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Abstract — The hardware implementation of the reservoir computing paradigm represents a key aspect for taking into 
advantage of neuromorphic data processing. In this context, self-organised nanonetworks represent a versatile and scalable 
computational substrate for multiple tasks by exploiting the emerging collective behaviour of the system arising from 
complexity. The emerging behaviour allows spatio-temporal processing of multiple input signals and relies on the nonlinear 
interaction in between a multitude of nanoscale memristive elements. By means of a physics-based grid-graph modeling, we report 
on the implementation of reservoir computing for a speech recognition task in a memristive nanonetwork based on nanowires 
(NWs) acting as a physical reservoir. Besides analysing the pre-processing step for the transduction of the audio samples in 
electrical stimuli to be applied to the physical reservoir, we analyse the effect of the network size and the adoption of virtual 
nodes on computing performances. Results show that memristive  nanonetworks allow in materia implementation of reservoir 
computing for the realisation of brain-inspired neuromorphic systems with reduced training cost. 
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I. INTRODUCTION 

Neuromorphic computing aims to overcome main limitations of the conventional von Neumann computing architecture, 
where the continuous and intensive interchange of data in between memory and processing units that are implemented in 
separate blocks is responsible for a large part of the power consumption of the system. In this context, the development of 
neuromorphic computing and engineering rely on the development of new hardware technologies and architectures 
mimicking functionalities and effectiveness of biological neuronal circuits [1], [2]. 

Among emerging devices and technologies, memristive devices represent one of the most promising candidates for the 
development of biologically-plausible architectures able to storage and process information in the same physical location [3]. 
Memristive devices are two-terminal devices where the internal state of resistance depends on the history of applied voltage 
and current [4], [5]. For this reason, these devices that couples  ionics  with  electronics,    have  been  exploited  as building 
blocks for emulating neuronal and synaptic functionalities [6]–[8]. In this framework, large arrays of memristive devices,  
fabricated with a top-down approach through lithographic techniques, have been exploited for the realisation of artificial 
neural networks and brain-inspired systems [9], [10]. 

Inspired by self-organisation processing regulating both the topology and functions of biological neuronal circuits, self-
assembled complex nanonetworks of memristive elements  have  been  recently  demonstrated  for  physical implementation 
of neuromorphic-type of information processing [11]–[20]. Differently from top-down architectures,  functionalities  of  self-
organizing  networks emerge  from the collective behaviour  and interactions in between a huge number of nano elements 
without the need of fine  tuning  of  each  part  of  the  system  [21].  Among nanonetworks, randomly displaced nanowires 
(NWs) forming an highly interconnected network have been demonstrated to exhibit  a  wide  range  of  collective  neural-like  
dynamics including short-term and long-term plasticity, heterosynaptic plasticity,  avalanche  effects,  criticality  and  edge-of-
chaos [11]–[14]. By exploiting these dynamics, memristive NW networks have been proposed as versatile substrates for 
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in materia implementation of reservoir computing (RC) [22]– [27]. The major advantage of RC, derived from recurrent 
neural network models and allowing temporal and sequential data processing, relies on the fast learning and low training 
cost. This is because an RC system is composed of a reservoir that maps inputs in a feature space that is then analysed by a 
readout that is the only part that needs to be trained [28], [29]. 

In this work, we report on physics-based simulations of the implementation of RC for speech recognition in neuromorphic NW 
networks. Besides reporting on the implementation of RC by exploiting the emergent dynamics of the NW network, pre- 
processing for the transduction of the audio signal into electrical stimuli through the Lyon’s auditory model is analysed. 
Also, the effect of the network size and the role of virtual nodes on computing performances are discussed. The results show 
that the emergent dynamics of NW networks can be exploited for the realisation of neuromorphic systems able to process 
multiple spatio-temporal input signals. 

 
 

 
Fig. 1. Conceptual schematic representation of physical implementation of reservoir computing (RC) for speech recognition with neuromorphic NW networks. 
The computing implementation involves three steps: i) pre-processing, ii) non-linear transformation by the NW network reservoir and iii) classification of 
reservoir outputs by the readout. Pre-processing step involves the conversion of the audio signal in pulse trains that are then applied to terminals A of n channels, 
where each channel is connected to a pad contacting the NW network physical reservoir. Voltages of n-1 channels measured at terminals B of the resistance R 
represent the reservoir outputs that are then passed to the readout for classification. 
 
 
 

II. RESULTS AND DISCUSSION 

A conceptual schematisation of the physical implementation of reservoir computing in NW networks is reported in Fig. 
1. The implementation involves mainly three steps: i) pre-processing of the input signal, ii) non-linear transformation of the 
input through the physical NW network reservoir, and iii) classification of the reservoir outputs performed by the readout. 
NW networks can be realised by simply drop-casting Ag NWs surrounded by an insulating shell of polyvinylpyrrolidone 
(PVP) in solution on an insulating substrate. By means of this technique, a highly interconnected network of randomly 
dispersed NWs over a large scale (~ cm2) can be obtained [11], [30], [31]. The typical topology of an Ag NW network realised 
on a SiO2 insulating substrate is reported in the Scanning Electron Microscopy (SEM) image of Fig. 2. 

A. Pre-processing of the audio signal 
A pre-processing step is required to convert the audio signal (Fig. 3a) in electrical stimuli  to be applied to the 

physical reservoir. This process emulates the transduction mechanism of the human ears that transform sound waves in 
nerve pulses then transferred to the brain wherein they are recognised and processed. By emulating the most important 
cochlea’s functions, the Lyon’s Auditory model [32] has been exploited for pre-processing of the audio signal. This technique 
allows the extraction of features of input time- varying signal in the frequency rather than in the amplitude domain. In the 
first stage, the frequency components of the acoustic waves are separated. Then, a detection stage simulates the hair cell 
detection of the basilar membrane in the cochlea and a final compression stage is exploited to regulate the output’s dynamic 
range. The output of the Lyon’s model is represented by the so-called cochleagram (Fig. 3b) that, similarly to a spectrogram, 
represents the intensity of the hair cells activity over time. Then, the cochleagram is interpolated (one-dimensional piecewise 
linear interpolation), discretised and binarised. After normalisation of the cochleagram in the range (0,1), binarisation was 
performed by choosing a threshold value of 0.6. The resulting spatio-temporal pattern representing the cochleagram (Fig. 
3c) is composed of n channels and m timestamps with white (0) or black (1) pixels. 
This n × m input represents a spatio-temporal reservoir input composed of  n spatial inputs (channels) each containing m 
timeframes. Each spatial input corresponds to a train of pulses applied to a different pad of the network, where each timeframe 
with a width of 11 ms is composed of a 10 ms pulse of 5 V if corresponding to a black pixel or to 0 V if corresponding to a white 
pixel followed by 1 ms biased at 0 V. Note that the binarisation and the following transformation of the cochleagram into 
streams of pulses can be interpreted as the production of electrical stimuli in form of pulses from the hair cells of the ears when 
the received signal from the cochlea is strong enough (i.e. when it exceeds a threshold value). This train of pulses is then 
applied to different locations of the NW network reservoir through electrodes acting  as  neuron  terminals  disposed  on M 
× M  grid-like fashion. In this context, it is worth noticing that the acoustic transformation during the pre-processing plays a 
critical role in feature extraction and, thus, represents an important aspect to be considered during the evaluating performances of 
the RC system [33]. 

B. Emerging behaviour of the physical reservoir 
The neuromorphic NW network is exploited as a physical reservoir for a non-linear transformation of the input signal by 

exploiting its emerging memristive behaviour. This emerging behaviour is related to the mutual interaction of memristive 
NW junctions composing the network. 



 

 
Fig. 2. Scanning Electron Microscopy (SEM) image of an Ag NW network realised by drop-casting on a SiO2 insulating substrate (scale bar, 5 µm). 

 
 
 
 

 
 

Fig. 3.  Pre-processing of the input signal. (a) Example of a sound wave corresponding to a spoken digit nine and (b) corresponding cochleagram where each 
channel on the y-axis represents a frequency window in the range from 0 to 4 kHz (higher index channels correspond to higher frequencies). (c) Corresponding 
spatio-temporal pattern composed of n channels and k timesteps representing the cochleagram after interpolation, discretisation and binarisation. 

 
The memristive behavior in NW junctions rely on the so-called resistive switching mechanism that is responsible for the 
formation of a conductive filament connecting the two intersecting NW cores under the action of the applied electric field, 
lowering the overall junction resistance. This switching mechanism is volatile, meaning that the metallic filament 
spontaneously dissolves after the end stimulation. A detailed analysis of the switching mechanism in single network elements 
can be found in a previous work [11]. The formation and dissolution of filaments at NW junctions are responsible for a network-
wide memristive behaviour that allows spatio - temporal processing of the input signal by exploiting the emergent nonlinear 
dynamics and fading memory properties of the neuromorphic reservoir network. The emergent spatio- temporal dynamics can 
be emulated through grid-graph modelling [22], [34]. In this context, the NW network topology is represented as a regular 
grid-graph. This assumption holds in case of high-density NW networks that can be approximated as a continuous conductive 
medium. The memristive short-term dynamics of graph edges are modelled with one equation for the memory state and one 
equation to describe the electron transport, according to a previous work [35]. 
The dynamics of the memory state g (i.e.  the normalized edge conductance) are described through a physics-based 
potentiation-depression rate balance equation: 
 

 
 
 
where  kp    and  kd    are  the  potentiation   and  depression coefficients (that are defined as a function of the voltage 
difference in between nodes connected by the edge [35]). This equation can be recursively solved as detailed in ref. [35]. 
Instead, the electron transport is described according to the first Ohm’s law through the equation: 

 

 
 
where Gmin  and Gmax   are  the  minimum and  maximum of conductance, respectively. Model parameters were retrieved from 
interpolation of experimental data [22]. For each simulation timestep, the voltage at each node and current flowing in 
each edge was calculated through the modified voltage node analysis and the edge conductance (memory state) is updated. 
During stimulation, reservoir inputs in the form of pulse trains are applied to terminals A of the n reservoir input channels 
(refer to Fig. 1). Each input channel corresponds to a terminal neuron located in a different area of the NW network, with terminals 
disposed on a M × M grid-like fashion. The reservoir output is represented by the set of the output voltages measured at terminals 
B of the resistance R while a small bias voltage  is  applied  to  a  selected  arbitrary  channel  (read electrode) while terminal A 
of all other channels are grounded. 
Note that this configuration described in detail in ref. [22] allows to exploit the same electrodes both as inputs and 
outputs of the physical reservoirs, reducing the overall number of terminal electrodes. 



Grid-graph modelling allows direct visualisation of emerging nonlinear dynamics exploited for temporal processing of 
multiple spatial inputs, as reported in Fig. 4a. Here, the evolution over timesteps of the NW network under stimulation with 
the spatio-temporal pattern shown in Fig. 3c is reported. As can be observed, the multiterminal stimulation is responsible for a 
spatio-temporal evolution of the NW network conductivity map over timesteps that depends on the spatial location as well as 
on the specific temporal sequence of stimulating voltage pulses. It is worth noticing that the competition in between 
potentiation of stimulated areas and subsequent spontaneous relaxation to the ground state endow the NW network with the 
accumulation capability, that is the capacity of progressively increasing the conductance of network areas that are stimulated 
with temporally correlated voltage pulses. In this framework, the dynamics of the reservoir outputs reflects the peculiar 
evolution of the NW network conductivity map. The temporal evolution of reservoir outputs resulting from the dynamics 
visualised in Fig. 4a is reported in Fig. 4b, where the temporal evolution of some selected outputs is shown. The reservoir 
outputs are the result of a non-linear transformation of the input signals resulting from memristive dynamics with fading 
memory properties of the system. 

 

C. Readout classification 
 

The final reservoir states (i.e. the reservoir state after the end of stimulation) represented by the set of n-1 independent output 
voltages (output vector) can be then passed to the readout for classification. Note that the readout is the only part of the system 
that needs to be trained. Before being fed to the readout, reservoir output voltages were standardised by removing the mean 
value and scaling to the unit variance. 

 

 
 

Fig. 4 Evolution of the NW network physical reservoir state. (a) Direct visualisation of the evolution over timesteps of the NW network reservoir state 
represented during stimulation with the spatiotemporal pattern representing the cochleagram corresponding to a digit nine reported in Fig. 3c, and (b) 
corresponding evolution of selected output timetraces (selected channels highlighted in the inset, where the read electrode is circled in red. 
 

 
In addition, in order to overcome the loss of information from the far-history of the input, the virtual node processing concept 
was exploited [36]. This means that not only the reservoir state after the end of stimulation but also intermediate reservoir 
states are passed to the readout. Given i the number of considered virtual nodes, the size of the output vector will be i(n-1). In 
other words, adding a virtual node means  to  pass  to  the  readout  an  additional  set  of n -1 independent output  voltages  
measured  at  an intermediate timestep, thus virtually increasing the reservoir size. Given an input with m timesteps, 
considering i virtual nodes means to pass to the readout the set of output voltages acquired every m/i timesteps. It is 
important to highlight that the case of i = 1 corresponds to the case where only the set of output voltages at the end of 
stimulation are passed to the readout (i.e. only the final reservoir state is considered for classification). Note that an increase of 
virtual nodes results also in a larger number of parameters to be trained at the readout. The readout function is implemented 
through a logistic regression algorithm, where the weighted sum of the reservoir outputs is transformed by a sigmoid function 
in a categorical value in the range (0,1), which brings information about the probability of the input of belonging to a 
particular class. 

D. Speech recognition with a physical reservoir 
The computing capabilities of the reservoir computing system based on the neuromorphic NW network physical 

reservoir have been evaluated on the speech recognition task. For this purpose, pre-processed audio samples are mapped 
into reservoir states (i.e. output voltages) and then classified by the readout following as previously described. Computing 
performances have been evaluated by considering the free- spoken digit dataset (Tensorflow) [37]. This dataset consists of 
audio samples of digits from 0 to 9 pronounced by 6 different speakers. Each speaker is recorded 50 different times for 
each digit, resulting in a total of 3000 audio samples. The readout was trained on 2700 audio files and tested with the 
remaining 300 audio samples (30 audio samples for each digit) by exploiting the k-fold cross validation technique (k = 10 
was considered). 
Fig. 5a reports the accuracy of the system achieved by considering different numbers of virtual nodes. Results have been 
obtained by considering n = 81 channels (i.e. 81 terminal neurons connecting the NW network) and m = 16 timesteps during 
pre-processing. Here, the accuracy of the reservoir-based system is compared to the accuracy of the system without 



reservoir (i.e. the pre-processed data fed directly to the readout). We point out that this comparison is crucial to understand 
the effective advantages of the physical reservoir system. 
Firstly, results evidenced that the reservoir-based system achieve a higher accuracy. This is because the non-linear 
transformation of the input performed by the reservoir with short-term memory extracts spatio-temporal correlations of 
the input signals with consequence increase of the system accuracy. Secondly, it can be observed that the accuracy 
progressively increases by increasing the number of virtual nodes. Indeed, an increasing number of virtual nodes can 
balance  the  loss  of  information  from  initial  stimulation timesteps  due  to  the  short-term  memory  of  the  physical 
reservoir. Notably, it is important to remark that an higher gain of accuracy respect to the system without the reservoir can be 
observed for a reduced number of virtual nodes. This means that the gain of accuracy with the reservoir is higher when a 
lower amount of parameters have to be trained in the readout. 
The accuracy of the system obtained by progressively increasing the reservoir size in terms of the number n of 
electrodes is reported in Fig. 5b, where results have been obtained by fixing the number of timesteps to m = 16 and the 
virtual nodes to i = 2. Note that an increasing the number of electrodes strongly impacts also the pre-processing step since this 
means to increase the number of channels extracted from the cochleagram accordingly. As can be observed, the accuracy 
of the system increases by increasing the number of electrodes. This is because an increased number of channels 
corresponds to a binarised spatio-temporal pattern obtained from the corresponding cochleagram with enhanced 
resolution in frequencies, thus resulting in a reservoir input pattern that endows an increased amount of information on the 
original audio signal. 

 
 
 

 
Fig. 5 Speech recognition with neuromorphic NW networks as physical reservoir. (a) Accuracy of the system as a function of the number of considered virtual 
nodes. (b) Accuracy of the system as a function of the number of input electrodes n by considering 2 virtual nodes. Results in panels (a) and (b) are compared 
with results obtained without the physical reservoir, and box plots were retrieved from results obtained with the k-fold cross validation technique with k = 10. 
(c,d) Charts representing the accuracy for digit recognition of the system by taking into account different numbers of virtual nodes with and without physical 
reservoir, respectively. 
 
However, it is worth noticing that for √n > 7 the accuracy of the system tends to saturate. This is related to the fact that no further 
relevant features of the cochleogram are extracted by further increasing its frequency resolution (i.e. by increasing the 
number of channels) during pre-processing. Importantly, in all cases the reservoir-based system accuracy outperforms the 
system without a reservoir. 
For the sake of completeness, charts reported in Fig. 5c shows the ability of the RC system to correctly estimate the target 
digit. It can be clearly visualized that the ability to correctly classify the target digit increases by progressively increasing 
the number of virtual nodes. As a comparison, Fig. 5d shows the same chart of the computing system without reservoir that, 
by comparing results obtained with the same number of virtual nodes, shows lower computing performances. 

In perspective, the accuracy of the system can be further improved by properly adjusting the nonlinear response and 
dynamics of the NW networks through i) adjustment of the NW network density and ii) an engineering of the core-shell NW 
structure. Also, it is worth noticing that this physical implementation of RC can be extended not only to other temporal 
tasks but also for computing tasks where the temporal dynamics of input signals are coupled with spatial information. 



 
 

III. CONCLUSIONS 

In conclusion, we have shown with physics-based simulations that the neuromorphic NW network can be exploited as 
a physical substrate for a speech recognition computing task through the implementation of RC. In particular, the NW 
network acts as a physical reservoir thanks to its nonlinear dynamics, fading memory properties and its capability of 
processing multiple spatio-temporal inputs. Pre- processing and transduction of the input audio signal was analysed and 
discussed together with an analysis of the effect of network size and virtual nodes on computing performances. Results suggest 
that the NW network can be exploited for the hardware realisation of neuromorphic systems able to solve spatio-temporal 
computing tasks. 
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