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ABSTRACT: Memristive devices relying on redox-based resistive switching
mechanisms represent promising candidates for the development of novel
computing paradigms beyond von Neumann architecture. Recent advancements
in understanding physicochemical phenomena underlying resistive switching have
shed new light on the importance of an appropriate selection of material properties
required to optimize the performance of devices. However, despite great attention
has been devoted to unveiling the role of doping concentration, impurity type,
adsorbed moisture, and catalytic activity at the interfaces, specific studies
concerning the effect of the counter electrode in regulating the electronic flow
in memristive cells are scarce. In this work, the influence of the metal−insulator
Schottky interfaces in electrochemical metallization memory (ECM) memristive cell model systems based on single-crystalline ZnO
nanowires (NWs) is investigated following a combined experimental and modeling approach. By comparing and simulating the
electrical characteristics of single NW devices with different contact configurations and by considering Ag and Pt electrodes as
representative of electrochemically active and inert electrodes, respectively, we highlight the importance of an appropriate choice of
electrode materials by taking into account the Schottky barrier height and interface chemistry at the metal−insulator interfaces. In
particular, we show that a clever choice of metal−insulator interfaces allows to reshape the hysteretic conduction characteristics of
the device and to increase the device performance by tuning its resistance window. These results obtained from single NW-based
devices provide new insights into the selection criteria for materials and interfaces in connection with the design of advanced ECM
cells.
KEYWORDS: metal−insulator interfaces, memristive devices, resistive switching, nanowires, schottky barriers

■ INTRODUCTION
Memristive technologies are considered promising candidates
for the development of alternative memory devices for data
storage and for the development of computing architectures
beyond von Neumann architecture, paving the way for in-
memory computing and neuromorphic systems.1−11 Redox-
based memristive devices are essentially two-terminal metal−
insulator−metal cells in which the internal resistance state can
be modulated by ionic effects under the action of an external
electrical stimulation.12−14 In particular, resistive switching
mechanism underlaying memristive functionalities in electro-
chemical metallization cells (ECMs) relies on the formation/
dissolution of a metallic filament that bridges the two
electrodes.15 In this case, a positive voltage applied to the
electrochemically active electrode can cause the dissolution of
metal atoms to form metal ions that start to migrate toward the
counter electrode under the action of the applied electric field.
This leads to the formation of a metallic filament after
recrystallization, causing the switching of the memristive cell
from a high-resistance state (HRS) to a low-resistance state
(LRS). Depending on the operational conditions that control
the lifetime of the metallic filament, the switching mechanism

in ECM cells can be either volatile or nonvolatile.16−18 While
nonvolatility represents a prerequisite for the development of
memristive memories, great attention have been recently
devoted to volatile devices that endow the capability of
temporal processing of the input signal thus allowing the
implementation of synaptic functionalities and unconventional
computing paradigms.19−23

In the last years, important advancements in the under-
standing of the physicochemical processes regulating mem-
ristive dynamics and functionalities have been achieved. In this
context, memristive devices based on nanowires (NWs) have
demonstrated their suitability as model systems to investigate
the intrinsic mechanism of switching in memristive cells by
taking advantage of their planar structure and high localization
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of the switching events.17,24−30 For redox-based switching
devices, notable accomplishments have been reported in
connection with half-cell redox reactions and nanoscale
electrochemistry31,32 together with new insights into the
formation/dissolution of the filament by in situ and ex situ
characterization techniques.33−36 In addition, the impact of
introducing dopants and impurities in the oxide matrix,37 the
influence of moisture,38−41 and the combination of electrodes
and electrolyte materials have been extensively investigated.42

Importantly, significant interest has been devoted to the
understanding of the role played by interfaces that, due to the
nanoscale nature of the involved materials, can be more
relevant in regulating the switching characteristic of the device
than the active matrix itself.43,44 Though not always explicitly
discussed, the use of different electrodes and doping levels
reflects in a change of the properties of interfaces that regulate
both the ionic and the electronic flux. In valence change
memories (VCMs), modifying the Schottky electrode−oxide
interface using a variety of metal electrodes/oxides has been
proposed as a way of altering the resistance of the cell.43

Instead, while substantial efforts have been devoted to
understand the influence of the catalytic activity of the counter
electrode on the nanoionic processes taking place at the ECM
cells,45 studies on the influence of the counter electrode in the
regulation of the electronic flux are scarce.
Here, we investigate through a combined experimental and

modeling approach the role of metal−insulator interfaces in
single-crystalline ZnO NW-based devices, used as memristive
model systems. The influence of the metal−NW interface was
analyzed by comparing devices with different metal electrodes
both in symmetric and asymmetric configurations and by
exploiting Ag and Pt as representative electrochemically active
and inert metal electrodes, respectively. Besides comparing the
influence of metal−NW interfaces in regulating the electronic

conduction mechanism in the pristine state, we show that
interfaces can be appropriately tuned to modify the hysteretic
behavior and the resistance window of the device. Within this
framework, the crucial role of regulating the electronic
conduction mechanism of the metal−insulator at the counter
electrode is highlighted. In particular, it is shown that a proper
choice of the counter electrode with a blocking character
allows to reshape the hysteretic conduction characteristic and
to enlarge the resistance window.

■ RESULTS AND DISCUSSION
Single NW memristive cells were realized by contacting single-
crystalline and hexagonal-shaped ZnO NWs (diameter of
∼100 nm) grown by low-pressure chemical vapor deposition
(LP-CVD) with metal electrodes through a combined optical
and electron beam lithography (EBL), as detailed in our
previous works46−48 (details of the ZnO NW synthesis and
device fabrication can be found in the Experimental Section).
Concerning device scalability, it is worth noticing that the ZnO
NW diameter can be further reduced by exploiting peculiar
growth strategies that allows the growth of ZnO NWs with
diameters below 10 nm, as for example reported by Yin et al.49

that exploited a catalyst-assisted growth technique. The role of
the metal−insulator interfaces on the electronic transport
properties and switching behavior of single NW memristive
cells was evaluated by exploiting Ag and Pt as representative
electrochemically active and inert electrodes, respectively, both
in symmetric and asymmetric configurations as discussed in
the next section.
Metal−Insulator Interfaces and Electronic Transport

Mechanisms. Representative scanning electron microscopy
(SEM) images of single NW memristive cells with symmetric
Pt electrodes, asymmetric Pt and Ag electrodes, and symmetric

Figure 1. Single ZnO NW devices. Single NWs contacted by (a) symmetric Pt−Pt electrodes, (b) asymmetric Pt−Ag electrodes, and (c)
symmetric Ag−Ag electrodes (scale bars, 250 nm) and corresponding I−V characteristics in the low-voltage range (panels d−f). For each electrode
configuration, the electrical response of at least 10 different NW-based devices is reported.
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Ag electrodes are illustrated in Figure 1a−c, respectively. In the
low-voltage range, symmetric Pt/ZnO NW/Pt devices yield an
almost linear I−V characteristic (Figure 1d), asymmetric Ag/
ZnO NW/Pt devices resulted in a rectifying I−V characteristic
(Figure 1e), while symmetric Ag/ZnO NW/ZnO device
resulted in a blocking characteristics (Figure 1f). Notably,
the electrical characteristics of at least 10 devices for each
configuration are reported in panels d−f of Figure 1 revealing
that, despite device-to-device variability in current levels that
can be ascribed to variations in contact geometries and
junction areas,50 comparable behavior is observed in different
devices with the same electrode configuration. In this context,
note also that small variations in nanosized contact geometries
and junction areas at the two ends of the NW are responsible
for nonperfectly symmetric I−V characteristics of symmetric
devices. The comparison of the pristine state electrical
characteristics of NW-based devices contacted with different
electrode configurations clearly demonstrates the influence of
the metal−insulator interface in regulating the electronic
conduction.
A combined experimental and modeling approach was

exploited for a more detailed investigation of the role of
metal−insulator interfaces on the electronic transport proper-
ties. In purely electronic transfer (i.e., without electrochemical
reactions and ionic transport), the metal-insulating interface at
the nanocontact can be modeled as a Schottky barrier, as a
consequence of the semiconducting nature of the intrinsically
n-type doped ZnO NWs.51−54 In this case, electronic transport
at the metal−ZnO interface of the nanocontact occurs through
thermionic emission, where current can be phenomenologi-
cally expressed according to the relationship
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where V is the applied voltage, I0 is the inverse saturation
current, η is the ideality factor, VT = kT/e is the thermal
voltage at temperature T, k is the Boltzmann constant, and e is
the electron charge. Note that the saturation current I0
implicitly depends on the contact area, as well as on the
Schottky barrier height, thus relying on the specific choice of
the metal contact. Similarly, the ideality factor η representing
the deviation of the electrical characteristics from the ideal
thermionic emission theory relies on the specific metal
considered for the contact. In this context, the pristine state

of the single ZnO NW memristive cell comprising two metal−
ZnO interfaces can be electrically represented as two back-to-
back connected Schottky barriers in series with the NW
resistance, where each Schottky barrier is characterized by its
particular value of I0 and η. This electrical configuration does
not have analytic solution for dissimilar devices, but it can be
approximately solved using a piecewise model with nonlinear
series resistance correction, as detailed in a previous work.55

According to this simplified model and considering the
impedance of the electrochemical reaction smaller than the
Schottky barrier before electroforming, the voltage across the
memristive cell can be simply expressed as

i
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where ηL and ηR are the ideality factors and I0L and I0R are the
saturation currents of the two Schottky barriers, respectively.
R± is an effective series resistance that endows the NW
resistance (RNW) and contact effects. + and − represent the
sign of the applied voltage. From (2), the current flowing
through a single NW device can be described by the more
complex expression55
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where W is the Lambert function, i.e., the solution of the
transcendental equationW(x) exp (W(x)) = x. As discussed in
a previous work,55 a first-order correction term R± = R0

± + R1
±|

V| resulting in a voltage-dependent resistance needs to be
introduced in the model to account for the interface states at
the contacts. It is important to remark that expression (3)
considers different parameters for the two metal−insulator
interfaces, thus allowing the model to represent both
symmetric and asymmetric contact device configurations.
Though this heuristic approximation provides a simple analytic
treatment of the conduction problem, a more comprehensive
and accurate solution can be found by directly solving the
conduction characteristics of the combined devices using a
circuit simulator, as presented later in Section 2.2 and
described in detail in the Experimental Section.

Figure 2. Experimental and modeling electronic transport properties of single ZnO NW devices in the pristine state. I−V characteristics of ZnO
NWs contacted with (a) symmetric Pt−Pt electrodes, (b) asymmetric Pt−Ag electrodes (positive voltage is applied to the Ag electrode), and (c)
symmetric Ag−Ag electrodes. The equivalent circuital representations of devices represented by back-to-back connected Schottky junctions and the
NW series resistance (RNW) are reported as insets.
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Experimental data and modeling of a representative I−V
characteristic using (3) in an extended voltage range for a
single NW device contacted by symmetric Pt electrodes is
reported in Figure 2a. As can be seen, the I−V characteristics
exhibit a sigmoidal-like shape, in which the linear behavior can
only be detected in a small voltage span around 0 V, while
current saturation is reached for larger applied voltages. This
behavior is a consequence of the current limitation imposed by
the inverse saturation currents of the diode. Notably, it can be
observed that the proposed model closely agrees with the
experimental curve in the whole voltage range of analysis.
Instead, Figure 2b reports experimental data and modeling
results for a typical I−V characteristic in an extended voltage
range of an asymmetrically contacted ZnO NW with Pt and Ag
electrodes. In this case, it can be observed that the I−V
characteristic shows, besides a rectifying behavior with
negligible current flowing through the device when the Ag/
ZnO interface is inversely biased, a tendency to reach the
current saturation regime when the Ag/ZnO interface is
positively biased. Also in this case, experimental data are well
interpolated by modeling. Finally, as reported in Figure 2c,
devices symmetrically contacted with Ag show a negligible
electronic conductance (not modeled) even when stimulated
in an extended voltage range. These results show that
electronic transport in NW-based memristive cells in the
pristine state can be well represented by the physics-based
model described by eq 3. In particular, the close agreement
between the thermionic emission model and the experimental
data is testified by the low values assumed for the ideality
factors (approximately from 1 to 2). With these values, NW
resistances in the range of tens of MΩ to a few MΩ were
found, but this strongly depends also on the considered
saturation currents.
So far, the reported results demonstrate that the metal−

insulator interface in electrochemical metallization memories
can be used to regulate the electronic conductivity of the
memristive cell in the pristine state. In particular, the electronic
conduction in NW-based cells is observed to be mainly
controlled by the inversely biased junction. Indeed, the
inversely biased junction acts as a blocking barrier that limits
the overall electronic current flowing through the device. In
single ZnO NW devices, results show a more pronounced
blocking action of the Ag/ZnO junction with respect to the
Pt/ZnO junction. This can be clearly seen from the data
reported in Figure 2, where the current is negligible for all of
the cases where the Ag/ZnO junction is inversely biased (refer
to Figure 2b,c). On the other hand, an inversely biased Pt/
ZnO junction results in a nonnegligible saturation current that
was observed to be in the range of hundreds of nA (refer to
Figure 2a,b). It is worth noticing that a higher Schottky barrier
is theoretically expected from the Schottky−Mott rule at the
Pt/ZnO junction as a consequence of the higher Pt work
function (5.12 eV) compared to the Ag work function (4.26
eV). However, the ideal Schottky−Mott rule does not consider
possible chemical interactions occurring at the interfaces
during the deposition of the metallic contacts.56 For example,
the formation of interfacial chemical bonds at the Pt/ZnO
junction can be related to the formation of eutectics in
between Pt and Zn,57 causing a deviation from the ideal
Schottky−Mott rule. It follows that the electronic conduction
mechanism can be regulated by choosing contact materials
with appropriate work functions and interface chemistry.

Metal−Insulator Interfaces and Memristive Behavior.
In the NW-based electrochemical metallization cell previously
discussed, ionic movement can be coupled to electronic
transport depending on the operating conditions. Indeed, a
positive voltage applied to an electrochemically active
electrode causes the dissolution of atoms from the contact to
form ions that start to migrate along the NW surface toward
the counter electrode under the action of the applied electric
field. As a consequence, a metallic filament bridging the two
electrodes can be formed.17 In single ZnO NW memristive
cells, dissolution and migration of metal ions can be observed
by positively biasing the Ag electrode due to the electro-
chemical activity of this metal, while the higher extraction
barrier of Pt atoms from the contacts makes it an electro-
chemically inert electrode.58 Therefore, ionic migration of Ag+
ions with the consequent formation of an Ag conductive
filament along the ZnO NW can be observed by biasing the Ag
electrode in both asymmetric Pt/ZnO NW/Ag and symmetric
Ag/ZnO NW/Ag devices. The investigation of the NW-based
device through morphological and elemental analyses after
resistive switching confirmed the ECM nature of the switching
mechanism related to the formation of an Ag conductive
filament along the ZnO NW surface (experimental evidence
are reported in previous works17,59−61). The presence of Ag
nanoclusters after resistive switching mainly accumulated near
the Ag-biased electrode, as experimentally shown in a previous
work,25 suggests that the filament growth proceeds from the
biased electrode and grows toward the counter electrode as
discrete nanoclusters, as expected in resistive switching devices
characterized by low cation mobility. Indeed, in low mobility,
ions can pile and reach the critical nucleation conditions before
reaching the counter electrode and filament growth can
proceed by cluster displacement via repeated splitting−
merging processes as discussed in ref 62. In this context, it is
worth noticing also that previous works reported resistive
switching in single NWs symmetrically contacted by electro-
chemical interelectrodes such as Ti or Ti/Au electrodes.63−66

However, in these cases, the switching mechanism can be
dominated by the TiO2 interfacial layer formed at the Ti/ZnO
interface, related to the higher affinity of Ti compared to Zn
with O (the presence of this layer was experimentally revealed
by transmission electron microscopy (TEM) analyses by
Chiang et al.66). The presence of this layer can strongly impact
the switching mechanism which in this case can be related to
the migration of oxygen-related species at the ZnO/metal
interface and not along the NW. In our case, no resistive
switching was observed in Pt/ZnO NW/Pt devices.17 The
absence of resistive switching phenomena in Pt/ZnO NW/Pt
symmetric devices testify that the switching mechanism in Ag-
contacted devices is purely ECM and is not related to the
migration of O species at the interface and/or along the NW,
as expected in the valence change memory (VCM)
mechanism.
After an initial assessment of the conductive filament

generation by an electroforming step (details given in Figure
S1), these devices exhibit resistive switching behavior because
of the formation/rupture of the Ag conductive pathway. It is
worth noticing that the electroforming voltage depends on the
electrode spacing, where a substantial reduction of the voltage
required for electroforming can be obtained by reducing the
electrode spacing that, for the same applied voltage, results in a
higher electric field.17,25 In this context, the established metallic
filamentary path along the NW surface provides an additional
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transport channel for electronic conduction. Indeed, when the
conductive filament is established, electrons can flow parallel to
the pathway consisting in the NW resistance and the Schottky
interfaces previously discussed. The conductance properties of
the filament-related electronic conduction channel are
regulated by ionic dynamics underlying its formation/rupture
under the action of the applied electric field. The hysteretic
conduction characteristic and memory state dynamics resulting
from the formation/rupture of the conductive filament can be
modeled by a voltage-dependent rate balance equation that
takes into account also short-term dynamics and volatility of
the internal memory state related to the spontaneous relaxation
of the Ag conductive filament.67

In this framework, the memory state resulting from filament
dynamics can be described through the equation

=
g
t

k g k g
d
d

(1 )p d (4)

where g represents the memory state of the device in terms of
its normalized conductance, while kp and kd are the
potentiation and depression coefficients, respectively, which
depend exponentially on the applied voltage as expected for
diffusive ionic processes

=k k Vexp( )p,d p0,d0 p,d (5)

where ηp and ηd are the transition rates and kp0 and kd0 are the
fitting constants. Equation 4 phenomenologically describes the

progressive arrival and departure of conducting species
following a self-saturation process. Interestingly, the memory
state eq 4 can be recursively solved by assuming a simulation
timestep Δt > 0 as

=
+

[ ] ++ +g g1 e et
t

t
t

P

P D

( )
1

( )P D P D

(6)

Note that eq 6, which is not expressed as a continuous function
of t, allows modeling the dynamics of the Ag conductive
filament that regulates the evolution of the internal memory
state of the memristive cell for an arbitrary stimulation voltage,
provided Δt is small enough. Moreover, expression (6)
captures the essence of hysteretic conduction since the current
transport state (gt) depends on the previous condition (gt−1).
For a constant applied voltage, eq 5 has analytic solution. Once
the normalized conductance is found from eq 6, it can be
straightforwardly used for computing the I−V characteristics of
the device. In this connection, different models can be
considered for the electron transport, including, for example,
a linear relationship I ∼ gV like in ref 67 or a more elaborated
expression such as I ∼ g sinh[α(V − IR)] where α is a fitting
constant and R is a series resistance, like the one used for the
model curves in Figure 3. Notice that in this latter case, both
for low voltages (HRS) and high currents (LRS), the I−V
curve becomes linear as well because of the role played by R. It
is worth stressing that the model equations describe the
formation/rupture of the filament without distinguishing the

Figure 3. Experimental and modeling ionic transport properties and memristive behavior of single ZnO NW devices. (a) Schematization of the
ZnO NW memristive cells with asymmetric Pt and Ag electrodes and its resistive switching mechanism based on the migration of Ag+ ions from the
Ag electrode along the NW toward the Pt counter electrode under the action of the applied electric field. The equivalent circuital representation of
the cell is represented by the back-to-back connected Schottky diodes in an asymmetric configuration with the NW series resistance RNW (channel
b), all in parallel with the variable resistance of the conductive filament (channel a). Experimental and modeled (b) memristive I−V characteristics
of a Pt/ZnO NW/Ag device, (c) corresponding R−V characteristics showing the resistance window and (d) the ILRS/IHRS ratio as a function of the
applied voltage. (e) Schematization of the ZnO NW memristive cells with symmetric Ag electrodes and its resistive switching mechanism based on
the migration of Ag+ ions along the NWs under the action of the applied electric field. The equivalent circuital representation of the cell is
represented by the back-to-back connected Schottky diodes in a symmetric configuration with the NW series resistance RNW (channel b), all in
parallel with the variable resistance of the conductive filament (channel a). Experimental and modeled (f) memristive I−V characteristics of a Ag/
ZnO NW/Ag device, (g) corresponding R−V characteristics showing the resistance window and (h) the ILRS/IHRS ratio as a function of the applied
voltage.
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contributions of each individual physicochemical processes
involved, such as redox processes, nucleation, diffusion,
Butler−Volmer transport, field-accelerated transport, chemical
dissolution, Gibbs−Thomson effect etc.
A schematization of the working principle of symmetric and

asymmetric memristive cells with their corresponding electrical
circuital representations and resistive switching characteristics
are reported in Figure 3a−h, respectively. As a consequence of
the coupling between ionics and electronics, asymmetric and
symmetric single NW-based cells can be electrically modeled in
a first approximation as a parallel combination of two
conductive channels for electrons (Figure 3a,e), i.e., the
metallic filament channel along the NW (channel a) and the
ZnO semiconductor channel (channel b). In this framework,
the internal cell voltage that can arise in asymmetrically
contacted electrodes related to the nanobattery effect68 is
considered negligible. While the electron flow through channel
a depends on the dynamics of the filament internal resistance
state regulated by the applied voltage (in turn described by the
memory state equation and its solution, eqs 4 and 6, the flow
of electrons through channel b is regulated by the NW
resistance itself and the Schottky barriers at the interfaces as
described by the piecewise model with nonlinear series
resistance correction, eq 3). Alternatively, a more compre-
hensive outcome can be obtained by representing and solving
the whole system in a circuit simulator. The details of this
numerical approach are provided in the Experimental Section
of this work.
Experimental data and modeling results for representative I−

V resistive switching characteristics of asymmetrically con-
tacted Pt/ZnO NW/Ag and symmetrically contacted Ag/ZnO
NW/Ag devices are reported in Figure 3b,f, respectively
(resistive switching characteristics of different devices from the
same batch and devices from different batches are reported in
Supporting Information, Figure S2). As can be observed, both
devices exhibit hysteretic behavior related to the device
switching from a high-resistance state (HRS) to a low-
resistance state (LRS) in correspondence of the SET voltage.
The switching characteristics are in both cases volatile as a
consequence of the spontaneous dissolution of the Ag
conductive filament, as previously discussed. While in this
work we focus on volatile switching characteristics usually
required for temporal processing of the input signal, a
nonvolatile switching characteristic can be induced in both
symmetric and asymmetric device configurations by properly

adjusting the operation conditions such as the compliance
current level (details in Supporting Information, Figure S3).
Note also that NW-based devices can be programmed by
voltage pulses17 (Supporting Information, Figure S4).
Importantly, our modeling framework includes the effects of
adding a current compliance to the experimental setup. As
detailed in the Experimental Section, this limiting mechanism
is modeled through the use of a variable resistor in series with
the memristive structure. This allows to limit the current
beyond the required maximum by adjusting the input voltage
to the device, similarly to what happens in the experimental
setup. During the time the current compliance is activated, the
memory state of the device is allowed to evolve so that the
emerging point of the I−V characteristics when reducing the
applied voltage (RESET) is no longer the same as the entrance
point corresponding to the increasing voltage (SET). This is
clearly seen, for example, in Figure 3f.
Despite similar switching characteristics, symmetric and

asymmetric devices exhibit a different behavior in the HRS.
Indeed, before SET events, the asymmetric device exhibits a
sigmoidal-like behavior, while the symmetric device exhibits a
negligible current flow. This means that in the HRS the device
conductance is regulated by metal−ZnO interfaces, similarly to
the pristine state case, where the inversely polarized junction at
the counter electrode regulates the electron flow. Thus, in the
HRS, where the filament is not formed, electrons flow mainly
through the conduction channel b. Instead, similar behavior
was observed in the LRS where the Ag conductive filament
shorts the two electrodes in both symmetric and asymmetric
configurations, and electrons flow mainly through the
conduction channel a.
The different electronic conduction mechanisms in the HRS

of asymmetric and symmetric devices lead to distinctive
resistance window characteristics, as reported in Figure 3c,g,
respectively. Due to the nonlinearity of the electronic
conduction mechanism, here the HRS exhibits a maximum
followed by a decrease as a function of the applied voltage.
Instead, a monotonic increase of the HRS can be observed in
symmetric devices, as a consequence of the blocking character
of the reversely polarized Ag/ZnO contact. Thus, a wider
resistance window can be observed in the R−V loop of
symmetrically contacted NWs. This in turn reflects in a higher
ON/OFF ratio of the symmetrically contacted device, as it can
be observed by comparing the LRS/HRS current ratio as a
function of the voltage in the hysteresis loop for asymmetric

Figure 4. Effects of the metal−insulator interface at the counter electrode on the memristive characteristics. (a) Schematization of the ECM cell.
Until the filament bridges the two electrodes (i.e., d > 0), the electronic conduction mechanism is dominated by the inversely polarized metal−
semiconductor interface (M−S) and the current flowing into the device is determined by the saturation current at the Schottky interface. (b)
Evolution of the I−V memristive hysteretic loop, (c) corresponding R−V characteristics and (d) the ILRS/IHRS ratio for ECM cells by progressively
increasing (arrow direction) the saturation current I0 at the metal−semiconductor interface of the counter electrode by modeling.
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(Figure 3d) and symmetric (Figure 3h) devices. It is worth
noticing also that, since the electronic transport properties in
the HRS are mainly regulated by the reversely polarized
Schottky junction at the metal/ZnO interface and not by the
ZnO NW itself, no significant differences are expected at the
Schottky barrier in the pristine state and after resistive
switching loops. This hypothesis is supported by experimental
data that shows a qualitative good overlapping of I−V traces
relative to the electroforming step before forming and the HRS
of the device before SET (Supporting Information, Figure S5).
In addition, these data also show no significant changes over
cycling of the reversely polarized Schottky barrier that
regulates the HRS, as testified by the good overlapping of I−
V traces in the HRS region over cycling.
More in general, these results indicate that the hysteretic

memristive behavior can be tuned by a proper choice of the
metal−insulator Schottky barrier at the counter electrode.
Indeed, before the conductive filament bridges the two metallic
electrodes, the reversely polarized Schottky interface at the
counter electrode controls the flow of electrons in the device,
where the electron flow corresponds to the saturation current
of the reversely biased junction (Figure 4a). It turns out that,
by progressively decreasing the saturation current of the
junction through a clever choice of the electrode material, it is
possible to enlarge not only the hysteretic loop but also the

corresponding resistance window as well as the LRS and HRS
current ratio, as revealed by the model results reported in
Figure 4b−d, respectively. In this context, it is important to
remark that, as experimentally shown in the single NW device,
the choice of the counter electrode material has to take into
account both the theoretical Schottky barrier height expected
by considering the counter electrode metal work function and
the interface chemistry.
In single NWs, results show that the choice of Ag as a

counter electrode allows to reduce the saturation current when
reversely polarized, enhancing the ON/OFF switching ratio, as
well as the separation of resistance states. In this framework, it
is worth stressing that the switching characteristics of these
symmetrically contacted devices with Ag electrodes are
repeatable over cycling, as reported in Figure 5a. High stability
and low dispersion of both HRS and LRS were observed in the
endurance characteristics acquired during 250 full-sweep
cycles, as reported in Figure 5b. In addition, a narrow
dispersion of the SET voltage over cycling was observed.
According to experiments, the SET voltage distribution
reported in Figure 5c has a mean value of 0.69 V with a
standard deviation of 0.13 V (details of the SET voltage as a
function of cycling are reported in Supporting Information,
Figure S6). Interestingly, the distribution of the device
conductance over cycling in the LRS normalized with respect

Figure 5. Memristive behavior of single ZnO NWs with symmetric Ag electrodes. (a) I−V characteristics showing the resistive switching behavior
over cycling. All of the 250 cycles are reported in light gray, while the median curve is reported in bold blue. (b) Endurance characteristics (read
voltage of 0.4 V), (c) SET voltage distribution, and (d) distribution of conductance values in the LRS normalized by the fundamental quantum of
conductance G0. Data of panels (b−d) were extracted from 250 full-sweep cycles. The distributions in panels (c) and (d) are interpolated by
normal distributions.
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to the fundamental quantum of conductance G0 reported in
Figure 5d shows that the device internal state of conductance is
lower than G0 (G/G0 mean value of 0.22, standard deviation of
0.03). While values close to G0 are expected when the filament
size reaches the atomic scale favoring the formation of a
quantum point contact,69 values of G < G0 mean that the
formed filament does not allow the complete transmission of
the electron wave packet. This corresponds to the tunneling
regime through a subband. The effect can be explained by the
formation of a noncontinuous metallic filament with the
presence of an extremely narrow gap in the form of a broken-
down filament and/or in the form of a sparse concentration of
scatterers.

■ CONCLUSIONS
In conclusion, we have experimentally investigated and
modeled the role played by metal−insulator interfaces in
ECM cells, by considering single-crystalline ZnO NW-based
devices as model systems. To this end, a number of symmetric
and asymmetric device configurations have been considered,
where Ag and Pt are exploited as representative electrochemi-
cally active and inert electrodes, respectively. A comparison of
the electronic conduction properties of different devices
highlights that the electron flow is mainly regulated by the
metal−insulator interfaces. In this framework, experiments are
in close agreement with the modeling of the memristive cells
considered as two parallel conducting channels for electrons.
The first channel, which dominates in the pristine state and in
the HRS, is represented by back-to-back connected Schottky
diodes in series with the NW resistance, while the conductance
of the metallic filament channel, which dominates in the LRS,
relies on the filament dynamics. Results show that the
hysteretic characteristics can be modified by appropriate
choice of the counter electrode metal that controls the flow
of electrons in the HRS, as confirmed by experiments and
modeling. In particular, a blocking counter electrode was
observed to increase the resistance window, as reported in
symmetrically contacted devices with Ag electrodes that are
shown to exhibit also low SET voltages, together with
reproducible switching characteristics. Besides highlighting
the importance of the counter electrode in memristive devices,
our results show that it is possible to cleverly design the
hysteretic response of the memristive cell by controlling not
only ionic transport properties but also the electronic aspect of
the problem. To this aim, an appropriate choice of the contact
materials should be done by taking into account not only the
Schottky barrier height at the interface but also the interface
chemistry. More in general, these results clearly point out that
a rational design of memristive cells should rely on the
selection of materials that properly regulate the electronic
transport properties at the metal−insulator interfaces.

■ EXPERIMENTAL SECTION
Single NW Memristive Cell Fabrication. ZnO NWs were

synthesized through low-pressure chemical vapor deposition by a self-
seeding vapor−solid (VS) mechanism that involves the nucleation of
ZnO and subsequent NW growth on a Pt substrate from the
evaporation of a Zn source in an O2 environment. The median NW
length and diameter were assessed to be 1.6 μm and 100 nm,
respectively. Each nanowire is a single crystal with high chemical
purity and is characterized by a clean surface without any amorphous
surface layers. Fabrication of single NW memristive cells was
performed by combined optical and electron beam lithography
(EBL), by connecting dispersed NWs on an insulating SiO2 substrate

with a submillimetric prepatterned probe circuit. A two-step electron
beam lithography and metal deposition were performed to obtain
asymmetrically contacted NW-based memrsitive cells. A detailed
description of the synthesis of ZnO NWs and fabrication steps of
single NW devices can be found in our previous work.46

Electrical Characterization. Electrical characterization was
performed in two-terminal configuration by a Keithley 6430
subfemtometer sourcemeter with a remote preamplifier, a Keithley
2636A, and a probe station. Electrical measurements of memristive
devices in the pristine state in an extended voltage range (Figure 2)
were performed on devices with a high electrode spacing to prevent
ionic migration, thus avoiding resistive switching phenomena. All
electrical measurements were performed in air at room temperature.
Modeling. A memristive cell model consisting of two back-to-back

Schottky barriers in series with a nonlinear resistance (channel a) in
combination with a parallel conducting channel exhibiting memristive
properties (channel b) was implemented in LTspice (circuit simulator
from Analog Devices). The script used for modeling is reported in
Supporting Information, Figure S7 and contains five parts: parameter
definition, memory state equation, current−voltage characteristic for
the memristive device, current−voltage characteristic for the nano-
wire, and auxiliary functions. The memristive behavior is based on an
adaptation of the memdiode model for resistive switching devices
reported in ref 70. The model includes the snapback effect and an
internal series resistance. A schematic representation of the circuit
used for modeling is reported in Supporting Information, Figure S8.
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