the identification of the appropriate fatty acid, pH range, and lipoxygenase amount,
increasingly targeted and effective drug delivery solutions are being developed (Table 6).
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Table 6. Ufasomes’ drug delivery applications.

Composition Cargo Application Reference

Cholesterol and oleic acid Cinnarizine Antihistaminic activity [184]

Phosphatidylcholine
from soy

and oleic acid
Minoxidil Hypertension treatment [185]

Phosphatidylcholine
from soy

oleic and linoleic acid
Oleuropein Antioxidant activity [183]

Oleic acid and tea tree oil Oxiconazole Candida albicans treatment [186]

Glyceryl oleate Terbinafine hydrochloride Candida albicans treatment [187]

7. Phytosomes

Although for a long time phyto-pharmaceuticals have a prominent position in the
therapeutic scene, it should be emphasized how phyto-active constituents as phenolics,
flavonoid, and terpenoids demonstrate considerable in-vitro bio-action but are still charac-
terized by low in-vivo effectiveness due to their high molecular weight, low lipid solubility,
and bioavailability [188]. Phytosomes nanovesicles originating by Phyto-Phospholipid
Complex (PPC), have been developed as a capable strategy to improve natural drugs
delivery and bioavailability. PPCs originate by the phospholipids’ polar head and active
constituents’ interactions. The two long fatty acid chains do not take part in the forma-
tion of the complex, they can interchange encapsulating the polar region of complexes
originating a lipophilic side when resuspended in water (Figure 7) [189].
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Phytosomes have many structural and functional aspects in common with liposomes
and tranferosomes such as the capability to improve the solubility of weakly soluble
polyphenolic phytochemicals. Otherwise, phytosomes and transferosomes are more stable
than liposomes in 4 ◦C and 25 ◦C aqueous media up to three months since liposomes should
be freeze dried to preserve their stability. Phytosomes, as well as transferosomes, exhibit
superior dermal penetration properties leading noticeable accumulation in the epidermis
and dermis. Since the phytosomes configuration is grounded on the H-bond interaction
between the phospholipid molecules’ polar moiety and the phytoconstituents, the laded
compounds permanence is higher than in other lipid nanovesicles [190]. The numerous
and very recent drug delivery applications collected in Table 7 show how phytosome
nanotechnology will definitely get more efficient the ways of bioactive phytochemicals
therapeutic and aesthetic delivery counteracting the bottlenecks of the low absorption and
poor penetration rate across biological barriers improving herbal-originated compounds
pharmacodynamic and pharmacokinetic and assets [190].

Table 7. Phytosomes’ drug delivery applications.

Composition Cargo Application Reference

Phosphatidylcholine Abutilon indicum and Piper longum Hepatoprotective effect [191]

Phosphatidylcholine Annona muricata L. aqueous extract Treatment of major
depressive disorders [192]

Milk phospholipids Ascorbic acid and α-tocopherol Antioxidative [193]

Phosphatidylcholine Berberine Diabetes treatment [194]

Phosphatidylcholine Chicoric acid and chlorogenic acid from the
Echinacea plant Antioxidant activity [195]

Egg phospholipid Chrysin Diabetes treatment [196,197]

Lecithin Diosgenin Lung cancer treatment [198]

Phosphatidylcholine Diosmin Vascular protection activity [199]

Phosphatidylcholine and piperine Domperidone Anti-emetic effect [200]

Lecithin Ethanolic extract of leaves of Bombax ceiba Hepatoprotective effect [201]

Lipoid® S45
Flavonoids from Citrullus colocynthis,

mormodica balsamina l. and mormodica
dioica roxb.

Diabetes treatment [202]

Lipoid® S100 and Phosal® 75 SA Genistein Hepatocellular carcinoma treatment [203]
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Table 7. Cont.

Composition Cargo Application Reference

Soy Hydrogenated Phosphatidylcholine Icariin Treatment of ovarian cancer [204]

Phosphatidylcholine Momordica charantia extract Hypoglycemic effect [205]

DPPH and phosphatidylcholine Persimmon extract Antioxidative [206]

Phosphatidylcholine Propolis Antioxidant activity [207]

DPPC Rutin Antioxidant for the prevention of
liver inflammation [208]

Lecithin Silymarin Antioxidant, hepatoprotective and
anticancer activity [209]

Lecithin Taxifolin rich fraction of Cedrus deodara
bark extract Breast cancer treatment [210]

Soy Hydrogenated Phosphatidylcholine Thymoquinone Lung cancer treatment [211]

Phosphatidylcholine Tripterine Cancer treatment [212]

Lipoid S100 Tripterine and selenium Arthritis treatment [213]

Phosphatidylcholine Umbelliferone Photo-protective and
antioxidant activity [214]

8. Catanionic Vesicles

An innovative class of biocompatible and biodegradable drugs lipidic nanovehicle
is represented by the catanionic vesicles for their capability to improve the stability and
cellular uptake of a wide range of active molecules [215]. These hybrid nanovesicles
spontaneously form when unequal amounts of cationic and anionic single-tailed surfactants
are dispersed in water [216] (Figure 8).
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These nanovesicles are produced by using easily accessible cheap surfactants and, in
comparison with phospholipid vesicles, are thermodynamically advantaged in terms of
colloidal stability. Alkyl ammonium bromide and gemini surfactants such as bis-quaternary
ammonium salts have been used for catanionic vesicles production; however, since they are
cytotoxic and not biodegradable, the conjugation with safer molecules is being successfully
considered [217]. Their low production costs, higher stability and drug loading capability,
together with the fact that they suffer less from ruptures and pressure drops make them
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excellent drug delivery vehicles for vaccination and anti-microbial, cancer, and inflamma-
tory applications (Table 8). Thus, although catanionic vesicles have a huge applicability in
biomedicine, they can suffer safety problems due to their eventual low bio- and emocom-
patibility. Numerous ongoing researches point to the optimization of their morphology,
hydrophobicity, and ionic charge by carefully choosing the proper surfactant and by tuning
the anionic/cationic surfactant ratio eventually adding some suited additive [218].

Table 8. Catanionic vesicles’ drug delivery applications. In the composition column, C is the cationic and A the anionic compound.

Composition Cargo Application Reference

C: ester functionalized morpholinium and
imidazolium-based surface active ionic liquids

A: sodium butyrate Curcumin
Antimicrobial activity [219]

C: CTAB
A: SDS Lung cancer treatment [220]

C: CTAB
A: SDS Diclofenac sodium Anti-inflammatory [221]

Serine-based surfactants
C: 16Ser
A: 8-8Ser

Doxorubicin

Cancer treatment [222]

C:
4-cholesterocarbonyl-4′-(N,N,N-triethylamine

butyloxyl bromide) azobenzene
A: SDS

Antioxidant activity [223]

C: CTAT
A: sodium dodecylbenzenesulfonate Francisella tularensis lisate Tularemia vaccine [224]

C: benzyldimethylhexadecyl
ammonium chloride

A: sodium 1,4-bis (2-ethylhexyl) sulfosuccinate
Insulin Diabetes treatment [225]

C: Azobenzene-based surfactant
A: sodium dodecylbenzenesulfonate Paclitaxel and Bcl-2 siRNA Breast cancer treatment [226]

C: hexadecyltrimethyl ammonium
copper trichloride

A: SDS
Toluidine blue and Rose Bengal Antimicrobial Photodynamic Therapy

against Escherichia coli [227,228]

C: CTAC
A: SDS Trans-resveratrol Antioxidant and radical

scavenging activity [229]

C: arginine-based surfactants
A: sodium laurate, sodium myristate and 8-SH Antimicrobial and antibiofilm activity [218]

C: cetalkonium chloride
A: diclofenac sodium, flurbiprofen sodium or

naproxen sodium

Anti-inflammatory drug release from
contact lenses [230]

C: chlorambucil prodrug
A: sodium bis (2-ethylhexyl) sulfosuccinate Cancer treatment [231]

C: Cytarabine hydrochloride
A: Sericin protein surfactant Cancer treatment [232]

C: CTAT
A: sodium dodecylbenzenesulfonate

Extraction of cell surface components of
Neisseria gonorrhoeae into the leaflet of
the vesicles to create artificial pathogens

for vaccines

[233]

C: doxorubicin
A: gemini surfactant Cancer treatment [234]

C: DTAB
A: dioctyl sulfosuccinate sodium salt Drug delivery for cystic fibrosis [235]

C: hexamethylene-1,6-bis
(dodecyldimethylammonium) dibromide

A: diclofenac sodium
Antimicrobial activity [236]

C: methylimidazolium- or pyridinium-based
surface active ionic liquids

A: sodium N-lauroyl sarcosinate
Antimicrobial activity [237]
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Table 8. Cont.

Composition Cargo Application Reference

C: methylimidazolium- or pyridinium-based
surface active ionic liquids

A: sodium bis(2-ethyl-1-hexyl) sulfosuccinate
Antimicrobial activity [238]

C: NαNω-Bis(Nαcaproylarginine)
α,ω-propyldiamide

A: Lichenysin
Antimicrobial and antifungal activity [239]

C: N(π), N(τ)-bis(methyl)-L-Histidine
tetradecyl amide

A: lysine-based surfactant
Nα-lauroyl-Nεacetyl lysine or

sodium myristate

Antimicrobial activity [240]

C: N-dodecylamino-1-deoxylactitol
A: ketoprofen Anti-inflammatory activity [241]

9. Extracellular Vesicles

The most heterogeneous and versatile class of lipid vesicles is certainly that of extra-
cellular vesicles (EVs) (Figure 9) including apoptotic bodies, microvesicles, and exosomes.
These vesicles are ubiquitarian and can be isolated from cells culture media and from
all the major biological fluid as urine, plasma, saliva, amniotic and cerebrospinal fluid,
semen, among others [242–245]. Both apoptotic bodies and microvesicles, with dimensions
ranging between 500 nm and 2 µm and from 50 nm to 1 µm, respectively, arise from plasma
cell membrane outward blebbing and fragmentation. On the other side, exosomes, deriving
from the endocytic pathway, have diameters between 30 to 120 nm [246]. Many authors
reported about the EVs use in drug delivery since their surface is characterized by antigens,
related to the parental cells, able to direct specific homing or targeting phenomena [247].
Although the EVS, as the main physio-pathological intracellular communication mediators,
are already in origin able to transport miRNA, proteins, and other biological molecules,
their morpho-functional and biochemical characteristics make them excellent candidates
for post isolation nanotechnological modifications. In the last twenty years, numerous
studies show the great potential of these vesicles in both the diagnostic and therapeutic
fields [248]. Their high biocompatibility, low immunogenicity coupled with a superior
loading capability make them proper tools for post isolation drug delivery load and en-
gineering. In addition to a whole series of chemical or biological functionalization, many
studies are referring to the possibility of loading them with cellular organelles such as
mitochondria, NPs, drugs, and nuclei acids [249–251].
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Although the intrinsic complexity related to the EVs’ size and natural (batch-to-batch)
heterogeneity makes their drug delivery application much more complex than that with
merely synthetic production systems, many exogenous EVs’ active molecules loading
methods have been successfully proposed for the clinical EVs’ translation [252] (Table 9).

Table 9. Extracellular vesicles’ drug delivery applications.

Parental cell Cargo Application Reference

EVs from HEK293T cells Angiotensin converting enzyme II
(ACE2)

Protect from SARS-CoV-2 infection by
competitively bound to virus against

host cells
[253]

Milk-derived exosomes Anthocyanidins Anti-proliferative and anti-inflammatory in
lung cancer [254]

Exosomes from breast and colorectal
cancer cells Aspirin Cancer therapy [255]

Exosomes from MIN-6 cells BAY55-9837 Increase insulin production for type 2
diabetes mellitus [256]

Exosomes from macrophages Berberine Spinal cord injury treatment [257]

EVs from human umbilical cord
mesenchymal stem cells Cannabidiol Increase the therapeutic efficacy of

doxorubicin in triple negative breast cancer [258]

Exosomes from umbilical
cord-derived macrophages Cisplatin Ovarian cancer cells treatment [259]

EVs from macrophages

Curcumin

Neuroprotection and ischemia-reperfusion
injury treatment [260]

Inhibit the phosphorylation of Tau protein [261]

Exosomes from mesenchymal stem cells Attenuate the progression of osteoarthritis [262]

EVs from HEK293 cells Myocardial infarction treatment [263]

Exosomes from bone marrow-derived
mesenchymal stem cells Cerebral ischemia treatment [264]

Exosomes from HEK293 cells Curcumin and
RAGE-binding peptide Acute lung injury treatment [265]

EVs from smooth muscle cells Cystatin C Protection and healing of the nervous
system in different neurotoxic conditions [266]

Exosomes from lung cancer
Docetaxel

Non-small cell lung cancer treatment [267]

Exosomes from cervical cancer Cervical cancer treatment [268]

Exosomes from blood samples Dopamine Parkinson’s disease treatment [269]

EVs from macrophages

Doxorubicin

Metastatic ovarian cancer treatment [270]

Exosomes from mesenchymal stem cells Colorectal cancer treatment [271]

Exosomes from human glioma Glioma treatment [272]

Milk-derived exosomes Cancer treatment [273]

Exosomes from HEK293 cells Cancer treatment [274]

Exosomes from bone marrow-derived
mesenchymal stem cells Osteosarcoma treatment [275]

Exosomes from colon cancer Colorectal cancer treatment [276]

Exosomes from human breast and
ovarian cancer Breast and ovarian cancer treatment [277]

Exosomes from macrophages Edaravone Permanent middle cerebral artery
occlusion treatment [278]

Exosomes from human fetal lung fibroblasts Erastin Triple-negative breast cancer therapy [279]

Exosomes from pancreatic cells Gemcitabine Pancreatic cancer treatment [280]

EVs from human plasma Imperialine Non-small cell lung cancer treatment [281]

EVs from human umbilical vascular
endothelial cells

Meta-
tetra(hydroxyphenyl) chlorine Cancer photodynamic therapy [282,283]



Nanomaterials 2021, 11, 3391 18 of 38

Table 9. Cont.

Parental cell Cargo Application Reference

Exosomes from embryonic stem cells

Paclitaxel

Glioblastoma treatment [285]

Exosomes from mesenchymal stem cells Carcinoma treatment [286]

EVs from gingival mesenchymal stromal
cells Cancer treatment [287,288]

Exosomes from macrophages Pulmonary metastases treatment [289]

Milk-derived exosomes Lung cancer treatment [290]

EVs from bone marrow mesenchymal
stromal cells Malignant pleural mesothelioma treatment [291]

Exosomes from macrophages Multiple drug-resistant cancer treatment [292]

EVs from lung cancer cells Paclitaxel and oncolytic virus Primary and metastatic cancer treatment [293]

EVs from neutrophil-like cells Piceatannol Alleviated acute lung inflammation/injury
and sepsis induced by lipopolysaccharide [294]

Exosomes from plasma Quercetin

Relieve symptoms of Alzheimer’s disease by
inhibiting phosphorylation of Tau and

reducing the formation of insoluble
neurofibrillary tangles

[295]

Exosomes from human ovarian cancer Triptolide Ovarian cancer treatment [296]

Mannosylated exosomes from macrophages Vancomycin and lysostaphin Eradication of intracellular quiescent MRSA [297]

Exosomes from fibroblasts WNT3A Repair of osteochondral defects [298]

Many types of cell-derived exosomes, coming from both plant and human eukaryotic
cells, have recently been used to successfully encapsulate inorganic NPs. The cargo can
be either loaded by treating parental cells or by post EVs isolation engineering [299]. The
potential benefits of a wide range of inorganic NPs-loaded EVs have been proven in various
drug delivery applications as extensively listed in Table 10.

Table 10. Extracellular vesicles’ inorganic NPs delivery applications.

Parental Cell Cargo Application Reference

Exosomes from human hepatocarcinoma Doxorubicin-loaded biomimetic
porous silicon NPs

Cytotoxicity against bulk cancer cells and
cancer stem cells [300]

Grapefruit EVs Doxorubicin-loaded
heparin-based NPs Glioma treatment [301]

Exosomes from melanoma cells

Gold NPs

Cancer treatment [302]

Exosomes from HEK293T cells Blood-brain barrier penetration and brain
disorders future treatments [303]

Exosomes from bone marrow mesenchymal
stromal cells Neuroimaging for various brain disorders [304]

Exosomes from mesenchymal stem cells [305]

Exosomes from breast cancer cells Gold iron oxide hybrid NPs MRI contrast agent and
photodynamic therapy [306]

Exosomes from mesenchymal stem cells
Iron oxide NPs

Myocardial infarction treatment [307]

Wound repair [308]

Increase activation and migration ability
of macrophage [309]

Tumor cell ablation via magnetically
induced hyperthermia [310]

EVs from human umbilical vascular
endothelial cells

Photodynamic and hyperthermia therapy of
prostate cancer [311]

Exosomes from macrophages
Laurate-functionalized Pt(IV)

prodrug, human serum albumin,
and lecithin NPs

Breast cancer and metastatic breast cancer
lung nodules treatment [312]
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Table 10. Cont.

Parental Cell Cargo Application Reference

Exosomes from lung adenocarcinoma cells

Metal-organic framework

Detection of the ATP level in living cancer
cells, providing an efficient tool for the cell

metabolism study
[313]

Exosomes from triple negative breast
cancer cells Delivery of anticancer compounds [314]

Exosomes from HeLa cells [315]

Exosomes from lung cancer or glioma Palladium nanosheet Deliver catalytic cargo directly to cancer cells [316]

Exosomes from triple negative breast
cancer cells

PLGA NPs

Cancer therapy [317]

Exosomes from lung carcinoma cells [318]

EVs from Staphylococcus aureus
Intracellular delivery of antibiotics for

intracellular pathogen-associated
complications treatment

[319]

Exosomes from breast cancer Quantum dots of
vanadium carbide Cancer photothermal therapy [320]

Exosomes from hepatocellular carcinoma Silver and iron NCs Cancer bioimaging [321]

Exosomes from macrophages SPIONs and curcumin Synergistic antitumor therapy in gliomas [322]

Exosomes from plasma Superparamagnetic magnetite
colloidal nanocrystal clusters Cancer treatment [323]

EVs from KB cells Zinc oxide NCs Cancer treatment [324]

Since EVs are remarkably involved in genetic information transfer in normal and
pathological states [325–327], it is not difficult to see their potential as engineered nu-
cleic acids carriers for drug the treatment of ischemic stroke, myocardial infarction [328],
traumatic brain injuries [329], and liver fibrosis [330].

The intrinsic properties of EVs such as low immunogenicity and safety make them
a suitable candidate for gene cancer therapy with promising advantages with respect to
the conventional chemotherapeutic treatments. EVs transfer their RNA or DNA cargo
to the target cells with the aim to alter the tumoral genes information and act, e.g., as
tumoral suppressors. In addition, the therapeutic properties of EVs-nucleic acids loaded
can be further improved by tailoring their surface [331] in order to maximize specificity and
successful delivery. In Massaro et al. [332] is reported a list of the ligands used for cancer
therapy. Interestingly, attempts to conjugate RNAs to molecules such as cholesterol for EVs
surface functionalization were reported [333,334], with the aim to improve loading control
and delivery. Therapeutics effects of Plasmid DNA, mRNA, miRNA, and shRNA delivery
EV-mediated were reported in Table 11 underlining how gene therapy combined with EVs
delivery is a rapidly growing field for safe and effective precision medicine treatments.

Table 11. Extracellular vesicles’ nucleic acids delivery applications.

Parental Cell Cargo Application Reference

Microvesicles from breast cancer cells Minicircle DNA encoding a thymidine
kinase /nitroreductase fusion protein Breast cancer therapy [335]

EVs from mice melanoma cells Plasmid DNA coding for ESAT-6 Promote antitumor activity of
dendritic cells [336]

EVs from human brain endothelial cells
and macrophages

Plasmid DNA encoding for
brain-derived neurotrophic factor

Protection of the brain endothelium
increasing endothelial ATP levels [337]

EVs from macrophage cells Tripeptidyl peptidase-1-encoding
plasmid DNA

Lysosomal storage disorder, Neuronal
Ceroid Lipofuscinoses 2 (CLN2) or

Batten disease treatment
[338]

EVs from red blood cells Anti-miR-125b ASOs and Cas9 mRNA Cancer treatment [339]

Exosomes from mouse neuronal cells miR-21-5p Suppression of autophagy after a
traumatic brain injury [340]
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Table 11. Cont.

Parental Cell Cargo Application Reference

EVs from frozen human plasma miR-31 and miR-451a Promoted apoptosis of
hepatocellular carcinoma [341]

Exosomes from human bone marrow
mesenchymal stem cells miR-101-3p Oral cancer treatment [342]

Exosomes from bone marrow
mesenchymal stem cells miR-124 Promote neurogenesis after ischemia [343]

EVs from human adipose tissue-derived
mesenchymal stromal/ medicinal

signaling cells
miR-125b Inhibits hepatocellular

carcinoma proliferation [344]

Exosomes from normal intestinal
epithelial FHC cells miR-128-3p Increase chemosensitivity of

oxaliplatin-resistant colorectal cancer [345]

Exosomes from HKT293T cells Curcumin, saponin, MiR-143 Engineered exosomes for anti-HIV
agents delivery to solid tissues [346]

Exosomes from human umbilical cord
mesenchymal stem cells miR-145-5p Inhibit adenocarcinoma progression [347]

EVs from bone-marrow mesenchymal
stem cells miR-146a Ulcerative colitis treatment [348]

EVs from human mesenchymal
stromal cells miR-146a-5p Prevent group 2 innate lymphoid cells

-dominant allergic airway inflammation [349]

Exosomes from human umbilical cord
mesenchymal stem cells miR-148b-3p Suppress breast cancer progression [350]

Exosomes from mesenchymal stem cells miR-199a Inhibit the growth of glioma by
down-regulating AGAP2 [351]

Exosomes from endothelial
progenitor cells miR-210

Protect endothelial cells against
hypoxia/ reoxygenation injury

improving mitochondrial function
[352]

EVs from mesenchymal stem cells miR-210 Promote angiogenesis in
myocardial infarction [353]

EVs from bone mesenchymal stem cells miR-216a-5p Promote the proliferation of
chondrocytes in osteoarthritis [354]

EVs from human umbilical cord
mesenchymal stem cells miR-302a Therapy of endometrial cancer [355]

EVs from mesenchymal stem cells miR-379 Therapy for metastatic breast cancer [245]

EVs from adipose tissue-mesenchymal
stromal cells miR-424-5p Therapy for triple negative breast cancer [356]

Exosomes from HEK-293T cells miR-497 Inhibit lung cancer growth
and angiogenesis [357]

Exosomes from CRC cells miR-567 Reverse chemoresistance to
Trastuzumab in breast cancer [358]

EVs from HEK-293T cells miR-1252-5p
Downregulation of heparanase to
enhance the chemosensitivity to

Bortezomib in multiple myeloma
[359]

EVs from HEK-293T cells miRNA-21 Myocardial infarction treatment [360]

Exosomes from breast cancer miRNA-126 Inhibit the formation of lung
cancer metastasis [361]

EVs from glioblastoma stem-like cells miRNA-139 Downregulation of glioblastoma [362]

Exosomes from mesenchymal stem cells miRNA-584-5p Gliomas treatment [363]

Exosomes 293F cells mRNA SARS-CoV-2 vaccine [364]

Exosomes from HEK-293T cells Catalase mRNA
Attenuated neurotoxicity and

neuroinflammation in
Parkinson’s disease

[365]

EVs from HEK-293T cells Cytosine deaminase fused to uracil
phosphoribosyltransferase mRNA Glioblastoma treatment [366]
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Table 11. Cont.

Parental Cell Cargo Application Reference

EVs from HEK-293T cells HChrR6 mRNA Convert CNOB into MCHB for the
treatment of cancers [367]

Exosomes from mesenchymal stem cells,
dendritic cells or HEK-293T cells PTEN mRNA Restore tumor-suppressor function in

PTEN deficient gliomas [368]

EVs from non-pigmented ciliary
epithelium cells anti-fibrotic (SMAD7) siRNA Lower intraocular pressure in primary

open-angle glaucoma [369]

Exosomes from autologous breast cancer
cells

Cationic bovine serum albumin
conjugated siS100A4

Suppress postoperative breast
cancer metastasis [370]

EVs from murine neuroblastoma cell
line and dendritic cells Cholesterol-conjugated siRNAs Human antigen R silencing for

cancer treatment [334]

Exosomes from HEK-293T cells c-Met siRNA Reverse chemoresistance to cisplatin in
gastric cancer [371]

Exosomes from HEK-293T cells Hepatocyte growth factor (HGF) siRNA Inhibitory effect on tumor growth and
angiogenesis in gastric cancer [372]

EVs from mesenchymal stem cells
derived from umbilical cord

Wharton’s jelly
Hydrophobically modified asymmetric

siRNAs conjugated with cholesterol Huntingtin silencing in neurons
[333]

Exosomes from glioblastoma cells [373]

Exosomes from human
neuroblastoma cells Heat shock protein-27 (HSP27) siRNA Decrease of cell differentiation toward

mature neuron in neuroblastoma [374]

Exosomes from urine-derived induced
pluripotent stem cells ICAM-1 siRNA Alleviating inflammation of pulmonary

microvascular endothelial cells [375]

Exosomes from HEK-293T cells KRAS siRNA Inhibition of tumor growth [376]

EVs from astrocytes LincRNA-Cox2 siRNA
Lipopolysaccharideinduced microglial

proliferation for treatment of
CNS disorders

[377]

Exosomes from mesenchymal stem cells PTEN siRNA Promote recovery for spinal cord
injury individuals [378]

EVs from red blood cells P65 and Snai1 siRNA Inhibit renal inflammation and fibrosis
for acute kidney injury treatment [379]

EVs from HEK-293T cells RAGE siRNA Attenuated inflammation in myocarditis [380]

Exosomes from bone-marrow-derived
mesenchymal stem cells siGRP78 Suppress Sorafenib resistance in

hepatocellular carcinoma [381]

Exosomes from bovine milk siKRAS Lung tumor treatment [382]

EVs from different cell lines siRNA Reducing the therapeutic dose of siRNA
for different pathologies [383]

EVs from human umbilical cord
mesenchymal stem cells siRNA-ELFN1-AS1 Inhibit colon adenocarcinoma

cells proliferation [384]

Exosomes from normal human
foreskin fibroblast

siRNA or short hairpin RNA specific to
oncogenic KrasG12D

Pancreatic ductal
adenocarcinoma treatment [385]

Exosomes from HEK-293T cells Transient receptor potential polycystic 2
(TRPP2) siRNA

Reduce the epithelial-mesenchymal
transition in pharyngeal

squamous carcinoma
[386]

Exosomes from brain endothelial
bEND.3 cells

Vascular endothelial growth factor
(VEGF) siRNA

Knockdown of VEGF in brain
cancer cells [387]

Exosomes from HEK-293T cells

Different viral products including Ebola
Virus VP24, VP40 and NP, Influenza

Virus NP, Crimean–Congo Hemorrhagic
Fever NP, West Nile Virus NS3, and

Hepatitis C Virus NS3

Exosomes-based vaccines [388]

10. Conclusions

It is well known that liposomes, assumed to be the oldest category of lipidic nanovesi-
cles, have been broadly considered as the major candidates for biomedical and drug de-
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livery applications. Despite their high biocompatibility and the ability to effectively carry
both hydrophilic and/or hydrophobic active molecules to the target site, they still suffer
some unresolved weaknesses such as brief shelf-life, low colloidal stability, and limited and
expensive preparation methods [389]. The development of new drug delivery approaches
has significantly boosted the design and the production of the just reviewed non-liposomal
lipid nanovesicles. This new cohort of lipid vesicles can complement liposomes as alterna-
tive nanovesicular drug delivery systems and although recently implemented, they have
all the chances to overspread as successful engineered nanomaterials.

Considering the existent non-liposomal LNV, those collected in this review, given their
countless listed applications, have undoubtedly proved to be the most successful ones by
reaching clinical use. Surely among the different types of LNV described in this review,
those of cellular origin, the extracellular vesicles, are those that could also give future results
closer to the needs of personalized medicine therapeutic plans. The possibility of isolating
them from the same patient who is going to be treated reduces the likelihood of rejection
phenomena both by increasing the compliance of the therapy and by reducing any adverse
effects. Therefore, it would be foreseen that very soon, the LNV carrier’s production will
scale-up from the lab scale to the industrial one issuing high-quality competitive outcomes.

In this regard, we would like to conclude with an update on the recent and promising
use of lipid nanovesicles for the nucleic acids based-vaccine development. This application
has been mainly oriented to the oncologic field, but recently, under the pressure of the
latest terrible health emergency that has afflicted the entire globe, anti-viral applications
have been reported. EV-based vaccines to deliver mRNA coding for specific molecules
such as proteins or by the exposure of specific features on EVs surface have been designed.
Since 2020, the SARS-CoV-2 pandemic has boosted additional efforts for the successful
design of forceful vaccines [332,390]. Leading approved vaccines provide immunization
by the viral Spike (S) protein, injected as purified proteins or codified by the administered
mRNAs sequences and showing that “mRNA-based vaccines can fill the gap between
emerging pandemic infectious disease and a bountiful supply of effective vaccines” [391].
The mRNA-based vaccine BNT162b2 was developed by Pfizer/BioNTech while the mRNA-
1273 SARS-CoV-2 vaccine was developed by Moderna [392]. In Tsai et al. [364] was
reported another approach for SARS-CoV-2 vaccines: exosomes are used to deliver mRNAs
sequences with the aim to express not only the spike protein but also another artificial
protein named “LSNME” and containing the viral spike, nucleocapsid, membrane, and
envelope proteins. This approach has been tested on mice with promising results and,
along with the many other applications reported in this review, confirmed the growing
potential of lipid nanovesicles-mediated delivery as an effective tool for the translation of
nanotechnology, bioengineering, and nanomaterials studies from research to clinic.
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