
22 November 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer MoS2 Field-
Effect Transistors / Giubileo, Filippo; Iemmo, Laura; Passacantando, Maurizio; Urban, Francesca; Luongo,
Giuseppe; Sun, Linfeng; Amato, Giampiero; Enrico, Emanuele; Di Bartolomeo, Antonio. - In: JOURNAL OF
PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 123:2(2019), pp. 1454-1461. [10.1021/acs.jpcc.8b09089]

Original

Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer
MoS2 Field-Effect Transistors

American Chemical Society (ACS)

Publisher:

Published
DOI:10.1021/acs.jpcc.8b09089

Terms of use:

Publisher copyright

Copyright © American Chemical Society after peer review and after technical editing by the publisher. To
access the final edited and published work see the DOI above.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/59692 since: 2019-02-06T18:00:07Z

American Chemical Society

This is the author's submitted version of the contribution published as:



 

Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer 

MoS2 Field Effect Transistors 

Filippo Giubileo, Laura Iemmo, Maurizio Passacantando, Francesca Urban, Giuseppe Luongo, 

Lingfeng Sun, Giampiero Amato, Emanuele Enrico, Antonio Di Bartolomeo* 

CNR-SPIN Salerno, via Giovanni Paolo II n. 132, Fisciano 84084, Italy 

Physics Department, University of Salerno, and CNR-SPIN, via Giovanni Paolo II n. 132, Fisciano 84084, 

Italy 

Department of Physical and Chemical Science, University of L’Aquila, and CNR-SPIN L’Aquila, via Vetoio, 

Coppito 67100, L’Aquila, Italy 

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea 

Istituto Nazionale di Ricerca Metrologica, INRIM - Strada delle Cacce, Torino 10135, Italy 

 

Keywords: 2D materials, field effect transistors, electron beam irradiation, field emission, 

molybdenum disulfide 

 
 

 

Abstract 

Electrical characterization of few-layer MoS2 based field effect transistors with Ti/Au electrodes is 

performed in the vacuum chamber of a scanning electron microscope in order to study the effects of 

electron beam irradiation on the transport properties of the device. A negative threshold voltage shift 

and a carrier mobility enhancement is observed and explained in terms of positive charges trapped in 

the SiO2 gate oxide, during the irradiation. The transistor channel current is increased up to three order 

of magnitudes after the exposure to an irradiation dose of 100e-/nm2. Finally, a complete field 

emission characterization of the MoS2 flake, achieving emission stability for several hours and a 

minimum turn-on field of ≈ 20 V/µm with a field enhancement factor of about 500 at anode-cathode 

distance of ~1.5 µm, demonstrates the suitability of few-layer MoS2 as two-dimensional emitting 

surface for cold-cathode applications.  

 

 



1. Introduction 

Molybdenum disulfide (MoS2) is a two-dimensional (2D) layered material, one of the transition-meta l 

dichalcogenides (TMDs), with layers that are weakly held together by van der Waals forces. Energy 

band gap in MoS2 varies from 1.2 eV (indirect) in the bulk to 1.8-1.9 eV (direct) in monolayer.[1-3 ]  

Despite a low field-effect mobility (limited to few hundreds cm2V-1s-1 on suspended samples),[4 ]  

MoS2-based devices have attracted growing interest for several applications, such as field-effec t 

transistors (FETs),[2,5-9] sensors,[10-12] spintronic devices,[13] field emission cathodes,[14-15] synaptic 

computation for neuroscience,[16] etc.   

The development of MoS2-based nanoelectronics needs to overcome the difficulties arising from 

point defects as well as structural damages and dislocations, often generated during the fabrication 

processes. For instance, structural defects behave as charge traps modifying the electronic properties 

of devices.[17] Nowadays, the device fabrication and characterization activities are intimately related 

to the application of scanning electron microscopy (SEM), electron beam lithography (EBL), 

transmission electron microscopy (TEM), and focus ion beam (FIB) processing, which can have non-

negligible effects due to the exposure to electrons or ions bombardment. Indeed, it has been 

demonstrated that the irradiation by energetic particles (electrons and/or ions) can provoke relevant 

modifications of the electronic properties of 2D materials by introducing damage and/or defects.[18-

21] On the other hand, electrical and optical device properties may be modified by intentiona lly 

creating defects by means of electron-beam [17] or ion irradiation [22] as well as by plasma 

treatments.[23] 

Among the studies available about the effect of irradiation on 2D materials, Komsa et al. used first-

principles atomistic simulations to study the response of TMDs layers to electron irradiation. [24] They 

calculated displacement threshold energies for atoms in several compounds, including MoS2, and 

gave the corresponding electron energies necessary to produce defects. They also performed high-

resolution TEM experiments on MoS2, reporting that e-beam energy of about 90 keV is effective to 



produce sulphur vacancies by knock-on mechanism. Choi et al. studied the effects of 30 keV electron-

beam irradiation on monolayer MoS2 FETs, reporting that irradiation-induced defects act as trap sites 

which reduce the carrier mobility and concentration while shifting the threshold voltage.[25] Zhou et 

al. performed a systematic study of point defects in MoS2 using both SEM imaging and first-

principles calculations demonstrating that vacancies are created by e-beam irradiation at low energies 

(30 keV).[26] Durand et al. studied the effects of e-beam irradiation on the transport properties of 

CVD-grown MoS2 in FET configuration reporting an increase of the carrier density and a reduction 

of the mobility explained as the consequence of both intrinsic defects in MoS2 and Coulomb potential 

of irradiation induced charges at the MoS2/SiO2 interface.[27] Recently, it has also been demonstrated 

that e-beam irradiation on MoS2 based FET can produce a negative threshold voltage shift followed 

by a positive shift by increasing the aging time.[28] 

Higher energetic irradiation on MoS2 has been also tested. Ochedowski et al. used 1.14 GeV U28+ ion 

beam showing that conductivity of FETs is deteriorated by irradiation up to a complete destruction 

of the device for a fluence as high as 4×1011 ions/cm2.[29] Effects of irradiation by 10 MeV proton 

beams has been reported by Kim et al. for fluence up to 1014 cm-2.[30]  They demonstrated that 

electrical properties were unaffected for fluence up to 1012 cm-2, while higher values caused a 

reduction of current level and of the conductance as well as a shift of the threshold voltage toward 

the positive gate voltage. The main mechanism was identified in the formation of irradiation- induced 

traps, such as positive oxide-charge traps in the SiO2 layer and interface trap states. Moreover, 

recovery of such modifications has been experimentally proved over a time scale of few days.  

In this paper, we perform a systematic electrical characterization of CVD synthesized few-layer MoS2 

based FETs, inside a scanning electron microscope, to study the effects of low energy (up to 10 keV) 

e-beam irradiation. We report an increase of the carrier mobility and a negative shift of the threshold 

voltage for successive low energy irradiations that is explained in terms of positive charge trapped in 

the SiO2 gate dielectric.  



Moreover, taking advantage of the measurement setup with nano-controlled metallic tips inside the 

SEM chamber, we also perform a complete characterization of the field emission properties of the 

few-layer MoS2. Indeed, due to the intrinsically sharp edges and high aspect ratio of MoS2, this 

layered material is a natural candidate to realize high performance field emission cathodes. We 

demonstrate a turn-on field of ≈ 20 V/µm and a field enhancement factor of about 500, at anode-

cathode distance of about 1.5 µm. Finally, we show that MoS2 allows high current emission with high 

time stability, with fluctuations of the order of 5%.  

 

2. Methods         

MoS2 flakes were synthesized on SiO2(300nm)/p-Si substrate by chemical vapor deposition at high 

temperature, using sulfur (S) and molybdenum trioxide (MoO3) powders as solid precursors. The 

growth process was performed in Ar atmosphere (50 sccm gas flow); temperature was raised with 

fixed rate of 20°C/min from room temperature to 850 °C, and then kept for 10 min for the materia l 

growth. Finally the substrate was left to cool down naturally. Micro-Raman spectroscopy 

measurements with a 532 nm laser source were performed on the selected flakes in order to precisely 

identify the number of layers. The laser power was kept below 0.5 mW in order to avoid heating 

and/or modifications of the flakes. Figure 1(a) shows a typical Raman spectrum measured on one of 

the flakes,  showing the 𝐸2𝑔
1  and  𝐴1𝑔 peak, which is due to the in-plane and out-of-plane vibrations 

of Mo and S atoms, respectively. The frequency separation of the two peaks of about 23-24 cm-1  

indicates a few-layer flake.[31] A scanning electron microscopy (SEM) image of the flake is reported 

as inset of Figure 1(a). Two metal contacts, deposited by standard electron-beam lithography (EBL) 

and lift-off process, are visible: a larger one of Ti(20 nm)/Au(130 nm) and a shorter one, cross shaped, 

of Au (130 nm).  

In Figure 1(b), we show a schematic layout of the device and of the experimental setup. Electrica l 

measurements were performed inside a Zeiss LEO 1430 SEM chamber in high vacuum (pressure 



lower than 10-6 Torr) and at room temperature. Two tungsten tips, mounted on a nanoprobes system 

with two piezoelectric-driven arms installed inside the SEM chamber, were electrically connected to 

a semiconductor parameter analyser (Keithley 4200-SCS) working as source-measurement unit 

(SMU), to apply bias (up to ±120 V) and to measure the current with sensibility of about 10-14 A. The 

circuit configuration for the field effect transistor was obtained by using the silicon substrate as 

common back gate and the two metal leads as the drain and the source. 

 

           
 

Figure 1. (a) Raman spectrum of few-layer MoS2 flake measured for the flake imaged in the inset by 

using a laser source with 532 nm excitation wavelength. The atomic displacement of the two 

representative Raman-active modes (E1
2g and A1g) are also shown. (b) Schematic layout of the device 

and of the measurement setup.  

 

 

3. Results and discussion  

3.1. Transistor characterization.  

Figure 2(a) shows the output characteristics 𝐼𝑑𝑠  – 𝑉𝑑𝑠 (plotted in logarithmic scale), measured in the 

two-probe configuration for the MoS2 back-gated FET of Figure 1(b), performing a 𝑉𝑑𝑠  voltage 

sweep from -3V to +3V and repeating the measurements for different gate voltages in the range -

45V<𝑉𝑔𝑠<+45V. The characteristics indicate ohmic behaviour at low voltage, while for higher 𝑉𝑑𝑠  

voltages and high negative 𝑉𝑔𝑠 bias a small asymmetry is observed (see inset). Similar non-linear 



characteristics have been already discussed in terms of asymmetric Scottky contacts,[32,33] and are 

probably caused here by the use of Ti/Au and Au as metal leads. 

                       

     

Figure 2. (a) Ids  Vds output characteristics of the MoS2 back-gated FET at different gate voltages. 

Inset: Ids(-3V)/Ids(+3V) ratio to quantify the slightly asymmetry arising at high negative gate voltages;  

(b) Transfer characteristic  Ids  – Vgs measured at Vds  = 1.6 V. Curve is reported in both linear (left 

axis) and logarithmic scale (right axis). Results of linear fits are also shown; (c) Transfer 

characteristics (complete sweep loop +45V -> -45V -> +45V)  Ids – Vgs measured at Vds  = 1.6 V 

before and after electron beam irradiation. The irradiation dose is increased for each successive cycle. 

Inset: dependence of channel current and of carrier mobility on the irradiation dose; (d) Schematic 

band diagram for the n-type MoS2/SiO2/p-Si FET. (I) unbiased initial state; (II) unbiased state after 

irradiation which causes  electron-hole pairs formation in SiO2 and favours the formation of additiona l 

positive charged traps; (III) band alignment for Vgs<0V with carrier depleted channel; (IV) band 

alignment for Vgs>0V with carrier accumulation .      

 

In Figure 2(b) we report the transfer characteristic  𝐼𝑑𝑠  – 𝑉𝑔𝑠 at the drain bias 𝑉𝑑𝑠   = 1.6 V, in linear 

(black curve, left scale) and logarithmic scale (blue curve, right scale) evidencing a threshold voltage 

𝑉𝑡ℎ = -21.5 V (here defined as the gate voltage to obtain a channel current 𝐼𝑑𝑠  = 1 nA), i.e. that we 



are dealing with a n-type MoS2 based FET. The n-doping of few-layer MoS2 is often ascribed to the 

chemisorption of oxygen molecules on surface defects of MoS2, which locally lowers the conduction 

band edge, so promoting the n-doping of MoS2, but with no significant effect on the mobility and on 

the On/Off ratio of the transistor.[6,34,35] 

 The carrier mobility for the device under investigation is estimated using the equation 

 𝜇 =
𝐿

𝑊

1

𝐶𝑆𝑖𝑂2

1

𝑉𝑑𝑠

𝑑𝐼𝑑𝑠

𝑑𝑉𝑔𝑠

 

where 𝐿 and 𝑊 are the geometrical parameters of the transistor (length and width of the channel, 

respectively), and 𝐶𝑆𝑖𝑂2
 is the capacitance per unit area of the SiO2 gate dielectric ( 𝐶𝑆𝑖𝑂2

=

(𝜖0 ∙ 𝜖𝑆𝑖𝑂2
)/𝑡𝑆𝑖𝑂2

= 1.15∙10-4 F/m2, 𝜖0  is the vacuum permittivity, 𝜖𝑆𝑖𝑂2
=3.9 and 𝑡𝑆𝑖𝑂2

= 300 nm are 

the relative permittivity and the thickness of SiO2, respectively). Using the slope of the 𝐼𝑑𝑠  – 𝑉𝑔𝑠 curve 

in the linear region, we obtain the intrinsic field-effect mobility, 𝜇 = 0.12 cm2V-1s-1,  a value within 

the typically reported range 0.01-100 cm2V-1s-1 for  CVD-grown MoS2 based FETs on thermally 

grown SiO2.[36,37] The observed low conductivity (on-state conductivity 𝜎𝑂𝑁 = ( 𝐼𝑑𝑠/𝑉𝑑𝑠 ) ∙ (𝐿/𝑊) ≈

2𝑛𝑆 ) is originated by the relative high contact resistance due to the Schottky barriers at the 

contacts.[33,38] The low mobility is representative of a high density of scatterers, such as charged 

impurities due to the fabrication process and/or exposure to air, or intrinsic defects due to high 

surface-to-volume ratio of MoS2. 

From the logarithmic plot of 𝐼𝑑𝑠  – 𝑉𝑔𝑠 we can also evaluate the  On/Off ratio (greater than 105) and 

the sub-threshold swing 𝑆𝑆 , i.e. the gate voltage change required to increase the current in the 

transistor channel by one decade. In conventional FETs, 𝑆𝑆 depends on the MOS capacitances as 

𝑆𝑆 =
𝑑𝑉𝑔𝑠

𝑑(log(𝐼𝑑𝑠 ))
≈ ln (10)

𝑘𝑇

𝑞
(1 +

𝐶𝑇 +𝐶𝐷𝐿

𝐶𝑆𝑖𝑂2

), where 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 

𝑞 is the electron charge, 𝐶𝐷𝐿 is the depletion layer capacitance, and 𝐶𝑇 is the capacitance associated 

with the interfacial charge traps. From the experimental curve 𝐿𝑜𝑔(𝐼𝑑𝑠) 𝑣𝑠 𝑉𝑔𝑠 in Figure 2(b) we 

obtain 𝑆𝑆 = 5.7V/decade. The relatively high value of 𝑆𝑆 (with respect the minimum value 𝑆𝑆𝑀𝑖𝑛 =



ln (10)
𝑘𝑇

𝑞
≈ 60mV/decade for the ideal metal-oxide-semiconductor field-effect transistor) gives 

indication that 𝐶𝑆𝑖𝑂2
 is ten to hundred times smaller with respect the other capacitances. On the other 

hand, 𝐶𝐷𝐿 is not expected to be a significant fraction of the total capacitance, due to the small sample 

thickness with respect the oxide thickness 𝑡𝑆𝑖𝑂2
. Consequently, we can give an estimation of the 

density of trap states 𝐷𝑇𝑟𝑎𝑝 ≈7∙1012 cm-2eV-1 considering that 𝐶𝑇 = 𝑞2𝐷𝑇𝑟𝑎𝑝. This is a reasonable 

value in agreement with existing data.[39] 

In the following we discuss the effect of electron beam irradiation (EBI) on the transfer characterist ic 

of the MoS2 transistor. All measurements were performed in-situ in the SEM chamber soon after the 

exposure to e-beam in order to avoid competing effects due to the air exposition of the device. The 

irradiation is performed at the electron beam energy of 10 keV, and at the fixed beam current of 0.2 

nA. In Figure 2(c) we show complete (forward and backward) voltage sweeps in the range  -

45V< 𝑉𝑔𝑠 <+45V. The first measurement performed before the irradiation is compared to the 

measurements obtained after irradiation for three different levels of electron irradiation dose in the 

range up to 100 𝑒−/nm2. We observe that the threshold voltage is shifted towards more negative 

voltages after each irradiation (larger negative shift correspond to higher dose of irradiation). To give 

a quantitative estimation we consider the current flowing in the FET channel 𝐼𝑑𝑠  (measured in the 

backward sweep at 𝑉𝑔𝑠=-20V), that increases for each successive EBI cycle for increasing irradiation 

dose. In Figure 2(d) we summarize the resulting evolution of the channel current and of the carrier 

mobility due to EBI. We clearly see that both, 𝐼𝑑𝑠  and 𝜇, monotonously raise for increasing dose. The 

maximum dose of 100 𝑒− /nm2 almost causes a channel current increase by about three order of 

magnitude and a doubled mobility (𝜇 ≈ 0.25 cm2V-1s-1). These observations can be ascribed to the 

low energy of irradiation. Indeed, it has been reported that higher e-beam energy (30keV and a dose 

of 5∙102 𝑒−/nm2) is necessary to intentionally create defect sites (as mono-sulfur vacancies) causing 

a reduction of the channel current as well as of the carrier mobility in MoS2 FET.[17,25,40] Defect sites 

may also be passivated (by chemisorption of C12 molecules) obtaining an improvement of the device 



performance towards pre-irradiation values.[22,25] Moreover, a deep theoretical and experimenta l 

study of the effects of electron irradiation on few-layer MoS2 flakes has demonstrated that only beam 

energies above 20 keV can systematically cause a decrease of channel conductivity in the transistor, 

while lower energies always result in an increase of conductivity,[40] confirming that electron 

irradiation can also be suitable to improve physical properties of MoS2 based FETs.   

The observed negative shift of the threshold voltage (and increased channel current) is explained by 

the pile up of positive charge in the SiO2 traps that cause an enhancement of the gate electric field 

and an increase of carrier concentration.[41] Indeed, the EBI produces electron-hole pairs in the SiO2 

gate oxide, and due to the higher electron mobility, negative charges can rapidly escape, while holes 

are trapped.[41] Moreover, the induced EBI charges can also produce the formation of interfac ia l 

positive trapped charge that would contribute to the observed effect. A schematic band diagram of 

the underlying physical mechanism to explain the observed behaviour of n-type MoS2 FET on p-

Si/SiO2 under EBI is shown in Figure 2(d). Configuration (I) represents the equilibrium state: 

electrons flow from MoS2 to the interface due to the higher Fermi energy level of the MoS2 till Fermi 

levels are aligned. The main effect of EBI is the formation of electro-holes pairs in the SiO2 oxide 

(within first 100 nm layer), and the formation of further positive oxide trapped charges (II). Actually, 

trapped positive oxide charges may be already present in the oxide and (contribute to the n-doping of 

MoS2), due to fabrication process as well as due to initial SEM imaging of the device. According to 

band diagrams (III) and (IV) depicted in Figure 2(d), when applying positive gate bias (𝑉𝑔𝑠>0V), 

electrons  are attracted to the interface between MoS2 and SiO2 to form an accumulation layer. Vice 

versa, for negative gate bias (𝑉𝑔𝑠<0V), electrons are  depleted from the channel.  

 

3.2. Field emission characterization.  

The circuit configuration for field emission characterization has been easily obtained by retracting 

one probe and finely adjusting its distance d from the MoS2 surface, the second probe contacting one 



metallic pad (inset of Figure 3(a)). The cathode(MoS2)-anode(suspended W-tip) separation 𝑑 can be 

precisely tuned with step resolution down to 5 nm. The use of a tip-shaped anode is an effective 

technique to perform FE characterization of reduced emitting areas (below 1µm2) with respect the 

standard parallel-plate setup that typically probes larger areas of several mm2.[42-45]  

  

   

  

Figure 3. Field emission characterization of MoS2 flake. (a) I-V curve measured at cathode-anode 

separation d =300nm. Left Inset: FN-plot of the experimental data. Red line is the linear fit. Upper 

inset: Schematic of the setup for FE measurements. (b) Field emission current stability measured at 

fixed voltage of 45 V.  The inset show the histogram of the measured values. Mean and standard 

deviation are also reported. (c) FE characteristics measured in a second location on the MoS2 surface 



for several d values and corresponding (d) FN-plots (the plot for 𝑑 =250nm is not reported for clarity, 

being too noisy). (e) FE characteristics measured in a third location on the MoS2 surface for a reduced 

range of the cathode-anode separation 𝑑 to precisely extract the turn-on field (voltage) vs 𝑑 (in the 

inset). (f) Dependence of the field enhancement factor on the distance 𝑑 as extracted from all the I-V 

curves reported and by considering two possible values of the work function (Φmin =4.3eV and 

Φmax=5.25eV). 

 

We remark that the FE curves typically show large instabilities (fluctuations and drops) due to the 

presence and desorption of adsorbates (on the emitting surface), which act as nanoprotrusions with 

higher field enhancement factor and can be evaporated by Joule heating for the high FE currents.[46,47] 

Consequently, as standard procedure, we always perform an electric conditioning by repeating several 

successive voltage sweeps (not reported here) to stabilize the emitting surface. All reported data in 

the following have been measured after proper electric conditioning. 

In Figure 3(a) we show a typical I-V curve measured at a cathode-anode separation d = 300 nm, where 

a turn-on field 𝐸𝑂𝑁 = 𝑉𝑂𝑁 /𝑑 = 90V/µm is necessary to start the current emission that rapidly increase 

for seven order of magnitudes from the setup floor noise of about 10-14 A in about 20V bias range 

starting from the 𝑉𝑂𝑁 ≈  30 V. Moreover, when using a tip-shaped anode, a more precise estimation 

of the turn‐on field 𝐸𝑂𝑁
∗  is obtained by considering a correction factor 𝑘𝑡𝑖𝑝 ≈1.5,[42] resulting in a 

lower turn‐on field value 𝐸𝑂𝑁
∗ = 𝐸𝑂𝑁/𝑘𝑡𝑖𝑝 ≈  60V/µm. 

Experimental data are then analysed in the framework of Fowler-Nordheim (FN) theory to verify the 

FE nature of the measured current, indeed it should follow the relation:[48] 

𝐼 = 𝑎
𝐸𝐿

2

𝛷
𝑆 ∙ 𝑒𝑥𝑝 (−𝑏

𝛷3/2

𝐸𝐿

) 

where 𝛷 is the work function of the emitting material, S is the emitting surface area, 𝑎 = 1.54 × 10-6 

AV-2eV  and 𝑏 = 6.83 × 107  Vcm-1eV-3/2 are constants, and 𝐸𝐿 is the local electric field that can be 

expressed as 𝐸𝐿 =  𝑉/𝑑, with   the so-called field enhancement factor, i.e. the ratio between the 

local electric field on the sample surface and the applied field. Accordingly, a linear behaviour is 



expected for the FN-plot, i.e. 𝑙𝑛(𝐼/𝑉2) 𝑣𝑠 1/𝑉. From the slope 𝑚 of the FN-plot it is possible to 

calculate the field enhancement factor as 𝛽 =  −𝑏 𝑑 𝛷1.5 /𝑚. The inset of Figure 3(a) shows the FN-

plot corresponding to the measured I-V characteristic, and it evidences a clear linearity, confirming 

that the current is due to the FE phenomenon from the MoS2 surface. Moreover, we can estimate the 

field enhancement factor as  𝛽 ≈40 (if assuming 𝛷=5.25eV for the MoS2,[49] and considering the tip 

correction 𝑘𝑡𝑖𝑝 ≈1.5). 

In the same configuration (with 𝑑 = 300 nm) we also tested the FE current stability by applying a 

constant bias of 45 V and then measuring the emitted current vs time for a period of more than 8 

hours. Experimental result is shown in Figure 3(b): a stable current without significant degradation 

with respect to the average value of about 18 nA is recorded. This observation confirms the suitability 

of MoS2 flakes for FE applications.  

By tuning the cathode-anode separation distance, we characterized the FE properties of the MoS2 

flake, in the range 250 nm < 𝑑 < 2100 nm, in a different location. In Figure 3(c) we show the I-V 

curves measured for different 𝑑 values. We observe that, as expected, by increasing the distance of 

the tip from the surface, higher voltages are necessary to extract electrons from MoS2. The 

corresponding linear FN-plots, reported in Figure 3(d), confirm the field emission phenomenon.  We 

notice that, for small distances, when high FE current values are obtained (in the range 0.1 – 1 𝜇A), 

further current increase is strongly limited despite the increasing bias voltage, due to a series 

resistance in the circuit (causing a relevant voltage drop that reduces the local applied field when a 

high current is flowing) and probably to space charge limited conduction. 

A third area of the flake has been also characterized (Figure 3(e)) in a reduced distance range (from 

1450 nm to 1750 nm) and with reduced steps in order to precisely analyze the dependence of the turn-

on voltage from 𝑑 in this distance range. As expected, increasing the distance, the emission starts at 

higher applied voltages, while for reduced distance, it starts at lower voltages. The inset of Figure 

3(e) shows the values of the turn-on field(voltage) evaluated for each distance  (𝐸𝑂𝑁 , 𝑉𝑂𝑁  𝑣𝑠 𝑑), 



evidencing that in such distance range the turn-on voltage is a monotonically raising function of the 

distance, while the turn-on field is almost saturating at 𝐸𝑂𝑁 ≈26V/ 𝜇m for 𝑑 >1.5𝜇m. 

Finally we report in Figure 3(f) the 𝛽  values extracted from all the reported I-V characterist ic s 

discussed above. Interestingly, we observe two different regimes for small and large separation 

distances. For small distances up to 𝑑 ≈  1.5𝜇m, the field enhancement factor increases with the 

distance, consistently with what has been already reported for FE from MoS2 for very small distances 

up to 200 nm.[15] Vice versa, for cathode-anode separation greater than 1.5 𝜇m, we clearly observe 

that field enhancement factor is rapidly decreasing for increasing distance. We observe that in order 

to calculate the absolute value of the field enhancement factor it is necessary to infer the effective 

local work-function of the MoS2 emitting area. However, it has been reported that the work function 

of layered materials is strongly dependent on the number of layers.[50] Moreover, substrate effects 

(such as trapped charges) and contamination arising from device processing can significantly modify 

the work function of MoS2.[51,52] A combined study by using functional scanning probe microscopy 

techniques and Raman spectroscopy mapping on single and few-layers MoS2 has demonstrated that 

the work function can vary in the range 4.39 to 4.47 eV depending on the number of layers.[53]  

Consequently, we report in Figure 3(f) the plot of the extracted 𝛽  values assuming two possible 

limiting values, Φ𝑚𝑖𝑛 = 4.3 eV and Φ𝑚𝑎𝑥  = 5.25 eV, for the MoS2 work-function in order to take into 

account possible local variation of this physical property. This simply gives an evaluation of the 

possible variation of 𝛽 according to the real Φ value, the overall behavior remaining the same. This 

variation is observed to be strongly reduced for increasing separation distance. 

Our results confirm over a wider range (up to about 1.5𝜇m) that for small cathode-anode separation 

distance increasing distance causes an increase of the field enhancement factor, accordingly to 

previously reported data on FE from MoS2 flakes for very small separation (50 nm < 𝑑 < 200 nm).[15]  

Similar behavior has been also reported for several other nanostructures probed at small cathode-

anode separation.[54,55] On the other hand, several theoretical and experimental study have confir med 



that for larger separation distance (above 1-2 𝜇m), an opposite behavior is expected, with the field 

enhancement factor decreasing for raising distance.[56-59] 

  

Figure 4. (a) Comparison of FN-plot and 2D-FN plot for the FE curve reported in Figure 3(a). Solid 

lines are the linear fittings for the two plots with the indication of the resulting slopes.  (b) Field 

enhancement factor (left scale) as extracted by the two models, i.e. the standard FN-theory (FN) and 

the modified model for two-dimensional materials (2D). On the right scale is reported the difference 

between the values for each distance. 

 

To complete the analysis of the FE properties of few-layer MoS2, we finally analyse the experimenta l 

data in the framework of a modified Fowler-Nordheim model for the field-induced vertical electron 

emission from the surface of 2D materials proposed by Y. S. Ang et al. that explicitly takes into 

account the reduced dimensionality as well as several other effects (non-parabolic energy dispersion, 

non-conservation of the lateral momentum, finite-temperature and space-charge-limited effects).[60 ]  

According to this model (2D-FN), differently by the usual FN-theory, the FE current is described by 

the formula: 

𝐼 = 𝐶 ∙ 𝑒𝑥𝑝 (−𝑏
𝛷3/2

𝐸𝐿

) 

where 𝐶 is a constant. In this case, it is the plot 𝑙𝑛(𝐼) versus 1/𝑉 that is expected to be linear.  In 

Figure 4(a) we show the comparison of the FN-plot and the 2D-FN plot for the FE curve previous ly 

shown in Figure 3(a). We notice that from both models a linear behaviour is obtained, and also a 

similar slope of the linear fitting is extracted. As a consequence, we could not select any of the two 



models. In Figure 4(b),we report the comparison of the 𝛽  values extracted from the two models 

(assuming the case Φ = 5.25 eV). The difference between the two values ∆𝛽 = 𝛽𝐹𝑁 − 𝛽𝐹𝑁
2𝐷  is also 

reported as a function of the separation distance 𝑑. Interestingly, for small distances (𝑑 <1.5𝜇m)  we 

found 𝛽𝐹𝑁 < 𝛽𝐹𝑁
2𝐷 , while for large distances (𝑑 >1.5𝜇m)  it is  𝛽𝐹𝑁 > 𝛽𝐹𝑁

2𝐷 . 

 

 

4. Conclusions 

We have used CVD-grown few-layer MoS2 flakes to realize Au/Ti contacted field effect transistor. 

The characterization of transport properties after electron-beam irradiation for doses up to 100 e-/nm2  

has demonstrated an increase of the current in the MoS2 channel as well as a negative shift of the 

threshold voltage, due to the accumulation of positive charges produced by the irradiation in in SiO2 

gate dielectric. We also performed a complete field emission characterization of the same MoS2 flake 

showing that relative low turn-on field (~20V/𝜇m) are achievable on few-layer MoS2, making the 

system of great interest for FE applications, also due to the high current stability demonstrated in our 

experiment for a period longer than 8 hours.  
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