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A B S T R A C T

We consider the evaluation of uncertainty in a particular case of discrete-time integration, i.e., that of static
gas meters. We show that the current approach, which does not take correlations into account, can lead to
underrating of the uncertainty associated with the estimate of the delivered volume. Now, a correct evaluation
of uncertainty in the case e.g. of online measurements along large offshore pipelines is important in order to
remove technical barriers to international trade.

We focus our discussion on the practical example of gas meters, but the framework of uncertainty
evaluation we provide is valid in general for all those measurements involving discrete-time integration, and
has therefore a wide applicability.
. Introduction

Discrete-time integration is used to obtain the value of the integral
f a quantity from a set of measured values of the quantity. Various
ethods are available, such as the rectangular approximation (order
), the trapezoidal rule (order 1) or the Runge–Kutta method (orders 2
nd higher, depending on the parameters) [1,2].

These methods are widely used in numerical analysis for a range of
pplications, typically aimed at the computation of the time evolution
f a quantity, rather than at the computation of the integral of the area
nder a curve [3].

Recent developments in the field of flow metering, though, revived
nterest in the computation of the integral area under a curve which is
ot known analytically but only at discrete points, acquired at succes-
ive time instants. An important application concerns the development
f digital, or static gas meters [4,5] as an alternative to positive-
isplacement gas meters, which are based on the mechanical, cyclic
isplacement of a suitable element under the effect of the gas flow,
nd on the counting of the resulting cyclic volumes.

Indeed, positive-displacement instruments are still dominating the
ield, especially as concerns fiscal gas metering. Recent evolutions of
he relevant normative [6,7], though, prompted the development of the
ovel class of gas meters, which are based on some kind of continuous
as flowrate sensor. Flowrate values are acquired at time instants whose
eparation 𝛿𝑡 is nominally constant, and the accumulated volume is thus
btained by discrete-time integration of these values, usually applying
he trapezoidal rule (see Eq. (2)).

This technology constitutes a true change of paradigm. On the one
and, it overcomes the old problem of low flowrates for positive-
isplacement meters, both in their calibration and in measurement.

∗ Corresponding author.
E-mail address: p.spazzini@inrim.it (P.G. Spazzini).

In the former case, a large time is required in order to accumulate a
sufficient number of cyclic volumes. In the latter, a short measurement
time implies a large measurement uncertainty. Another well-known
problem is the change in the value of cyclic volume with ageing of
the instrument. On the other hand, the calibration of static meters
requires a minimum test time which, at higher flow rates, introduces
new problems due to the corresponding large accumulated volume [8].

This change of paradigm implies modifications in calibration and
usage procedures. The technology is still at a developing stage and
it can be anticipated that will reach full maturity in a few years.
The relevant normative is being updated as regards the fiscal and
operational aspects of the deployment of static gas meters [6,7]. These
updates are based mainly on field experience gained by the first pi-
oneering installations and studies [5,9] and thus, although correct,
lack a coherent metrological framework. For instance, the assessment
of the metrological performance of a gas meter is currently limited
to the prescription of a maximum permissible error [6]; however, in
modern approaches to conformity assessment the role of uncertainty
is of paramount importance [10], but the normative provides no in-
dications about the way of determining uncertainty. In particular no
mention is made, in the bibliography we have analyzed (see, as an
example, [11,12]), of the uncertainty introduced by the operation of
integration.

We therefore consider it useful to develop a rigorous evaluation of
the uncertainty introduced by the mathematical process of integration
as a component of the uncertainty associated with the volume estimates
provided by the digital gas meters which are being developed and de-
ployed [13]. Laboratories for testing and calibration of static gas meters
vailable online 10 November 2023
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usually apply uncertainty analysis for uncorrelated input quantities. As
we will show in the following, this approach is inadequate.

We focus our uncertainty analysis on discrete-time integration us-
ing the trapezoidal rule. Our choice is dictated by the fact that this
rule is, to the best of our knowledge, almost universally adopted in
current static gas meters, the reason being that it represents a good
compromise between accuracy and economy of requirements in terms
of memory and computational power, thus allowing a compact and
cheap realization of the instrument.

Technological and normative developments strongly suggest that
static metering will soon be extended to water meters and to several
other applications connected to digitalization of the metrological in-
frastructure. More in general, digital acquisition and the development
of the so-called ‘‘Internet of Things’’ (IoT) (see, e.g., [14,15]) will
call for a generalized application of numerical integration schemes for
data acquisition from instruments distributed across the territory. The
aforementioned uncertainty evaluation will therefore be required also
for many other applications. Accordingly, and although in the paper we
focus on gas volume measurement, our discussion is valid in general for
all those measurements involving discrete-time integration by means
of the trapezoidal rule.1The framework of uncertainty evaluation we
provide here has therefore a wide applicability.

The paper is organized as follows: in Section 2 we establish the
measurement model, in Section 3 we evaluate the uncertainty associ-
ated with the (estimated) delivered volume, we give formulæfor both
uncorrelated 3.1 and correlated 3.3 input quantities, and compare the
former with the current practice 3.2. In Section 4 we give an example
based on the calibration of a domestic gas meter and show the dramatic
underrating of the uncertainty provided by the current practice. In
Section 5 we provide some comments and in Section 6 we draw some
conclusions.

2. Measurement model

As it is well known, in fluid mechanics the flowrate 𝑄𝑉 (𝑄𝑚) is
defined as the time derivative of the volume (mass) of fluid flowing
through a given section. Knowing the flowrate as a function of time,
the volume 𝑉𝑡 and the mass 𝑚𝑡 of the fluid accumulated at time 𝑡 after
an initial time 𝑡0 are given by:

𝑉𝑡 = ∫

𝑡

𝑡0
𝑄𝑉 (𝑡)d𝑡 and 𝑚𝑡 = ∫

𝑡

𝑡0
𝑄𝑚(𝑡)d𝑡 (1)

respectively.
The quantity of interest being here volume, we consider the first of

Eqs. (1) (the treatment of the second would be equivalent) and drop
hereafter the subscript 𝑉 from 𝑄𝑉 .

As discussed in Section 1, in actual applications 𝑁 + 1 flowrate
values 𝑄𝑗 , the indications, are acquired at discrete time instants 𝑡𝑗 over
a time interval 𝑡 − 𝑡0 = 𝛥𝑡. According to the trapezoidal rule, the
integral (1) is then discretized as follows:

𝑉𝑡 =
𝑁
∑

𝑖=1
𝑉𝑖 ≈

𝑁
∑

𝑖=1
𝑄𝑖𝛿𝑡𝑖, (2)

here 𝑄𝑖 =
𝑄𝑗+𝑄𝑗−1

2 and 𝛿𝑡𝑖 = 𝑡𝑗 − 𝑡𝑗−1 (∑ 𝛿𝑡𝑖 = 𝛥𝑡) are the 𝑁 individual
average flowrates and the corresponding time intervals, respectively.
Hereafter, we replace the ≈ symbol with the equality for simplicity.

As it can be seen, the approximation is of order 1, indicating that the
(unknown) function 𝑄(𝑡) is approximated by straight segments, each of
which shares its endpoints with the previous and the next segments.

Eq. (2) represents the measurement model. In it, the 𝑄𝑗 and 𝑡𝑗
are the 2(𝑁 + 1) input quantities and 𝑉𝑡 is the output quantity, the
measurand.

1 The analysis can easily be extended to other integration schemes by
odifying the measurement model (2) and, consequently, the matrices 𝑿1 and

(3).
2

2

. Uncertainty evaluation

Model (2) can be viewed as an instance of a multi-stage measure-
ent model. The measurand 𝑉𝑡 is a function of the volumes 𝑉𝑖 which,

n turn, are functions of the 𝑁 individual average flowrates 𝑄𝑖 and the
𝑁 corresponding time intervals 𝛿𝑡𝑖 which, in turn, are functions of the

+ 1 flowrates 𝑄𝑗 and the 𝑁 + 1 time instants 𝑡𝑗 . The volumes 𝑉𝑖
cannot be considered independent as each 𝑄𝑗 and 𝑡𝑗 both contribute to
the adjacent 𝑉𝑖−1 and 𝑉𝑖 volumes.

Matrix formalism is needed to appropriately capture the multivari-
ate nature of the measurement model.

The volume 𝑉𝑡 is thus written as 𝑉𝑡 = 𝑓 (𝑨), where 𝑨⊤ =
[

𝑸⊤ 𝒕⊤
]

is
a 2 (𝑁 + 1) block vector with 𝑸 = (𝑄0, … , 𝑄𝑁 )⊤ and 𝒕 = (𝑡0, … , 𝑡𝑁 )⊤.

To express the function 𝑓 , we define:

𝑿1 =
1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 ⋯ 0
0 1 1 ⋱ ⋮
⋮ ⋯ ⋱ ⋯ ⋮
⋮ ⋱ 1 1 0
0 ⋯ 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦𝑁×(𝑁+1)

2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 ⋯ 0
0 −1 1 ⋮ 0
⋮ ⋯ ⋱ ⋯ ⋮
⋮ ⋱ −1 1 0
0 ⋯ 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦𝑁×(𝑁+1)

, (3)

o that the measurement model (2) can be expressed in matrix form as:

𝑡 =
[

𝑿1𝑸
]⊤ 𝑿2𝒕 = 𝑸

⊤
𝜹𝒕, (4)

here we have introduced the vectors 𝑸 = 𝑿1𝑸 =
(

𝑄1, … , 𝑄𝑁

)⊤

nd 𝜹𝒕 = 𝑿2𝒕 =
(

𝛿𝑡1, … , 𝛿𝑡𝑁
)⊤ of the average flowrates and the corre-

ponding time intervals, respectively.
The (squared) standard uncertainty of 𝑉𝑡, 𝑢2

(

𝑉𝑡
)

, is obtained from
he covariance matrix 𝑼𝑨 of the input vector 𝑨 using the well-known

standard procedure described in [16]:

𝑢2
(

𝑉𝑡
)

= 𝑱𝑨𝑼𝑨𝑱⊤
𝑨, (5)

where 𝑱𝑨 =
[

𝜕𝑉𝑡∕𝜕𝐴0,… , 𝜕𝑉𝑡∕𝜕𝐴(2𝑁+2)
]

is the Jacobian, or sensitivity
matrix, in this case a row vector. It is obviously 𝑱𝑨 =

[

𝑱𝑸 𝑱 𝒕
]

.
As concerns the covariance matrix of 𝑨, we make the reasonable

ssumption that the observations of flowrate and time instants are
ndependent, which means that

𝑨 =
[

𝑼𝑸 𝟎
𝟎 𝑼 𝒕

]

, (6)

where 𝑼𝑸 and 𝑼 𝒕 are the covariance matrices of 𝑸 and 𝒕, respectively.
Expression (5) thus becomes

𝑢2(𝑉𝑡) =
[

𝑱𝑸 𝑱 𝒕
]

[

𝑼𝑸 𝟎
𝟎 𝑼 𝒕

][

𝑱⊤
𝑸

𝑱⊤
𝒕

]

= 𝑱𝑸𝑼𝑸𝑱⊤
𝑸 + 𝑱 𝒕𝑼 𝒕𝑱⊤

𝒕 . (7)

It can easily be verified that 𝑱𝑸 = 𝒕⊤𝑿⊤
2𝑿1 and 𝑱 𝒕 = 𝑸⊤𝑿⊤

1𝑿2.
Introducing in expression (7) the covariance matrices 𝑼𝑸 = 𝑿1𝑼𝑸𝑿

and 𝑼𝜹𝒕 = 𝑿2𝑼 𝒕𝑿⊤
2 we obtain

𝑢2(𝑉𝑡) = 𝑸
⊤
𝑼𝜹𝒕𝑸 + 𝜹𝒕⊤𝑼𝑸𝜹𝒕, (8)

an equivalent and perhaps more elegant way to write expression (7).
Eq. (8) gives the (squared) standard uncertainty associated with

the volume indicated by the gas meter after the time 𝛥𝑡, given the
measurement model (4) and the 2(𝑁 +1)-component input vector 𝑨⊤ =
[ ⊤ ⊤]
𝑸 𝒕 .



Measurement 224 (2024) 113821P.G. Spazzini and W. Bich

w
g
a
a
u

𝑼

a

𝑼

f
v
q
c

t
p
c

f
t
i

𝑢

o
o

3

u
a
i
𝑄

𝑢

a

𝑢

r

(

√

T
e
i
d
a

d

3.1. Uncorrelated input quantities

It is interesting to calculate the covariance matrices 𝑼𝑸 and 𝑼𝜹𝒕
hen the 𝑄𝑖, as well as the 𝑡𝑖, are uncorrelated. To demonstrate our ar-
ument, we consider the realistic case in which the indicated flowrates,
s well as the time instants, have the same standard uncertainties, 𝑢𝑄
nd 𝑢𝑡, respectively. Therefore, 𝑼𝑸 = 𝑢2𝑄𝑰 , 𝑼 𝒕 = 𝑢2𝑡 𝑰 , where 𝑰 is the
nitary matrix. With these assumptions,

𝑸 = 𝑢2𝑄𝑿1𝑿⊤
1 and 𝑼𝜹𝒕 = 𝑢2𝑡𝑿2𝑿⊤

2 (9)

It comes out that

𝑼𝑸 =
𝑢2𝑄
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1∕2 0 ⋯ 0
1∕2 1 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1 1∕2
0 ⋯ 0 1∕2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(10)

nd

𝜹𝒕 = 2𝑢2𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −1∕2 0 ⋯ 0
−1∕2 1 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1 −1∕2
0 ⋯ 0 −1∕2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (11)

Expressions (10) and (11) show that any two adjacent average
lowrates are positively correlated, and any two adjacent time inter-
als are negatively correlated even in the case of uncorrelated input
uantities, a finding in agreement with common sense. The correlation
oefficients are 𝜌(𝑄𝑖, 𝑄𝑖+1) = 1∕2 and 𝜌(𝛿𝑡𝑖, 𝛿𝑡𝑖+1) = −1∕2, respectively,
∀𝑖 < 𝑁 .

Eq. (8) thus becomes

𝑢2(𝑉𝑡) =

[ 𝑁
∑

𝑖=1
𝑄

2
𝑖 −

𝑁−1
∑

𝑖=1
𝑄𝑖𝑄𝑖+1

]

𝑢2𝛿𝑡 +

[ 𝑁
∑

𝑖=1
𝛿𝑡2𝑖 +

𝑁−1
∑

𝑖=1
𝛿𝑡𝑖𝛿𝑡𝑖+1

]

𝑢2
𝑄
. (12)

Although the specific form of Eqs. (10) to (12) holds strictly only for
he case of equal standard uncertainties, it is true in general that, as ex-
ected, the negative covariances in 𝑼𝜹𝒕 tend to reduce the uncertainty
omponent due to 𝑡, whereas those in 𝑼𝑸, being positive, contribute

significantly to the component due to 𝑄.
Neglecting the covariance terms in Eq. (12), one obtains the same

ormula that would be provided by the law of propagation of uncer-
ainties for uncorrelated input quantities, as given by expression (10)
n [17], applied to model (2):

2∗(𝑉𝑡) =
𝑁
∑

𝑖=1
𝑄

2
𝑖 𝑢

2
𝛿𝑡 +

𝑁
∑

𝑖=1
𝛿𝑡2𝑖 𝑢

2
𝑄
. (13)

This is the expression currently used for the uncertainty evaluation
f the volume indicated by a static gas meter and, possibly, in many
ther measurements involving discrete-time integration.

.2. Comparison with the current practice

To gain some insight into the quantitative difference between the
ncertainties obtained by keeping into account or neglecting covari-
nces – Eqs. (12) and (13), respectively – we consider that the time
ntervals 𝛿𝑡 are nominally equal and further assume that the flowrate

is approximately constant during the time interval 𝛥𝑡.
In this case, Eqs. (12) and (13) become

2(𝑉𝑡) ≈ 𝑄
2
𝑢2𝛿𝑡 + (2𝑁 − 1)𝛿𝑡2𝑢2

𝑄
(14)

nd
2∗(𝑉𝑡) ≈ 𝑁

[

𝑄
2
𝑢2𝛿𝑡 + 𝛿𝑡2𝑢2

𝑄

]

, (15)

espectively.
3

t

It is worth obtaining the corresponding expression for the relative
squared) standard uncertainties 𝑢2rel(𝑉𝑡) and 𝑢2∗rel(𝑉𝑡). Recalling that 𝑉𝑡 ≈
𝑁𝑄𝛿𝑡 one has

𝑢2rel(𝑉𝑡) ≈
1
𝑁2

[

𝑢2rel(𝛿𝑡) + (2𝑁 − 1)𝑢2rel(𝑄)
]

(16)

and

𝑢2∗rel(𝑉𝑡) ≈
1
𝑁

[

𝑢2rel(𝛿𝑡) + 𝑢2rel(𝑄)
]

. (17)

Expression (17) is also given in Appendix A.1. of Ref. [8].
The ratio between Eqs. (16) and (17) is

𝑅2 = 𝑢2rel(𝑉𝑡)∕𝑢
2∗
rel(𝑉𝑡) =

1
𝑁

[

1 +
2(𝑁 − 1)

1 + 𝑢2rel(𝛿𝑡)∕𝑢
2
rel(𝑄)

]

. (18)

The (square root of the) monotonic function (18) reaches its min-
imum 𝑅min = 1∕

√

𝑁 for 𝑢2rel(𝛿𝑡) ≫ 𝑢2rel(𝑄), and its maximum 𝑅max =
2 − 1∕𝑁 for 𝑢2rel(𝛿𝑡) ≪ 𝑢2rel(𝑄). Indeed, we can hardly conceive situa-

tions in which 𝑢2rel(𝛿𝑡)∕𝑢
2
rel(𝑄) > 4, so that in practice 0.5 < 𝑅 < 1.41.

herefore, neglecting covariances, as done in the current uncertainty
valuation, can either underrate or overrate the uncertainty by signif-
cant amounts. Whilst the significance of such mistaken uncertainties
epends on the application, yet a correct uncertainty evaluation should
lways be preferred to a flawed one.

Fig. 1 gives a diagram of 𝑅 as a function of 𝑢2rel(𝛿𝑡)∕𝑢
2
rel(𝑄) and for

ifferent values of 𝑁 . The function is practically independent of 𝑁 for
𝑁 > 20, that is, in most practical cases.

3.3. Correlated input quantities

In a different scenario, for example when the gas meter, after
calibration, is used online, the 𝑄𝑖 are correlated by an uncertainty
component due to calibration. To simplify the treatment, we assume
that the uncertainty is approximately the same for all the indications
𝑄𝑖 and has the form 𝑢2𝑄 = 𝑢2r + 𝑢2c , the subscripts r and c standing for
‘random’ or ‘repeatability’ and ‘calibration’, respectively.2

In this case the covariance matrix 𝑼𝑸 is written as

𝑼𝑸 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑢2r + 𝑢2c 𝑢2c ⋯ 𝑢2c
𝑢2c 𝑢2r + 𝑢2c ⋱ ⋮
⋮ ⋱ ⋱ 𝑢2c
𝑢2c ⋯ 𝑢2c 𝑢2r + 𝑢2c

⎤

⎥

⎥

⎥

⎥

⎦

, (19)

or

𝑼𝑸 = 𝑢2r 𝑰 + 𝑢2c𝟏𝟏
⊤, (20)

where 𝑰 is the identity matrix and 𝟏⊤ = [1, 1,… , 1]𝑁+1.
Similar considerations hold for 𝑼 𝒕, although the calibration uncer-

tainty of the timer is usually negligible in real applications and will
therefore not be considered here for simplicity.

With the covariance matrix 𝑼𝑸 defined by expression (20), the
corresponding 𝑼𝑸 is

𝑼𝑸 = 𝑢2r𝑿1𝑿⊤
1 + 𝑢2c𝑿1𝟏

[

𝑿1𝟏
]⊤ = 𝑢2r𝑿1𝑿⊤

1 + 4𝑢2c𝟏𝟏
⊤, (21)

or

𝑼𝑸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢2r ∕2 + 4𝑢2c 𝑢2r ∕4 + 4𝑢2c 4𝑢2c ⋯ 4𝑢2c
𝑢2r ∕4 + 4𝑢2c 𝑢2r ∕2 + 4𝑢2c ⋱ ⋱ ⋮

4𝑢2c ⋱ ⋱ ⋱ 4𝑢2c
⋮ ⋱ ⋱ 𝑢2r ∕2 + 4𝑢2c 𝑢2r ∕4 + 4𝑢2c
4𝑢2c ⋯ 4𝑢2c 𝑢2r ∕4 + 4𝑢2c 𝑢2r ∕2 + 4𝑢2c

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(22)

2 We neglect here for simplicity of notation the uncertainty component due
o finite resolution, which by the way is typically negligible (see also 4.1).
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Fig. 1. The ordinate is 𝑅 = 𝑢rel(𝑉𝑡)∕𝑢∗rel(𝑉𝑡), the ratio of the delivered volume relative uncertainty calculated taking covariances into account to the same as currently calculated.
The abscissa is the ratio of the squared relative uncertainty of the average flowrates to that of the time intervals.
Noting that the first term in the rightmost-hand side of expression
(21) has the same structure as the first of expressions (9), one easily
obtains

𝜹𝒕⊤𝑼𝑸𝜹𝒕 =
𝑢2r
2

𝑁
∑

𝑖=1
𝛿𝑡2𝑖 +

𝑢2r
2

𝑁−1
∑

𝑖=1
𝛿𝑡𝑖𝛿𝑡𝑖+1 + 4𝑢2c𝛥𝑡

2. (23)

By further considering that the time intervals are nominally equal
and adopting the same assumption that led to Eq. (14), that is, that the
flowrate is approximately constant,

𝑢2(𝑉𝑡) ≈ 𝑄
2
𝑢2𝛿𝑡 + (2𝑁 − 1) 𝛿𝑡2

𝑢2r
2

+ 𝛥𝑡24𝑢2c . (24)

This expression gives the uncertainty associated with the indicated
volume in the case of correlated flowrate indications, to be compared
with Eq. (14). As the second term in the right-hand side is essentially
the flowrate-indication uncertainty of Eq. (14), the uncertainty in the
indicated volume in this case differs from that in the uncorrelated case
by the term 𝛥𝑡24𝑢2c , which accounts for the traceability to the SI unit
enabled by the calibration.

4. Example – Calibration of a static gas meter

In this section we consider the calibration of a static gas meter and
compare the results provided by our uncertainty analysis against those
yielded by the current practice.

For a given delivered volume, the flowmeter performance is strongly
dependent on the flowrate, so that the calibration is carried out at
several different flowrates, in order to cover the whole measuring
range. For each flowrate, a reference flow nominally stable over the
acquisition time is used as stimulus, and the instrument responses are
taken using the gas meter in the so-called test mode, in which the
sampling rate (300ms < 𝛿𝑡𝑖 < 600ms) is higher than in measuring mode
(𝛿𝑡𝑖 ≈ 2000ms)3.

We calibrated a domestic gas meter of size G4 (maximum flowrate
6m3∕h, i.e. 100 L∕min) against the INRiM bell prover [18]. The calibra-
tion was carried out at 8 different flowrates, ranging from 1 L∕min to
100 L∕min.45 The prover has an available volume of 120 L and, due to

3 A longer sampling period is used to reduce the power consumption of the
instrument, which must work for at least 8 years with the original battery;
notice that other energy-saving features, like the sleep/awake function, which
means that the instrument is active only when needed, could also influence
the measurement.

4 As per our procedures, all measurements were repeated three times, but
only one of the series is analyzed here.
4

the characteristic of the measurement rig and in order to minimize its
contribution to calibration uncertainty, the acquisition intervals 𝛥𝑡 are
subjected to the double constraint of a minimum value 𝛥𝑡min ≈ 1min
and a minimum delivered volume 𝑉𝑡min ≈ 20L.

For each flowrate we calculated the (estimated) delivered volume
𝑉𝑡 using Eq. (4). We then calculated the associated (relative standard)
uncertainty according to Eq. (8) and compared it with that obtained
from Eq. (13), i.e. using the current treatment neglecting covariances.

4.1. Input uncertainties

The input uncertainties to the measurement model are 𝑢𝑄 and 𝑢𝛿𝑡.
As concerns 𝑢𝑄, it is made essentially of two contributions: the

flowmeter finite resolution and the variability of its indications when
submitted to a (nominally) stable stimulus.

We found experimentally the flowmeter resolution to be ≈
3.9mL∕min. The corresponding standard uncertainty is thus 𝑢res(𝑄) ≈
1.13mL∕min, that is, ≈ 0.1% of 1 L∕min, the lowest flowrate allowed by
our calibration rig, and negligible for higher flowrates.

The uncertainty component due to the indication stability, 𝑢stab(𝑄),
was calculated, at each flowrate, as the sample standard deviation of
the indicated 𝑄𝑖, 𝑢stab(𝑄) = 𝑠(𝑄𝑖). It is to be noted that the stimulus is
only nominally stable, and contributes an estimated 10% to the total
dispersion.

In conclusion, 𝑢2𝑄 = 𝑢2stab(𝑄) + 𝑢2res(𝑄), and 𝑢𝑄 = 𝑢𝑄∕
√

2.
The uncertainty 𝑢𝑡 is the same for all 𝑡𝑖 and comes from the res-

olution of the time counter of the gas meter, which is 1ms, so that
𝑢𝑡 = 0.29ms and 𝑢𝛿𝑡 = 0.41ms. This discretization uncertainty is non-
negligible when the flowmeter is in the test mode (in our case 𝛿𝑡 ≈
490ms, so that 𝑢rel(𝛿𝑡) ≈ 0.083%) and actually could impair the pre-
sumed advantage of a shorter interval in test mode. Put in a different
way, this mode provides more time intervals but their duration is more
uncertain.

4.2. Results

Table 1 gives, for each nominal reference flowrate 𝑄nom (column
1), acquisition interval 𝛥𝑡, number 𝑁 + 1 of indications {𝑄𝑖, 𝑡𝑖} and
relative standard uncertainty of the indicated average flowrate 𝑢rel(𝑄)

5 According to the customary practice, we use throughout litre and minute
rather than cubic decimeter and second.
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Table 1
Uncertainty evaluation for a gas meter calibration.
𝑄nom/(L∕min) 𝛥𝑡/s 𝑁 + 1 𝑢rel(𝑄)/% 𝑉𝑡/L 𝑢𝑉 /mL 𝑢rel(𝑉𝑡)/‰ 𝑢∗rel(𝑉𝑡)/‰

1 1204.280 2448 1.01 19.8003 5.8 0.29 0.21
5 248.703 502 0.43 20.5857 5.6 0.27 0.20
10 134.000 276 0.19 21.4112 3.5 0.17 0.13
20 57.312 121 0.20 18.3182 4.7 0.25 0.20
30 70.171 141 0.28 33.5666 11.4 0.34 0.25
50 73.375 152 0.32 58.4948 21.5 0.37 0.27
75 54.015 114 0.49 65.3673 43.0 0.66 0.48
100 52.769 110 0.45 84.6090 51.2 0.61 0.44
Fig. 2. Values of 𝑅 = 𝑢rel(𝑉𝑡)∕𝑢∗rel(𝑉𝑡) with the data of Table 1 (crosses). Asterisks denote values calculated with expression (18) (based on simplifying assumptions).
(columns 2 to 4). Columns 5 and 6 give volume 𝑉𝑡 and associated
standard uncertainty obtained from Eqs. (4) and (8), respectively.

Columns 7 and 8 show the relative uncertainties associated with the
estimates of the delivered volume, calculated using expressions (8) and
(13), respectively. In both cases, the increases towards the extremes of
the measuring range are due to limited resolution at low flowrates and
to limited measuring time at high flowrates. The decrease at 100 L∕min
is consistent with a statistical fluctuation.

Fig. 2 shows the values of the ratio 𝑅 = 𝑢rel(𝑉𝑡)∕𝑢∗rel(𝑉𝑡) obtained
from the data of Table 1 (crosses). Asterisks denote data calculated from
expression (18), which is based on approximate assumptions, and are
given here just to demonstrate the heuristic value of that expression.

5. Comments

In our example, the indications 𝑄𝑖, as well as the 𝑡𝑖, are assumed
to be uncorrelated, as in Section 3.1. Yet, even assuming uncorrelated
indications, the uncertainty evaluated taking into account the covari-
ances arising from the discrete-time integration is 30% to 40% greater
than the uncertainty calculated neglecting them.

Of course, Eq. (8), used to obtain the results, can accommodate
any matrix structure, and is therefore appropriate in any more-general
situation, such as that discussed in Section 3.3.

Therefore, our approach is suitable in those situation in which
the flow is highly unstable, so that the flowrate changes wildly and
abruptly, which is typically the case when static gas meters are used
online.

A correct uncertainty evaluation, per se desirable, is of paramount
importance in the gas trade among countries, where the volumes
delivered trough large offshore pipelines are measured by both parties
5

and must be mutually consistent within stipulated limits. Given the
immense amounts of money involved, it is evident that uncertainties
play a key role, so that they should be evaluated according to an agreed,
technically sound procedure.

But even for domestic gas meters, which usually are calibrated only
once, before being installed online, to the purpose of checking the
conformity to regulations establishing a maximum permissible error,
uncertainty plays a role in that it impacts on consumer’s risk [10].

6. Conclusions

We discuss in this paper the evaluation of uncertainty in the mea-
surement of the volume of delivered gas by means of static meters. In
such cases, the delivered volume is a function of flowrate and time,
and the measurement model involves discrete-time integration of many
average flowrates determined from subsequent ‘instantaneous’ flowrate
indications.

It is intuitive that, even assuming the individual flowrate indications
to be uncorrelated, any two contiguous average flowrates must be
correlated, because they both are function of the middle indication, so
that the uncertainty associated with the latter affects them both in the
same way. For the same reason, any two adjacent time intervals must
be correlated.

Nevertheless, to the best of our knowledge, this intuitive feature of
the very mechanism of the discrete-time integration has been so far
disregarded; from the (scarce) literature that it was possible to find, it
appears that the average flowrates, as well as the corresponding time
intervals, are considered as independent in the data analysis currently
adopted in the industrial sectors applying such method.

In our paper we therefore develop a rigorous treatment in which
the correlations arising between the aforementioned quantities are
appropriately taken into account. We show that the current approach is
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conceptually flawed, and can lead to severe underrating (and possibly
overrating) of the uncertainty associated with the estimate of the
delivered volume. We also corroborate our findings with a practical
example.

In a broader perspective, Eq. (8) works equally well for any quantity
other than 𝑄 for which a measurement model of the kind of expression
2), suitably expressed in matrix terms by formula (4), applies. In other
ords, Eq. (8) can (and, in our opinion, should) be adopted in any
easurement in which the measurand estimate is obtained through

ime integration from a sensor which provides indications at discrete
oments in time.
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