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a b s t r a c t

Hardware implementation of neural networks represents a milestone for exploiting the advantages of
neuromorphic-type data processing and for making use of the inherent parallelism associated with
such structures. In this context, memristive devices with their analogue functionalities are called to be
promising building blocks for the hardware realization of artificial neural networks. As an alternative
to conventional crossbar architectures where memristive devices are organized with a top-down
approach in a grid-like fashion, neuromorphic-type data processing and computing capabilities have
been explored in networks realized according to the principle of self-organization similarity found in
biological neural networks. Here, we explore structural and functional connectivity of self-organized
memristive nanowire (NW) networks within the theoretical framework of graph theory. While graph
metrics reveal the link of the graph theoretical approach with geometrical considerations, results show
that the interplay between network structure and its capacity to transmit information is related to a
phase transition process consistent with percolation theory. Also the concept of memristive distance is
introduced to investigate activation patterns and the dynamic evolution of the information flow across
the network represented as a memristive graph. In agreement with experimental results, the emer-
gent short-term dynamics reveals the formation of self-selected pathways with enhanced transport
characteristics connecting stimulated areas and regulating the trafficking of the information flow. The
network capability to process spatio-temporal input signals can be exploited for the implementation
of unconventional computing paradigms in memristive graphs that take into advantage the inherent
relationship between structure and functionality as in biological systems.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The human brain is a complex biological network where an
mergent behavior arises from interactions of neurons mediated
y synaptic connections. Connectome, as the comprehensive map
f neural connections within the nervous system, represents the
ackbone of brain functionalities (Sporns, 2011; Sporns, Tononi, &
ötter, 2005). In this context, understanding the function of brain
s inextricably related to mapping its elements and connections,
reating a structural description of the 3D network architec-
ure. This is the main goal of the connectionism, an approach
eveloped in the cognitive science field that aims to describe
ognitive phenomena by means of interconnected networks of
imple parallel computing elements. This approach is related also
o the development of artificial neural networks (ANNs) where
earning occurs through distributed signal activity across the net-
ork where connection strengths (synaptic weights) are modified
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based on the experience, being this the basis of both neuroinfor-
matics and neuromorphic computing. Indeed, the study of biolog-
ical neural circuits has stimulated the development of computing
paradigms based on ANNs and machine learning, also known as
brain-inspired computing, paving the way for the development of
artificial intelligence.

Recent trends in neuromorphic computing basically rely on
mimicking brain functionalities and neural network architectures
on hardware platforms, driving the development of new com-
ponents able to emulate neurons and synapses at the individual
level (Christensen et al., 2022; Tang et al., 2019; Upadhyay et al.,
2019). Among these components, memristive devices organized
in large-scale crossbar arrays to form neural networks have been
demonstrated as promising platforms for brain-inspired com-
puting paradigm taking into advantage the so-called in-memory
computing (Xia & Yang, 2019). However, these neuromorphic
systems have been realized by means of regular arrays of memris-
tive elements, a hardware architecture that strongly differs from
the intrinsic structural complexity of biological neural networks.

With the aim of emulating the structure–function relationship of

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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iological neural networks, biologically plausible neuromorphic
rchitectures have been developed by self-organization with a
ottom-up approach of memristive nano objects such as nanopar-
icles and nanowires to form memristive nanonetworks or
tomic switch networks (Akai-Kasaya et al., 2022; Diaz-Alvarez,
iguchi, Li, Shingaya, & Nakayama, 2020; Diaz-Alvarez et al.,
019; Hochstetter et al., 2021; Li et al., 2020; Loeffler et al., 2020;
allinson et al., 2019; Manning et al., 2018; Milano et al., 2020,
021; Milano, Porro, Valov, & Ricciardi, 2019; Pantone, Kendall,
Nino, 2018; Pike et al., 2020; Scharnhorst et al., 2018; Shirai

t al., 2020; Stieg et al., 2014; Tanaka et al., 2018; Zhu et al.,
021). As in the case of biological neural circuits, these neuro-
orphic architectures are complex systems where an emergent
ehavior arises from collective and group interaction phenom-
na. Their emergent dynamic behavior has been exploited for
euromorphic-type data processing (Hochstetter et al., 2021;
allinson et al., 2019; Milano, Pedretti et al., 2020; Zhu et al.,
021) and for the implementation of novel computing paradigms
Lilak et al., 2021; Milano et al., 2021; Suarez, Kendall, & Nino,
018; Usami et al., 2021). As occurs for all complex systems that
ervade science, from the World-Wide Web to social networks
nd electrical power grids, understanding the network topology
nd connectivity is an essential requirement since the network
tructure ultimately determines its functions (Strogatz, 2001;
urnbull et al., 2018). Indeed, the structure–function relationship
epresents a fundamental principle of biological neuronal net-
orks (Suárez, Markello, Betzel, & Misic, 2020; Suárez, Richards,
ajoie, & Misic, 2021).
In biological systems, complete reconstruction of a nervous

ystem connectome from electron micrographs was achieved
y considering the soil nematode Caenorhabditis elegans (Eichel-

mann, Oja, Eatherall, & a Walker, 1986; Witvliet et al., 2021).
The reconstruction of the complete wiring diagram was in this
case facilitated by the limited number of elements constituting
the neural networks composed of about 300 neurons and 7000
synapses, a biological neural circuit much simpler than the hu-
man brain composed of about 1014–1015 synaptic connections.
While the map of the C. elegans nervous system represents the
only complete connectome of a living organism, different meth-
ods have been employed to analyze the human brain connectivity
at different scale levels, from microscale, where single neurons
and synapses are analyzed, to the macroscale, by considering the
interactions in between different brain regions (Sporns, 2011,
2018). Regardless of the spatial scale feature, biological neural
networks are usually described as mathematical objects within
the theoretical framework of graph theory linking neuroscience
to network science (Vecchio, Miraglia, & Rossini, 2017). Despite
the overwhelming potential in exploring the structure–function
relationship of biological neural circuits of the brain, the power
of network science and graph theory in analyzing hardware-
implemented artificial neural network structure and its dynamics
is still a rather unexplored field.

In this work, we investigate the structural and functional con-
nectivity of self-organized memristive nanowire (NW) networks
by means of a graph theory. The evolution of the interconnection
topology as a function of the network density and NW length
statistical distribution is investigated by means of graph metrics,
showing that the results obtained with graph theory are in line
with geometric considerations. Moreover, the consistency of the
graph approach with percolation theory is reported, showing that
the onset of percolation in NW networks is observed in corre-
spondence with the emergence of a giant connected component
in the graph induced by a progressive network density increase.
The analysis of the giant connected component through graph
metrics including the shortest path length, graph diameter, and

average clustering coefficient suggests that the network exhibits
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small-world connectivity. The network functional connectivity of
the memristive graph, where the emergent network dynamics
rely on the mutual interaction of a large number of memris-
tive NW junction edges, was investigated by introducing the
concept of memristive distance. In agreement with experimental
results, short-term memristive dynamics upon external stimula-
tion of the network shows the emergence of a peculiar activa-
tion pattern, with formation of self-selected conductive pathways
with enhanced information flow connecting stimulated network
areas. The spatio-temporal dynamics of the NW networks can
be exploited for implementation of graph-based unconventional
computing paradigms in biologically inspired neuromorphic sys-
tems with direct relationship in between structure and function
similarly to what happens in our brain.

2. Results and discussion

Memristive NW networks are realized by randomly dispersing
memristive NWs on an insulating substrate, as reported in the
SEM images shown in Fig. 1a, where memristive Ag NWs in
suspension were drop-casted on an insulating substrate. The con-
nectivity of the system is provided by the nanoscale cross-point
junctions at the intersections of the NWs, as can be observed in
Fig. 1b and c. While the metallic Ag NW core is highly conductive,
each NW junction represents a memristive cell where the internal
state of resistance (i.e. the synaptic weight) depends on the his-
tory of applied electrical stimuli. As a complex system, unraveling
the link between structure and function of the neuromorphic
NW network requires an analysis of its: (i) structural connectivity
concerning the network architecture backbone represented by
an undirected and unweighted graph; (ii) functional connectivity
including dynamical processes operating on the network struc-
ture, where the graph describing the network architecture is
transformed into a weighted graph.

2.1. Structural connectivity

The structural connectivity was investigated by modeling the
self-assembled nanowire complex network assuming the NWs
as 1D objects randomly distributed and oriented on a 2D plane.
The length of the simulated NWs was specified from a normal
distribution with mean value of 40 µm and standard deviation
of 14 µm, according to the Ag NW length distribution observed
experimentally (Supplementary Information S1). An example of a
simulated NW network with 1500 NWs randomly dispersed on
a 500 × 500 µm2 plane is reported in Fig. 1d, where each red
dot corresponds to a NW, and each blue dot represents a junction
in between intersecting NWs. In order to represent the network
as a mathematical object, the NW network was mapped as an
undirect graph where each NW represents a fundamental unit
(node), while NW junctions are represented by links in between
nodes (edges) (Loeffler et al., 2020). Similarly, a structural analy-
sis of nanoscale network materials through a graph-theoretical
approach has been reported by Vecchio, Mahler, Hammig, and
Kotov (2021). The NW network can be represented as a graph
G = (V , E), where V and E are the set of nodes and edges, respec-
tively. The graph connectivity is described by the corresponding
adjacency matrix that indicates if pairs of nodes are adjacent or
not (Supplementary Information S2). The graph representation of
the NW network of Fig. 1d is reported in Fig. 1e where nodes are
spatially located on a 2D plane according to the spatial distribu-
tion of the NWs. A more abstract representation of the network
is depicted in Fig. 1f in terms of a force-directed graph drawing
technique obtained with the Kamada & Kawai algorithm (Kamada
& Kawai, 1989).
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Fig. 1. FE-SEM images and graph representation of self-organized NW networks. a. Top view of an Ag NW network (scale bar, 20 µm), b. tilted view showing a
etail of nanoscale cross-point junctions in between intersecting NWs (scale bar, 500 nm) and c. a detail of a single cross-point junction (scale bar, 200 nm). d.
odeling of a network (1500 NWs) on a 500 × 500 µm2 area (gray area) where red dots represent NWs midpoints, while blue dots represent cross-point junctions

at the NWs intersection and e. corresponding graph representation. The grid size is 100 µm. f. Force-directed graph representation according to the Kamada & Kawai
lgorithm. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
.1.1. Graph representation and geometric considerations
The structural connectivity of the network strongly depends

n the NW density, as can be observed from Fig. 2a,b and c,
here a graph representation of NW networks with different
ormalized densities of NW nodes D is reported (corresponding
etwork models and force-directed graph representations are
eported in Supplementary Information S3). The normalized den-
ity of nodes D was calculated as D = N ⟨L⟩2

S2
, where N is the

umber of NW nodes, ⟨L⟩ is the average NW length and S is the
ize of the 2D region where the NWs are randomly deposited
Forró, Demkó, Weydert, Vörös, & Tybrandt, 2018). As expected,
ncreasing the density of NW nodes results in an increasing prob-
bility of nanowire overlapping to form NW junction edges with
ncreased network complexity. This aspect can be quantified by
onsidering the node degree (k), i.e. the number of connections
that a node establishes with other nodes, and the corresponding
degree distribution representing the probability distribution of
node degrees (pk) over the whole network. The degree of nodes
distribution corresponding to graphs in Fig. 2a–c is reported in
Fig. 2d–f, respectively. While in case of low density of nodes (D =

.9) the most prominent degree of nodes is 0, meaning that most
f the NWs are isolated, an asymmetric distribution of nodes was
bserved to shift towards higher values of k by increasing the NW
ensity. The degree of nodes distribution of the NW network was
ompared with distributions obtained by dispersing NWs drawn
ith identical length of 40 µm and from a normal distribution
ith same mean value but with higher standard deviation (std.
ev. = 28 µm). As can be observed, a broadening of the NW

length distribution resulted in a flattening of the degree of nodes
distributions in the corresponding NW network. The degree of

nodes distributions tends to a Poisson distribution by narrowing
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the NW length distribution, as reported in Supplementary Infor-
mation S4. These results are in agreement with the Poissonian
process (or complete spatial randomness process) expected to
regulate the number of junctions of 1D objects dispersed on a
2D plane (Heitz, Leroy, Hébrard, & Lallement, 2011). In case of
NWs drawn from a normal distribution of lengths, a correlation
in between the degree of NW nodes and the NW length can be
observed, as reported in Fig. 2h, reflecting the higher probability
of longer NWs to form junction edges with neighbor NW nodes.
Interestingly, the average degree of nodes ⟨k⟩ scales linearly as
a function of the normalized network density D, as reported
in Fig. 2i. The average degree of nodes ⟨k⟩ is described by the
relationship:

⟨k⟩ = P · πD (1)

where P = (0.195 ± 0.001) is extracted from the linear fit.
Interestingly, the value of P obtained in the framework of a graph
theory approach is in agreement with the theoretical mean con-
tact probability value Pcont = 0.2027 expected from geometrical
considerations in case of intersecting 1D objects, irrespective of
the network density (Heitz et al., 2011). In this framework, the
average density of junction edges for unit area is expressed as:

j =
1
2
n⟨k⟩ (2)

where n is the density of NW nodes and ⟨k⟩ the average degree
of nodes. The constant 1/2 is inserted to avoid double counting
of junction edges. By substituting Eq. (1) in Eq. (2), we obtain:

j =
1
P · nπD (3)
2
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Fig. 2. Graph representation of NW networks with different NW densities. Graphs representation of modeled NW networks with normalized densities of a. D = 1.9,
. D = 7.7 and c. D = 16.0 obtained by randomly dispersing 300, 1200 and 2500 NWs, respectively, on a 500 × 500 µm2 plane (grid size, 100 µm) and d–f.
orresponding degree of nodes k probability distributions. The NW length was drawn according to a normal distribution with mean value of 40 µm and standard
eviation of 14 µm according to experimental observations. g. Comparison of the degree of node distribution of a NW network graph with D = 16.0 obtained by
ispersing NWs with identical length of 40 µm and from a normal distribution with higher standard deviation of 28 µm. h. Correlation of NW node length and node
egree corresponding to the network graph in panel c. Relationship in between i. average degree of nodes ⟨k⟩ and normalized NW node density D and j. junction
ensity and normalized NW node density D in accordance to Eqs. (1) and (3), respectively.
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According to Eq. (3), the junction density j follows a linear
elationship with nπD, with slope of (0.097 ± 0.001) correspond-
ng to ∼1/2P . Note that this relationship implies a quadratic
xpression between j and n due to the dependence of D on the
ensity of NW nodes and that Eqs. (1) and (3) are valid in case
f identical NWs as well as in case of NWs with length drawn
ccording to a normal distribution (Supplementary Information
5). Irrespective of the node density, the adjacent matrices de-
cribing NW network graphs are sparse, with sparsity >99.3%
Supplementary Information S6).

.1.2. Percolation
As a topological invariant of a graph, the number of connected

omponents represents an important feature related to its con-
ectivity. A connected component is a subgraph in which a path
onnecting each of its nodes exists. As can be observed from
ig. 3a, by increasing the normalized NW density on a 500 × 500
m2 plane, the number of components increases for D lower than
140
2.5, while a monotonic decrease is observed for higher values.
hile for D lower than ∼2.5 an increase of the NW density

eads to an emergence of an increasing number of connected
omponents as a consequence of the increased number of junc-
ions, for D > ∼2.5 an increase of NW density is responsible
or a progressive coalescence of connected components to form
arger connected components. Also, a progressive reduction of the
raction of isolated nodes NI/N was observed by increasing D due
o the increase of the junction probability, as reported in Fig. 3b.
mportantly, an analysis of the largest component size revealed
he emergence of a giant component by increasing D, as can be
bserved from Fig. 3c, where the fraction of nodes in the largest
omponent NLC/N is reported as a function of D. Interestingly, an
brupt transition of NLC/N was observed in correspondence with
he critical value Dc ∼ 5, where the probability of a node to be
n the largest component corresponds to ∼ 1/2. By increasing the
value beyond this threshold value, most of the network nodes

onnect to the largest component and N /N → 1. According
LC
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Fig. 3. Emergence of a giant connected component. a. Number of connected components as a function of the NW network normalized density. b. Fraction of isolated
nodes as a function of the normalized network density. c. Fraction of nodes in the largest connected components as a function of the normalized network density,
showing a phase transition at a critical percolation density of Dc ∼ 5. d–i. Graph representation of modeled NW networks with increasing densities, showing the
mergence of a giant component by increasing D. Nodes belonging to the largest component are depicted in red. . (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
i
n
c
l
a
f

o percolation theory, this represents a phase transition process
rom a subcritical regime characterized by a low density of edges
nd a high number of small components to a supercritical regime
here most of the nodes are joined together in a single emerging
iant connected component. This aspect is particularly important
or the network capacity to transmit information because the
mergence of a giant connected component is related to the
nset of percolation, since the critical density in NW networks
epresent the minimal density at which the sample is conductive
cross the entire plane. Note that the asymptotic critical percola-
ion density value of two-dimensional networks of identical sticks
s DC,S→∞ = 5.6372858(6) (Mietta, Negri, & Tamborenea, 2014),
hile in real systems this value depends on both the finite system
ize S and the stick length distribution (Tarasevich & Eserkepov,
018). The emergence of a giant connected component in the NW
etwork graph by increasing D can be directly visualized in Fig. 3
–f, where the nodes composing the largest component NLC are
epicted in red.
141
2.1.3. Small-worldness
By analyzing the largest component of the graph, a measure

of structure and efficiency of information transport on a network
topology is represented by the average shortest path length ⟨L⟩,
.e. the shortest path length averaged over all possible pairs of
etwork nodes. The average shortest path length of the largest
onnected component as a function of the fraction of nodes in the
argest component is reported in Fig. 4a. As can be observed, the
verage shortest path length increases in the subcritical regime
or NLC/N < 1/2. In the subcritical regime, an increase of the
fraction of nodes in the largest component related to an increase
of NW density is associated with the progressive increase of
the size of the largest connected component that progressively
includes spatially distant nodes. After the emergence of the su-
percritical regime for NLC > 1/2, it is interesting to observe that
the increase of the largest component size leads to a decrease
of the average shortest path length. This is because after the
onset of percolation an increase of the NW density results in
an increase of the network connectivity with the consequent



G. Milano, E. Miranda and C. Ricciardi Neural Networks 150 (2022) 137–148

l
a

s
l
t
d
p
o
o
t
1
n
p
a
c
t
(
c
o
m
w

a
σ
&
i

Fig. 4. Analysis of the largest connected component. a. Average shortest path length ⟨L⟩ , b. diameter D and c. average clustering coefficient as a function of the
argest component size NLC/N . Dashed lines represent the percolation threshold. d. Watts–Strogatz cartographic plane showing the average clustering coefficient
gainst the average path length. e. Small-world coefficient as a function of the largest component size NLC .
hortening of distances (path length) in between nodes. Simi-
arly, an increase in the subcritical regime and an increase in
he supercritical regime were observed in the largest component
iameter d, i.e. the maximum shortest path length in between
air of nodes in the graph, as reported in Fig. 4b. The overall level
f clustering coefficient was evaluated by considering the average
f the local clustering coefficients ⟨C⟩ of the largest component of
he graph that, as reported in Fig. 4c, tends to ∼0.4 for NLC/N →

. Similar considerations can be drawn by considering the alter-
ative representation of data in the Watts–Strogatz cartographic
lane reported in Fig. 4d showing the relationship in between the
verage path length ⟨L⟩ and the average of the local clustering
oefficients ⟨C⟩. In this framework, it is important to point out
hat the graph is characterized by a small world architecture
Watts & Strogatz, 1998) if it is characterized by a high degree of
lustering and small average path length. Even if the definition
f small world networks is still under debate, a quantitative
easure of the small-world property is represented by the small-
orld coefficient (Humphries & Gurney, 2008) defined as σ =

⟨C⟩

Cr
/

⟨L⟩
Lr
, where Cr and Lr are the average clustering coefficient and

verage shortest path length of an equivalent random graph. If
> 1 the network exhibits small-word connectivity (Humphries
Gurney, 2008). As can be observed in Fig. 4e, the NW network

s small-world since σ is higher than 1, while σ is observed to
increase as the size of the largest component increases. In this
context, it is worth noticing that the small world character of NW
networks can be reduced by stacking of NWs in non-perfect 2D
NW networks (Daniels & Brown, 2021).

2.2. Functional connectivity

2.2.1. Graph representation as an electrical circuit
The theory of graphs has been exploited for describing a
wide range of electrical networks, from integrated circuits to

142
continent-scale power systems (Dorfler, Simpson-Porco, & Bullo,
2018). Also, a complex network approach can be exploited for
modeling carrier transport processes in nanostructure assemblies
(Kim & Nam, 2021; Yao, Hsieh, Kong, & Hofmann, 2020). In our
case, the propagation of an electrical signal through the network
can be investigated by mapping the NW network as an electrical
circuit, where the signal transmits through the connected com-
ponent of a weighted graph. In the approximation of Rjunction ≫

Rwire, as experimentally observed in case of Ag NW networks
(Milano, Pedretti et al., 2020), each edge weight corresponds to
the resistance of a NW junction. Fig. 5a shows an example of a
NW network graph where the electrical signal applied in between
source and ground nodes propagates through connected nodes (in
blue), while non-connected nodes (in gray) can be disregarded in
the electrical circuital description of the problem. The electrical
response of the connected component of the network under
electrical stimulation can be described by means of the Laplacian
matrix L defined as:

L = D − W (4)

where W is the weighted adjacency matrix and D the degree
matrix. Under electrical stimulation, voltage and current Kirch-
hoff’s laws can be solved through the voltage node analysis that
corresponds to solving the equation L†V = I , where L† is the
expanded Laplacian (Zhu et al., 2021), V is the vector of voltages
of the graph nodes, while I is the vector of currents flowing
into the graph edges. Note that, under electrical stimulation, the
network can be also represented as a weighted directed graph
where the edge direction represents the current flow direction.
Fig. 5b shows a direct visualization of the potential distribution in
the graph’s nodes reported in Fig. 5a when a voltage ∆V is applied
across the selected nodes. As can be observed from the histogram
of nodes potentials in Fig. 5c, the vast majority of nodes share
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N

Fig. 5. NW network graph as an electrical circuit. a. Electrical circuit graph representation of a NW network with D = 9.6, obtained by randomly dispersing 1500
W drawn according to a normal distribution with mean value of 40 µm and standard deviation of 14 µm on a 500 × 500 µm2 plane. Selected nodes of the

network where a voltage difference is applied are marked as red (upper left) and black (lower right) circles, representing source and ground nodes, respectively.
Only nodes that are connected to source and ground nodes (blue nodes) participate in the propagation of electrical signals, while other nodes (gray nodes) are not
involved in the electrical representation of the system. b. Visualization of the potential distribution across nodes of the graph reported in panel a when a voltage
difference of 10 mV is applied in between source and ground nodes. Corresponding c. histogram of node potentials and d. histogram of edges currents. Voltage and
currents were measured by applying 10 mV in between source and ground nodes, while considering edge resistances of 1 k�. d. Schematic representation of the
two-sided arborescent structure that emerges when a voltage difference is applied in between two network nodes, where source and ground branches are connected
to a quasi-equipotential cluster. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
similar potential forming a large quasi-equipotential cluster. In
addition, small currents are observed to flow in the vast majority
of edges, as reported in Fig. 5d. As discussed by Kang et al.
(2019), this behavior is related to the emergence of a two-sided
arborescent structure where the source and ground branches are
connected to the quasi-equipotential cluster as schematized in
Fig. 4e. In this conduction backbone scheme, the injected current
is progressively divided into a large number of smaller current
branches at each branching point. Notice that the peak observed
in the histogram of Fig. 5c is merely a consequence of the quasi-
equipotential cluster discussed above. As the current flows deep
into the network, the larger number of connections makes the
143
potential to stabilize its drop (the current lines are less confined
causing a reduction of the overall resistance). In addition, because
of the harmonic nature of the voltage distribution in a dense
Poissonian network, the central peak nearly coincides with the
average value ∆V/2.

In this regard, by considering the NW graph as an electrical
circuit in static conditions, the distance in between two nodes can
be represented by the resistance distancemetric proposed by Klein
and Randić (1993), which takes into account, besides the path
length, the existence of multiple paths between nodes that re-
duce the distance and the redundancy of pathways that provides
different routes connecting nodes. The resistance distance, that
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iverges from classical geodesic metrics, notably matches with
he information distance (Bozzo & Franceschet, 2013). Moreover,
he resistance distance in between two network nodes corre-
ponds to the effective resistance in between these nodes, i.e. the
hysical observable that can be measured by electrically driving
he network.

.2.2. Memristive graph representation and memristive distance
In analogy to the definition of resistance distance, we propose

he concept of ‘‘memristive distance’’ in graphs where edges can be
epresented by circuit elements termed ‘‘memristors’’ (from the
ontraction of ‘‘memory’’ and ‘‘resistor’’) (Chua, 1971) or, more
enerally, by the class of nonlinear dynamical systems termed
‘memristive devices and systems’’ (Chua & Kang, 1976). In these
erms, we can define ‘‘memristive graphs’’ as a class of graphs
here the interaction in between nodes is characterized by non-

inear dynamics. Note that a connection between graph theory
nd dynamics of memristive circuits have been introduced also
y Zegarac and Caravelli (2019). In this context, the nonlinear
nteractions in between nodes endow memristive graphs with
on-trivial and emergent dynamics.
The here proposed definition of ‘‘memristive graphs’’ holds

n case of NW network graphs where the dynamical behavior
f NW junction edges is regulated by its nonlinear memristive
ehavior. As reported in our previous work (Milano, Pedretti
t al., 2020), the memristive junction dynamics are regulated by
lectrochemical processes at the nanoscale that are responsible
or resistive switching through the formation of an Ag conductive
ridge across the insulating Polyvinylpyrrolidone (PVP) shell layer
onnecting the two Ag inner cores (Fig. 6a). A typical experi-
ental switching characteristic of a single junction is reported

n Supplementary S7. In this framework, each edge conductance
eight Gij in between the intersecting ith and jth NW nodes
epends on the history of applied electrical stimulation (Fig. 6b).
he nonlinear memristive behavior of each NW junction edge is
haracterized by short-term synaptic plasticity effects related to
he spontaneous relaxation of the junction conductance to the
round state after electrical stimulation due to the spontaneous
issolution of the Ag conductive filament (Milano, Pedretti et al.,
020). The spontaneous dissolution of the Ag filament in NW
unctions is driven by the nanobattery effects including minimiza-
ion of the interfacial energy and internal electromotive forces
Milano et al., 2018; Valov et al., 2013; Wang et al., 2019). These
ynamics can be modeled by means of one equation for the
lectron transport and one equation for the memory state of the
emristive edge element. In case of electron transport a linear
onduction is assumed, while a voltage-controlled potentiation–
epression rate balance equation is exploited for modeling the
emory state dynamics (Miranda, Milano, & Ricciardi, 2020).
his modeling approach provides a linear differential equation
or the memory state with an analytic solution through an im-
lementable recursive method, as described in the following. The
urrent Iij flowing across the intersection in between the ith and
th NW under the action of a voltage difference of ∆Vij can be
escribed by the relation:

ij =
[
Gmin, ij

(
1 − gij

)
+ Gmax, ijgij

]
∆Vij (5)

here gij is the normalized conductance (memory state) that
ssume values in between 0 and 1, while Gmin,ij and Gmax,ij are the
inimum and maximum conductances of the memristive edge

j, respectively. The memory state equation describing short-term
lasticity of the edge ij can be expressed by the balance equation
Miranda et al., 2020):

dgij
= κP,ij

(
1 − gij

)
− κD,ijgij (6)
dt
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here κP,ij and κD,ij are the potentiation and depression rate
coefficients that are assumed to be function of the applied volt-
age through exponential relationships, as expected for back and
forward diffusion of ions:

κP,ij(Vij) = κP0exp
(
+ηPVij

)
(7)

κD,ij(Vij) = κD0exp
(
−ηDVij

)
(8)

where κP0, κD0 > 0 are constants and ηP,ηD > 0 transition
rates. Eq. (7) can be recursively solved as (assuming a simulation
timestep ∆t > 0) (Miranda et al., 2020):

gij,t =
κP,ij

κP,ij + κD,ij

[
1 − e−(κP,ij+κD,ij)∆t

]
+ gij,t−1e−(κP,ij+κD,ij)∆t (9)

where gij,t and gij,t−1 are normalized conductances at times t and
t − 1 of memristive edge ij. Note that Eq. (9), which regulates
the nonlinear junction dynamics, is not expressed as a continuous
function of t so that it allows to simulate the response of a
memristive edge for an arbitrary input voltage (including voltage
pulses). Eq. (9) is expressed as the sum of two terms, the first
one linked to contribution to the evolution towards the stationary
state of the system reached in the long term, and a second term
linked to the memory state of the system (hysteresis).

While Fig. 6c shows the experimental time-trace of the ef-
fective conductance of an Ag NW network under voltage pulse
stimulation in two-terminal configuration, Fig. 6d reports an ex-
ample of the modeled time-trace of the effective conductance
obtained by computing the inverse of the memristive distance
in between source and ground nodes of the memristive graph
reported in Fig. 5a. In this case, the dynamic behavior of each edge
is regulated by the potentiation–depression rate balance equa-
tion. For simplicity, the edge-to-edge variability of the memristive
response reflecting the junction-to-junction switching variabil-
ity was neglected, and the dynamic response of each edge was
determined by model parameters reported in Supplementary In-
formation S8. As can be observed, the memristive graph modeling
is able to capture the main features of the experimental curve
with a potentiation of the effective conductance under exter-
nal stimulation with a voltage pulse, followed by spontaneous
relaxation. Also, the model allows direct investigation of the dy-
namical emergent behavior of the network, as reported in Fig. 6e
where the edge conductivities and voltage distributions across
the graph over time are reported (Supplementary Movie 1). As a
consequence of stimulation, an activation pattern was observed
to emerge. Before stimulation (timestep 1), all the network edges
were in the low conductance state and the voltage drop across
the network is distributed across the graph nodes, as in the static
case discussed before. In the first part of voltage pulse stimulation
(timestep 2), main changes can be observed in edges near to
the source and ground branches of the arborescent structure
(i.e. where larger voltage drops in neighbor nodes are present),
while less relevant changes can be observed in edges connecting
nodes belonging to the quasi-equipotential cluster. Then, the
dynamic evolution of the edge conductance is responsible for a
progressive redistribution of voltages across graph nodes, leading
to the formation of a highly conductive pathway spanning the
graph and connecting stimulated nodes (timestep 3). The forma-
tion of a conductive pathway connecting stimulating electrodes is
in accordance with experimental evidences by lock-in thermogra-
phy reported by Li et al. (2020) and with computational models
reported by Manning et al. (2018) showing the emergence of a
conductive pathway in response to current source. After the end
of stimulation, the conductance of graph edges tends to restore
the initial ground state, resulting in a progressive dissolution of
the previously formed conductive pathway (timesteps 4 and 5).
Note that, differently from the computational model proposed by
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Fig. 6. Emergent memristive behavior of the network. a. Schematic representation of the memristive NW network in two-terminal configuration and schematization
of the resistive switching mechanism occurring at NW junctions, where the memristive behavior is regulated by formation/rupture of an Ag conductive filament
across the PVP insulating layer bridging the two Ag NW inner cores. Corresponding b. conceptualization of a memristive graph stimulated in between two nodes
where the conductance Gij of the edge connecting nodes i and j is regulated by nonlinear dynamics and depends on the history of applied electrical stimulation.
c. Experimental temporal evolution of the effective conductance of an Ag NW network under voltage pulse stimulation in two-terminal configuration. d. Evolution
of the effective conductance (inverse of the memristive distance) in the graph reported in Fig. 5 while stimulated in between source and ground nodes, where the
dynamic behavior of each edge is regulated by the potentiation–depression rate balance equation and e. corresponding representation of the NW graph electrical
circuit as a weighted graph where the weight of each edge is represented by the edge red color intensity. The blue node color intensity is proportional to the
voltage node while source and ground nodes during stimulation are circled in red and black, respectively. f. Evolution of the information centrality of nodes of the
graph during stimulation. While the node color is normalized on the largest value of the corresponding timestep, the node size is proportional to the information
centrality value normalized on the larger value obtained during the whole stimulation. As in panel e, the edge color is proportional to the edge conductance. . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Manning et al. (2018), the here proposed model allows to investi-
gate the evolution over time including formation and dissolution
of the conductive pathway connecting stimulated nodes.

By considering the notion of memristive distance, it is possible
to observe the dynamic evolution of the information central-
ity (Stephenson & Zelen, 1989), also known as the current-flow
closeness centrality (Bozzo & Franceschet, 2013), of the nodes
of the memristive graph under external stimulation. This metric
is a generalization of centrality, a metric that identify the most
influential nodes within a graph, that takes into account also of
the enhancement of communication through the network when
more routes are possible as in case of the NW network where
source and ground nodes can be connected by multiple current
pathways. Fig. 6f shows the dynamic evolution of node informa-
tion centrality in the memristive graph (Supplementary Movie
145
2). As can be observed, nodes that are located in correspondence
of areas where the conductive pathway is formed progressively
increase their information centrality in virtue of their increasing
influence over the information (current) flow. Note that these
are the nodes that, if removed, causes a higher decrease of the
transmission network capability (i.e. a higher increase of the net-
work effective resistance). These results show that the emergent
behavior of the memristive graph under stimulation results in the
formation of a self-selected conductive pathway that maximizes
the information flow and minimizes the information distance.
It is worth also to highlight that in case of homogeneous and
high-density networks where D ≫ Dc , the network can be
approximated as a continuous memristive medium. Therefore,
the emergent behavior can be modeled also by means of a regular
grid-graph network, where each edge represents the dynamic
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ehavior of a network area rather that of a single NW junctions
Montano, Milano, & Ricciardi, 2022).

. Discussion

The interplay in between structure and functions has a crucial
ole in brain functionalities such as cognition and adaptive be-
avior, where the connection pattern of neural circuits forms a
omplex network whose performances are related to its topology
Suárez et al., 2021). Even if it is still unknown how computation
nd effectiveness emerge from our brain network complexity, it
s reasonable to argue that biological neuronal circuits have been
ptimized through evolution to maximize the computing power
nd adaptability by continuous refinement of network architec-
ure and wiring diagrams. Similarly, the improvement of artifi-
ial neural networks and neuromorphic systems performances
n terms of power consumption and effectiveness is expected to
ely on the optimization of the structure–function relationship of
he neuromorphic hardware. In this scenario, graph theory can
rovide a unified theoretical framework for exploring biological
nd artificial neural networks.
Our results show that a graph theoretical approach can be

xploited for investigating the structure–function relationship in
W networks. In particular, this approach allows the investiga-
ion of the nanonetwork structural connectivity, as shown by
evealing the link of the graph theoretical approach with geo-
etrical considerations. Furthermore, the interplay in between

he network structure and its capacity to transmit information
as been shown by analyzing the phase transition process where
esults have been found to be consistent with percolation theory.

Also, experimental and modeling results show that the emer-
ent dynamics of NW networks can be described by means of
emristive graphs, a class of graphs where the interaction in
etween nodes is regulated by nonlinear dynamics of memristive
evices. The concept of memristive graphs can be extended as
theoretical abstraction of other types of memristive networks

including also regular crossbar arrays) and, more in general, to
ll the complex systems with nonlinear dynamic interactions in
etween network elements. In all these systems, the concept of
emristive distance can be explored for unraveling the emergent
ynamics of the system and its trafficking of the information flow.
Results show the emergence of activation patterns spanning

he network with the formation of self-selected conductive path-
ays that maximize the information flow and minimize the

nformation distance. In this framework, the peculiar activation
attern relies on the structural topology of the network, as
ell as on the spatial location of the stimulated nodes. Besides
he possibility of simultaneously stimulating multiple network
odes, it is worth noticing that the collective memristive state
f the graph depends on the temporal sequence of input signals
s well as on the short-term plasticity of network edges. As
consequence, memristive nanonetworks endow the capability
f spatio-temporal processing multiple input signals that can
e exploited for the physical implementation of unconventional
omputing paradigms such as reservoir computing (Milano et al.,
021; Nakajima, 2020; Tanaka et al., 2019). Besides reservoir
omputing, memristive networks can be explored for the solu-
ion of shortest-path optimization problems and the traveling
alesmen problem, by taking into advantage of the analogue
arallel dynamics of a multitude of memristive elements (Per-
hin & Di Ventra, 2013). In this context, the network structure
lays a crucial role in determining the computing performances.
ndeed, as reported by Loeffler et al. (2021) by analyzing memory
apacity and nonlinear transformation as reservoir computing
enchmarks, it was shown that, besides small worldness, network
odularity also represents a key aspect for simultaneous comput-

ng tasks (multitasking capability). In addition, Hochstetter et al.
146
(2021) have shown that collective dynamics related to the net-
work structure can exhibit avalanche criticality with critical-like
state, where information processing was found to be optimized
at the edge-of-chaos for computationally complex tasks. Notably,
avalanches have been observed close to and above the percolation
threshold in NW networks as a consequence of resistive switching
dynamics of NW junctions (Hochstetter et al., 2021).

In this framework, we envision that hardware-implemented
memristive graphs by means of self-organizing memristive
nanonetworks can represent suitable platforms not only for the in
materia implementation of brain-inspired computing paradigms,
but they can also provide inputs to neuroscience for unraveling
the relationship between computational capacity, adaptability
and structure of our brain with a ‘‘learning by doing’’ approach.

4. Conclusions

In conclusion, structural and functional connectivity of self-
organized memristive NW networks was investigated through a
graph theoretical approach. Graph theory was shown to provide
a suitable theoretical framework for investigating topology and
functionalities of memristive nanonetworks, where an emerging
behavior arises from the interaction in between a multitude of
memristive elements. Results suggest that the emergent network-
wide memristive dynamics can be exploited for spatio-temporal
processing of input signals, in the framework of unconventional
computing paradigms and neuromorphic-type data processing.
Our findings can pave the way for rational design of memris-
tive artificial neural networks and neuromorphic systems with
optimized structure–function relationship inspired by biological
neuronal circuits.

5. Methods

NW network fabrication and characterization
Memristive NW networks were fabricated by randomly dis-

persing Ag NWs with diameter of 115 nm and length of
20–50 µm in isopropyl alcohol suspension (from Sigma-Aldrich)
on a SiO2(1 µm)/Si insulating commercial substrate (Cultrera
t al., 2021; Milano et al., 2020; Milano, Pedretti et al., 2020). The
etwork structural topology and the distribution of NW length
as assessed by field emission scanning electron microscopy
FE-SEM; Zeiss Merlin). The electrical behavior of the NW net-
orks was experimentally assessed by realizing metallic Au pads
eparated by ∼7 mm (approximate pad size of 1.2 × 0.3 mm)
n the NW network by sputtering and shadow mask. Electri-
al characterizations of NW networks were performed by using
Keithley 4200 semiconductor device analyser equipped with
ulse Measuring Units (PMUs) and coupled with a SemiProbe
robe station.

emristive graph modeling
NW network simulations were performed by using Python

nd analyses were performed by using the NetworkX package
Hagberg, Swart, & Schult, 2008). The random dispersion of 1D
ticks on a 2D plane was performed according to the algorithm
eveloped by Loeffler et al. (2020). The parameters of the equa-
ion exploited for modeling nonlinear dynamics of the graph
dges are reported in Supplementary Information S8.

raph metrics

verage degree of nodes; being ki the degree of node i (i.e. the
umber of wires connected to nanowire i), V the subset of nodes
nd N the number of nodes of the graph, the average degree of
odes is defined as

k⟩ =
1
N

∑
ki
i∈V
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verage shortest path length; being the d (i, j) the shortest path
rom node i and node j, V the subset of nodes and N the number
f nodes of the graph, the average shortest path is defined as:

L⟩ =

N∑
i,j∈V

d (i, j)
N(N − 1)

Graph diameter; the graph diameter is defined as the maximum
shortest paths between any two nodes of the network, that is the
maximum eccentricity of the graph.

Average local clustering coefficient; being V the subset of nodes
nd N the number of nodes of the graph, the average clustering
oefficient is defined as:

C⟩ =
1
N

∑
i∈V

ci

where ci is the clustering coefficient of node i defined as:

i =
2T (i)

deg(i)(deg (i) − 1)
where T (i) is the number of triangles through node i while deg(i)
is the degree of node i.

Information centrality: for a connected graph where V is the
subset of nodes and N the number of nodes, the information
centrality of node i is defined as:

Ii =
N∑
j∈V

1
Iij

where Iij is the centrality of a path from node i to j. Information
entrality is computed according to the algorithm from Brandes
nd Fleischer (2005). Refer to J. Stephenson and M. Zelen for the
riginal definition of information centrality (Stephenson & Zelen,
989).
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Appendix A. Supplementary data

Supplementary data includes details on the distribution of NW
length, adjacency matrix, networks with different densities, de-
gree of nodes distribution of networks of identical NWs, average
degree of nodes and junction density, adjacency matrix sparsity,
resistive switching of a single Ag NW junction, parameters for
modelling the nonlinear response of graph edges, video of the
evolution of network conductivity and video of the evolution of
information centrality.

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.neunet.2022.02.022.
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