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Abstract 
An instrument board based on Arduino™ has been designed and the firmware is described in Technical 
Reports (1) and (2).  Although a direct connection from the controlling computer to one or more boards can 
be used, this solution does not allow to implement complex experimental configurations and only one 
computer per time can control the boards. Another issue of this approach is the low scalability of the 
controlling software, usually tied to a given setup. 

 

This report describes the study, design and implementation of a “Structured solution” for the Application 
software with the following goals in mind 

• Connecting the boards to form a network of distributed resources 
• Allowing concurrent access to the resources from many applications 
• Granting access from dedicated hardware or from computers with different operating systems 
• Improve flexibility and future integration with other instruments 

 

 

The above requirements took to divide the software in functional layers and defining a communication 
protocol among them. The Python 2.7 language has been widely used as it provides a good prototyping 
environment and offers a great number of ready-to-use support libraries as well.  

The results of this work provide a working environment for the interconnected boards and a starting point 
for further developments and investigations on additional features and real-time solutions also in other 
programming languages. 
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Software requirements 
The aim of the design is to achieve a separation of the software functions into layers, with an increasing 
abstraction degree which allows the end-user of the boards to implement his/her software or to operate 
the boards without a deep knowledge of the internal details of the hardware and firmware. 

The main requirements for the software are 

• Easy access of the boards from different operating systems and programming languages. 
• Support for distributed operation. 
• Support for concurrent operations. 
• Support for future features. 

Software organization in layers 
The requirements led to organize the overall software in three levels with a decreasing abstraction degree 

1. Application Layer software and user interface. 
2. Mid-Tier Layer software which acts as an interface between Layer 1 and Layer 3. 
3. Board Layer software – this software, also called firmware, has already been discussed in Technical 

Reports (1) and (2). It will not be discussed further in this report. 

The Application Layer allows the end-user to interact with the boards, both with a Graphical User Interface 
(GUI) or with a custom software. As many type of boards and connection types could be present in a real 
system, the application software does not connect directly to them and an intermediate software layer 
(Mid-Tier Layer) is present. This layer acts as a gateway between the boards and the applications and 
provides a unified communication protocol, which simplifies the applications development as well.  

Figure 1 shows the overall architecture of the software. 

 

FIGURE 1 -GENERAL ARCHITECTURE OF THE SOFTWARE 
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Application Layer 
The application layer provides the user interface and allows to operate both the boards and the Mid-Tier 
Software. This report describes the communication protocol and the register organization of the data 
providing some application examples. As the internal details of the graphical programming techniques are 
of no interest with respect to the overall software design, they will not be covered by this report. 

Communication protocol 
The chosen communication protocol for the application software is the same board communication 
protocol already defined in (1). The Mid-Tier Layer will use the same protocol as well. This choices satisfy 
the requirement for the application software to operate a board with or without the presence of an 
intermediate (Mid-Tier Layer) software.  

The set of commands used by the application is shown in Table 1. 

 

Command Description Implementation 

P Request communication protocol Execute locally on the connected node 

? Who Execute locally on the connected node 

?? List Execute locally on the connected node 

F Forward Execute locally on the connected node 
Superseded by “/” command 

* System Execute locally on the connected node 

I Identify Execute locally on the connected node 

A Acknowledge Execute locally on the connected node 

R Read register Execute locally on the connected node 

- Reply Execute locally on the connected node 

# Remarks Execute locally on the connected node 

W Write register Execute locally on the connected node 

/ Address to another node 

Syntax: /ID1/ID2/… cmd  

Execute cmd on node ID2 along path ID1 - ID2 - … 

Forward the command for execution on 
the specified node 

TABLE 1 - APPLICATION COMMANDS SET 

 

By convention, the applications expect the first connected device (both a Mid-Tier Layer Node or a directly 
connected board) to respond to the requests with the above protocol. 
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When the connection with the node is established, the application requests the connected device to 
identify itself without ambiguity and to provide information about the type of device it is (i.e. an ordinary 
board or a Mid-Tier Node).  

This operation is performed by reading the register #2 (REG_FW_DRIVER) of the attached board or node. 
Again, this register is one of the defined standard registers which must be implemented both in an ordinary 
board or a “software device” (for example a Mid-Tier Layer Node) as shown in Table 2. 

 

Figure 2 shows an example of two applications, each requesting the connected device to identify itself and 
to provide the board type information. In the figure, the green numbers above each device are the IDs of 
the nodes. 

 

FIGURE 2 - APPLICATION COMMUNICATION EXAMPLE 

Register organization of the Software 
The base register set which the Application Layer expect to access is shown in Table 2.  

Register  ID Register Name Type Description 

1 NODE_ID Text ID of the Node 

2 SW_DRIVER Text Name of driver class  

3 SW_NAME Text Software name  

4 SW_VER Text Software version  

5 SW_BUILD Text Software build date  

14 DBG_LASTBOOT Int 32 Last node restart in milliseconds  

18 PARAM_STATE Int 32 Parameters' state, used to detect changes  

20 NODE_NAME Text Node name  

TABLE 2 - REGISTER SET OF THE MID-TIER LAYER 
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The above registers are a subset of those defined for a generic Arduino-based board in (1) and allow the 
software to start the base communication with any type of device. 

An example of access to an unknown-type board  is given in the following section. 

Mapping the connected devices  
When more than one device are interconnected to form a network, a mapping algorithm must be 
implemented to provide the topology of the network. Thus, at start-up, the application software maps the 
connected devices starting from the first connected node (both a physical board or a software node).  

A recursive algorithm can be used to enter the node, list its children and for every found child apply the 
algorithm again. An implementation example in Python language follows. 

The function TxRx(command) sends a command to the first attached node and returns the reply. The 
function call Command("??", address).split()is used to retrieve the IDs of the children attached to the 
addressed node as a list. 

After the scan has been performed, the information on the nodes can be obtained by querying every node 
using its address, for example a read access to its register 2 to request the node type as in the example 
below 

 

An example is provided for this simple network 

 

When the scan starts from node 1, the following messages are exchanged. The found children of the node 
are returned as a list of their IDs and if a node has no children its reply is empty (“- “ reply string). 

 
In the first step shown above, nodes 4, 5,7 and 8 are not listed because they are not directly connected to 

def Command(command, address=""):  # SEND A COMMAND TO AN ADDRESSED NODE, RETURN THE REPLY 
    if address != "": 
        command = address + " " + command 
    return TxRx(command)[1:].lstrip() 
 
def Scan(address): 
    tmp = [address]                             # INCLUDE THE SCANNED NODE IN THE RESULTS 
    for ID in Command("??", address).split():   # SCAN EVERY NODE ATTACHED TO THE CURRENT NODE              
        tmp = tmp + Scan(address+"/"+str(ID))         
    return tmp 

nodes = Scan("")    # START FROM THE FIRST NODE ATTACHED TO THE APPLICATION 
print "Connected with ID:", Command("?"),"Type:", Command("r 2")  
for address in sorted(nodes): 
    if address != "": 
        print address, "\t", Command("r 2", address) 
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node 1. Instead, access is provided through the rack interface at node 3 and the Mid-Tier node 6. 
When the scan process continues, the remaining nodes of the network are recursively explored.  

 
At this point the list of nodes is used to request the type of every node 

 
A textual representation of data shows the original topology of the network  

The messages exchanged with the application during the board-type identification are shown below for 
reference 

An alternative scan method is provided by the Mid-Tier Layer and is described in section “Board simulator” 
at page 21.  

/10 ?? 
- 
/2 ?? 
- 
/3 ?? 
- 4     5 
/3/4 ?? 
- 
/3/5 ?? 
- 
/6 ?? 
- 7     8 
/6/7 ?? 
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- 

Connected with ID: 1 Type: midtier 
/10     dds 
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/6/7    lockin 
/6/8    genericboard 
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Mid-Tier Layer 
The core of the software is the Mid-Tier Layer because it abstracts the behaviour of the boards and allows 
to add functions to the system of boards which would be difficult to achieve. The Mid-Tier Layer is seen by 
the connected Application Software as an ordinary board, so it must implement the same communication 
protocol described at pages 5 and 6. In this phase of the design, this software layer is intended to be 
installed and run on medium power computers, like ordinary PCs or single board computers, e.g. 
RaspberryPi, BeagleBoard and similar devices as shown in Figure 3-a. 

 

FIGURE 3 – ALTERNATIVE SOLUTIONS FOR BOARD FIRMWARE AND MID-TIER LAYER 

When the board provides more computing resources, e.g. a FPGA+CPU board or single-board PC connecting 
to a dedicated hardware, the scheme in Figure 3-b could be used. In this case, the Mid-Tier Layer runs 
directly inside the physical instrument board and is part of its firmware.   

 

Independently from the choice between any of the two options, the architecture of the Mid-Tier Layer is 
the same and must provide three layers of functions: 

• Accept requests   act as a Slave / Server 
• Process or Route the request  act as a Router 
• Send the Requests    act as a Master / Client 
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The Server component of the Mid-Tier accepts requests from other nodes whatever type they are (for 
example applications or other Mod-Tier Nodes). After the request has been received, some processing is 
performed on it (typically to decide if the requested operation can be executed locally by the node itself or 
if it must be forwarded to another node). At the end of the request-processing chain, a reply is sent back to 
the node which originated the request. The Client component of the software is complementary to the 
Server component and allows to generate requests to another node and wait for replies from it. 

 

 

The current implementation of the Client side provides two connection types 

• Serial communication, typically used to control the physical Boards 
• Network communication to forward messages to other Mid-Tier software Nodes or advanced 

boards which will be developed in future 

If needed, future expansion of the software will implement other communication protocols not yet 
specified at the time of writing this report. 

The Server component currently provides two connection types 

• Serial communication to allow legacy and/or simple applications to send messages to the software  
• Network communication to handle messages coming from the Application Layer Software or from 

another Mid-Tier Layer Node 

The current network protocols are  

• HTTP: the Mid-Tier is presented as a web server and data can be exchanged through an HTTP GET 
request and a following reply. This protocol on one hand adds a lot of overhead to the exchanged 
data thus slowing the data transfer but on the other one eases external access in complex network 
infrastructures (i.e. firewalls or filtered TCP ports). HTTP is also a good cross-platform protocol and 
is native in many different programming languages or can easily implemented, thus allows 
portability of the applications. 

• Raw socket, used to exchange data with a higher throughput when the network infrastructure 
allows it (i.e. local subnets or open TCP ports to the Internet) 

Abstract data-channel 
Both the serial and the network protocol used by the Mid-Tier Layer provide a transparent mechanism 
which hides the actual physical implementation of the channel to the surrounding software. The aim of this 
abstraction is to simplify the development of the software only focusing on its overall logic.  
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The message which is exchanged, is actually embedded “as is” inside the desired transport protocol shown 
in Figure 4. Data are sent onto  the resulting “abstract data-channel” from the source to the destination and 
the application does not deal with the physical channel. 

 

FIGURE 4 - MESSAGE EMBEDDED IN THE TRANSPORT PROTOCOL 

The abstract data-channel also allows to implement complex and distributed topologies as shown in Figure 
5 where instruments installed in two geographically separated locations can be operated through TCP 
connections of multiple levels of Mid-Tier Nodes. The example also shows a legacy application (for example 
running a low-end microcontroller board) in Lab4 driving some boards through a serial connection.  

 

FIGURE 5 - MID-TIER SOFTWARE IN A DISTRIBUTED  SETUP 
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As shown in Figure 5, the described network is actually a tree. Although more instances of the Mid-Tier 
software could run on a same network node to create more complex architectures (for example with 
redundant connecting paths or nodes acting simultaneously as masters and slaves), attention must be paid 
to avoid critical situations like loops which could take to infinite data retransmissions along them. 

The current implementation of the Mid-Tier Layer software does not provide any mechanism to avoid loop 
recognition and consequences of circular data paths. 

Implementation of the Mid-Tier Software 
The software has been written in Python 2.7.3-32bit language and tested in Microsoft Windows 7 64-bit.  

The advantages offered by the language in terms of cross-platform portability, object oriented paradigm 
(OOP) nature and ready-to-use libraries compensate the performance which could be a little bit worse 
compared to a native application compiled for a fixed architecture and operating system. 

 

The three components which the software is divided into are actually implemented as Python Objects as 
described in the following section. 
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Modular structure of the Mid-Tier Layer Applications 
A base structure has been defined, implementing a pool of generic servers, clients and some 
interconnecting routing tables. Each Server, Routing Table, and the Mid-Tier Application itself are instances 
of proper classes. OOP allows to describe the base behaviour and specialize it later by class derivation. The 
interconnection capabilities of the software can be easily extended further in future.  

 

The resulting high-level applications which use the described approach are quite simple. For example, the 
following Python code describes a node with ID equal to 20 which accepts requests from a serial port, a tcp 
socket and http protocol. The node automatically forwards the requests to another http server (srv01) 
listening on TCP port 8020. 

 

The same access to a serial connected device, can be implemented by changing only one line of code in the 
“Clients=” section as in the following example.  

The details of the Client and Server objects are discussed in section “Implemented Modules” at page 27 and 
following.   

app = appclass.AppClass( 
    ID = 20, 
    Servers = [ 
                modules.serialmodule.Server("\\\\.\\com1", 115200), 
                modules.tcpmodule.Server('0.0.0.0', 5000), 
                modules.httpmodule.Server("127.0.0.1", 8080,"./htdocs/") 
                ], 
    Clients = [ 
               modules.httpmodule.Client("http://srv01:8020/") # CONNECT TO ANOTHER MID-TIER NODE 
               ]     
    ) 

app = appclass.AppClass( 
    ID = 20, 
    Servers = [ 
                modules.serialmodule.Server("\\\\.\\com1", 115200), 
                modules.tcpmodule.Server('0.0.0.0', 5000), 
                modules.httpmodule.Server("127.0.0.1", 8080,"./htdocs/") 
                ], 
    Clients = [ 
               modules.serialmodule.Client("com2", 115200) # CONNECT TO A DEVICE THROUGH THE SERIAL PORT 
               ]     
    ) 
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The base Client and Server objects 
The objects are based on the two main base classes ServerModule , ClientModule and some support classes. 

The minimal implementation of the Mid-Tier Software is graphically shown in Figure 6 and requires that 
two methods are declared respectively in the Server and Client objects 

• The Server.OnRequest(data) method which is called at every request from the client. 
The parameter data passed to the function is the content of the request (for example “r 20” to read 
the register #20).  
The function must return a value as a result of the request which is sent back to the client. 

• The Client.TxRx(data) method which is called to issue a command to the attached device. The 
function returns the reply from the device. 

 

FIGURE 6 - STRUCTURE OF A SIMPLE MID-TIER APPLICATION 

As an example, the implementation of the Mid-Tier software which accepts requests from a TCP socket on 
TPC port 5000 and is connected to a board through a serial connection on port COM37 is 

 

The last line of code in the above example binds the action following a request to the actual 
communication with the board. 

A more complete implementation of the application will slightly differ from the example because there will 
be more clients instances, one for each  connected device, and the callback function associated to the 
request will implement a decision algorithm to choose the proper client object. Finally, once the object has 
been found, the corresponding TxRx() method will be called. 

 

server = tcpmodule.Server('0.0.0.0', 5000)                     
client = serialmodule.Client("\\\\.\\com37", 115200) 
server.OnRequest = client.TxRx 

def route(data): 
   # some search criteria in an array “clients” of client objects -> “index” is the index of the desired client  
   return clients[index].TxRx(data) 
 
server = tcpmodule.Server('0.0.0.0', 5000)                     
client = serialmodule.Client("\\\\.\\com37", 115200) 
server.OnRequest = route 
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After having discussed the top-down structure of the software, the following sections will describe the 
classes involved in its implementation. 

Support classes 
The implemented communication is ASCII, line oriented. Two support classes have been designed to 
simplify the development of the software.  

The class SimpleReceiver implements an object able to queue the received data (independently from the 
physical channel) and execute an action through a callback function when a line is complete. The support 
class is not intended to be used alone and a parent object must be specified in its constructor. The 
parameter links the class to the part of the code which actually has access to the physical communication 
channel.  A requirement for the SimpleReceiver class to work is the implementation in the specified parent 
object of the callback function OnLineReceived() associated to a complete line reception. This function is 
discussed in the two sections relative to the Server and Client classes. 

 
The described class works in situations where data are immediately available, for example in a stream of 
generated requests inside a loop where the software can call the HandleIncomingData method at each 
iteration. 
 
parentobject = ... # SOME OBJECT WICH EXECUTES REQUESTS 
receiver = SimpleReceiver(parentobject) 
 
while True: 
 d =  ... # GENERATED REQUEST DATA 
 receiver.HandleIncomingData(d) 
 
 
Unfortunately, in many real situations data are not immediately available and no event or messaging 
subsystem exists to notify the software for new data available. In these cases, the function used to receive 
data from the physical link would block the main execution thread for long times. 
For this reason, the second support class ThreadedReceived is provided. This class uses the multithreading 
capabilities of the Python language to implement an object able to call an external RxFunction (even 
blocking) in a separate thread and parse the resulting data through the SimpleReceiver object. Running the 

class SimpleReceiver(object): 
    ''' 
    This class calls the OnLineReceived(data) function when a \n or \r terminated line is received 
    Data are appended at each call of the HandleIncomingData(rxdata) method.   
    ''' 
    def __init__(self, parent, Timeout=1.0): 
        self.Timeout = Timeout 
        self.NextTimeout = time.clock() 
        self.parent = parent 
        self.run = True 
        self.startofline = True 
        self.rxbuffer = '' 
 
    def HandleIncomingData(self, rxdata):         
        if len(rxdata)>0: 
            rxdata = rxdata.replace('\r','\n')  # RECOGNIZE BOTH \n AND \r AS LINE TERMINATOR 
            for rxchar in rxdata: 
                if self.startofline: 
                    if rxchar != '\n': 
                        self.startofline = False 
                        self.rxbuffer = rxchar 
                else: 
                    if rxchar != '\n': 
                        self.rxbuffer = self.rxbuffer + rxchar 
                    else: 
                        self.parent.OnLineReceived(self.rxbuffer) 
                        self.startofline = True 
            self.NextTimeout = time.clock() + self.Timeout 
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receiving function in a separate thread does not block the main one and allows to call the function 
HandleIncomingData() as soon as data are available. 
 

 

The Server class 
A Server module waits for requests from a given physical channel. When a command is received, an action 
is triggered and finally a reply is sent back to the connected client through the same channel. 

Abstracting the server’s behaviour requires to implement a base class which will be extended later 
according to the requirements (e.g. given by the communication protocol or physical channel). 

Thus the base class ServerModule for the server is very simple and provides the declaration of the required 
callback function OnRequest() and an auxiliary method OnLineReceived(). 

 

The OnLineReceived() method has been introduced to solve a deep asymmetry issue present  in the data 
exchange sequences in the Server and in the Client objects. Receiving a new line of data must take to 
different behaviours in the two classes so the actions are kept separate in their respective codes, while the 
receiving mechanism is left the same. Figure 7 and Figure 8 graphically show the different sequences in the 
two classes. 

 

FIGURE 7 - ONLINERECEIVED FOR A SERVER 

class ThreadedReceiver(SimpleReceiver): 
    ''' 
    This class is the threaded extension of SimpleReceiver class. The thread is not automatically started. 
    ''' 
    def __init__(self, RxFunction, OnLineReceived, Timeout=1.0): 
        ''' 
        Constructor 
        ''' 
        SimpleReceiver.__init__(self, OnLineReceived, Timeout)         
        self.RxFunction = RxFunction 
        self.rxthread = threading.Thread(target=self.rxthreadfunction) 
        self.rxthread.daemon = True     
 
    def rxthreadfunction(self): 
        while self.run: 
            rxdata = self.RxFunction()                
            if len(rxdata)>0: 
                self.HandleIncomingData(rxdata) 
            else: 
                time.sleep(0.01)    # IDLE   

class ServerModule(object): 
    ''' 
    Base Communication Module (Server Side) 
    ''' 
    def __init__(self, receiver=None): 
        self.receiver = receiver 
        self.OnRequest  = lambda x:x # CALLED AT EVERY REQUEST TO THE SERVER, SHOULD BE OVERRIDDEN 
        self.OnLineReceived = lambda data:self.TxFunction(self.OnRequest(data)) 
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As the transmission of the reply message depends on the physical channel in use, the actual transmission is 
performed by a separate callback function TxFunction() which will be declared in the derived Server class. 

It should also be noted that the added complexity of the object approach of this software design saves time 
when the high level application is developed. As a matter of fact every physical communication channel and 
every communication protocol has is its own behaviour and operation model, the aim of the design is to 
provide a common interface between the physical communication channel and the upper layer of the 
software: the OnRequest() method. 
 
As an example, although both a Serial connection and a TCP socket are point to point connections, the 
respective support libraries provide quite different functions. The following table briefly shows a 
comparison of data receivers through the two cited links.  
 
Reading data from a serial connection Reading data from a TCP socket 

• Character / byte oriented 
• Polling needed 

• Inherently packet / line oriented 
• Threaded servers exist 

Sample code Sample code 

 
A simple example of the implementation of a server module is the Serial connection below. 

 
It should be noted that the Server class is derived from its base class and it also uses a dedicated SerialLink 
object which actually handles the serial link data transmission through two functions. 

 
 

import serial 
import time 
ser = serial.Serial('COM3', 9600, timeout=0) 
  
while True: 
 try: 
  print ser.readline() 
  time.sleep(1) 
 except ser.SerialTimeoutException: 
  print('Data could not be read') 
 

import SocketServer 
class MyTCPHandler(SocketServer.BaseRequestHandler): 
    def handle(self): 
        self.data = self.request.recv(1024).strip() 
        print self.data 
        self.request.sendall(self.data.upper()) 
 
s = SocketServer.TCPServer(("0.0.0.0", 5000), MyTCPHandler) 
s.serve_forever() 
 

class Server(base.ServerModule): 
    def __init__(self, serialport, baudrate, wait=4.0):   
        self.link = SerialLink(serialport, baudrate, wait) 
        super(Server, self).__init__(base.ThreadedReceiver(self, Timeout=1.0)) 
        self.TxFunction = self.link.Tx 
        self.RxFunction = self.link.Rx 
        self.receiver.rxthread.start() 

class SerialLink(object): 
    def __init__(self, serialport, baudrate, wait):   
        self.serialport = serialport  
        self.baudrate = baudrate 
 
        try: 
            self.link = serial.Serial(port = self.serialport, baudrate=self.baudrate, timeout=0.05) 
            time.sleep(wait) 
        except: 
            self.link = None 
 
    def Rx(self): 
        if self.link != None: 
            return self.link.read() 
        else: 
            return '' 
 
    def Tx(self, data): 
        if self.link != None: 
            self.link.write(data+"\n") 
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The Serial Server can be tested through the simple following script 
 

 
and the operation result is shown below. 

 

 

  

from modules.serialmodule import Server  
 
def handler(reqdata): 
    print "Request: ", reqdata 
    replydata = "Server reply to: " + reqdata 
    return replydata 
     
server = Server("\\\\.\\cncb0", 115200, wait = 0.1) 
server.OnRequest = handler 

Server 

Client 
(serial terminal) 
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The Client class 
Generally a client module for a communication channel is quite simple with respect to its Server 
counterpart because the client task is expected to be triggered by a software action which causes it to send 
a command through a physical channel to an external device, wait for a reply and finally pass the reply back 
to the software. 

Again abstraction is needed in order to support different physical media or communication protocols and a 
base class is defined. 

The requirement for the Client class is the implementation of the TxRx() method which will be called by the 
upper level software. Some auxiliary methods are defined to better integrate the class in the developed 
framework. 

 

As for the Server class, also the OnLineReceived() must be implemented and it is used to stop the wait 
phase after a command transmission to the external device. This is shown in Figure 8 and it can be 
observed that the behaviour is deeply different with respect to the Server behaviour previously shown in 
Figure 7. 

 

FIGURE 8 - ONLINERECEIVED FOR A CLIENT 

class ClientModule(object): 
    ''' 
    Base Communication Module (Client Side) 
    ''' 
    def __init__(self, receiver): 
        self.OnRequest  = lambda x:x # CALLED AT EVERY REQUEST 
        self.receiver = receiver 
        self.atomicrequest = threading.Lock() 
        super(ClientModule, self).__init__() 
                 
    def TxRx(self, command): 
        self.reply = None 
        with self.atomicrequest: # PROTECT CONCURRENT REQUESTS 
            self.TxRxTransaction(command) 
     
            if self.reply == None: 
                return "- fail" 
            else: 
                return self.reply 
             
    def TxRxTransaction(self, command): 
        self.TxFunction(command) 
        self.receiver.NextTimeout = time.clock() + self.receiver.Timeout 
 
        while self.reply == None and time.clock() < self.receiver.NextTimeout: 
            time.sleep(0.01) 
 
 
    def OnLineReceived(self, data): 
        self.reply = data 

Request Send 
Command 

Wait for 
reply 

Tx() 

TxRx() 

OnLineReceived() 

Stop 
waiting 

Return 
Reply 

Transmit first 
Receive later 
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Concurrent resources access 
As in a complex application many servers could receive requests for the same client, some request-reply 
sequences could overlap thus giving erroneous results. For example Figure 9-a shows the threat of two 
potentially overlapping requests, the second coming before the transmission of the reply to the first 
request. Without any protection, the TxRx() method could erroneously return Reply2 to Request1 and 
Reply1 to Request2. 

 

FIGURE 9 - CONCURRENT OPERATIONS PROTECTION 

The introduced protection is implemented with a Lock object atomicrequest which prevents the execution 
of the same code during one call (server request 2) before the completion of the same part of code 
previously called by the server request 1. 

The last auxiliary implemented method is TxRxTransaction() which is intended to be used in situations 
where a native function already exist to send data, wait  and return a reply.  

An example is the implemented http library to retrieve an URL from a web server.  In this case the complete 
implementation of the Client for the HTTP protocol is 

  

class Client(base.ClientModule): 
    def __init__(self, baseurl): 
        super(Client, self).__init__(None)         
        self.baseurl = baseurl 
         
    def TxRxTransaction(self, command): 
        try:     
            url = self.baseurl + "?" + urllib.quote(command) 
            response = urllib2.urlopen(url) 
            self.reply = response.read() 
        except: 
            self.reply = None 

time 

Request 1 Request 2 Reply 1 Reply 2 No protection for  
concurrent accesses 

time 

Request 1 Request 2 Reply 1 Reply 2 Protection for  
concurrent accesses 

time 

Request 1 Request 2 

passed queued 

Release request2 

a) 

b) 

associated 
to Request 1 

associated 
to Request 2 
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The Mid-Tier Application class 
The Application class actually implements the Mid-Tier Software which becomes a node of the network of 
interconnected devices.  

The Application is instantiated by specifying the ID of the Node, a list of Server objects (Serial, HTTP, TCP 
socket) and a list of Client object which can connect to hardware boards or other Nodes. 

The Server and Clients lists define how the node is connected to the network. 

 

Board simulator  
As the application is presented as a register-organized board, a board simulator needs to be embedded into 
the software. 

 

The simulated board is requested to 

• Respond to an identification request: “?” command 
• List all the attached devices (i.e. list the IDs of the connected boards and Nodes: “??” command 
• Provide information about the firmware (version, type, driver, etc) as specified in protocol (1) 
• Use the same register allocation convention of the Arduino base board as in (1) 

 

The above requirements permit to connect, address and properly operate the board in a network of many 
interconnected boards and nodes. 

 

  

class AppClass(object): 
    ''' 
    Base Communication Application 
    ''' 
 
    def __init__(self, ID, Servers=[], Clients={}): 
        self.BoardMidTier = boardmidtier.BoardMidTier(self, ID) 
        self.Servers = Servers             
        self.Clients = Clients 

Routing Tables 

Clients 

Servers 

Applications / Nodes 

Boards / Nodes 

Board 
Simulator 
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The implementation of the simulator is shown in Figure 10 and  provides the minimal communication 
protocol,  base register set and the functions to access the simulated resources. 

import time, types 
 
PROTO_WHO       = '?' 
PROTO_LIST      = '??' 
PROTO_GET       = 'r' 
PROTO_SET       = 'w' 
PROTO_SYS       = '*' 
PROTO_REPLY     = '-' 
PROTO_REMARKS   = '#'  
 
STO_BOARD_ID           = 1   # ID of Board  
REG_FW_DRIVER          = 2   # Name of driver class  
REG_FW_NAME            = 3   # Firmware name  
REG_FW_VER             = 4   # Firmware version  
REG_FW_BUILD           = 5   # Firmware build date  
DBG_LASTBOOT           = 14  # Program uptime 
PARAM_STATE            = 18  # Parameter alteration counters   
STO_BOARD_NAME         = 20  # Board name                               
 
class BoardMidTier(object): # GENERIC BOARD 
    def __init__(self, parent, myid): 
        self.regs = {} 
        self.Tx = lambda x:None 
        self.starttime = time.time()        
        self.Clients  = {} 
        self.regs[STO_BOARD_ID]      = str(myid) 
        self.regs[REG_FW_DRIVER]     = 'midtier' 
        self.regs[REG_FW_NAME]       = 'midtier.py' 
        self.regs[REG_FW_VER]        = '1.0' 
        self.regs[REG_FW_BUILD]      = time.strftime("%Y-%m-%d %H:%M:%S") 
        self.regs[DBG_LASTBOOT]      = lambda:int((time.time()-self.starttime)*1000) 
        self.regs[STO_BOARD_NAME]   = 'MidTier '+str(myid) 
 
    def GET(self, reg): 
        f = self.regs.get(int(reg),None) 
        if f == None: 
            return '- fail' 
        elif type (f) is types.LambdaType: 
            return "- " + str(f()) 
        else: 
            return "- " + str(self.regs.get(int(reg)))         
     
    def SET(self, reg, val): 
        f = self.regs.get(int(reg),None) 
        if f == None or type (f) is types.LambdaType: 
            return '- fail' 
        else: 
            self.regs[int(reg)] = val 
            return '- ok' 
         
    def Execute(self, command): 
        try: 
            if command[0] == PROTO_GET: 
                cmd, reg = command.split(" ")  
                return self.GET(reg) 
            elif command[0] == PROTO_SET: 
                cmd, reg, val = command.split(" ",2) 
                return self.SET(reg, val)         
            elif command == PROTO_WHO: 
                return self.GET(STO_BOARD_ID)             
            elif command == PROTO_LIST: 
                ret = '\t'.join(['-']+ 
                    [path[1:] for (path, handler) in self.Clients.items()] 
                    ) 
                return ret             
             else: 
                return '- fail'                             
        except: 
            return '- fail' 

FIGURE 10 - BOARD SIMULATOR 
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The simulator has been tested using the simple three-level network  graphically defined below 

 

 

When the application is connected to node 100, its board simulator allows the execution of commands as 
an ordinary node. 

 

Scan method 
A simple implementation of a native network mapping function has been defined inside the board 
simulator class in a test release of  the software  

The results, associated to the contents of a special register are shown. 

Although the function is very practical, it has been later removed from the current implementation because 
it took to timeout errors in big networks. In those situations, the time needed to scan all the network by 
distributing the operation across the network-nodes was too long with respect to the time the client was 
set out to wait for. A workaround consisting in asking in two separate phases the network scan operation 
and the results reading is under development. 

Routing layer 
The routing layer is quite simple as it relies of the OnRequest() method of the servers and a Python 
dictionary of Client objects, each element associated to the ID of the Node the client is connected to. 

The dictionary is populated when the array of clients is passed to the constructor of the Application class. 
For each passed client, an attempt is done to connect to a device trough it. At this point, if the device 
responds with its ID, that ID is used as a key for that client instance and is stored in the dictionary. 
Otherwise the client is discarded. The Client member of the class is implemented as a property. Thus 

? 
- 100 
?? 
-       20      10 
/10 ?? 
-       14      13      12      11      10 
/20 ?? 
-       17      16      15      19      18 

    def Scan(self, handler, address=""): 
        tmp = [address]                             # INCLUDE THE SCANNED NODE IN THE RESULTS 
        if address == "": 
            command = "??" 
        else: 
            command = address + " ??" 
        children = handler.TxRx(command)[1:].lstrip().split() 
        for ID in children:   # SCAN EVERY NODE ATTACHED TO THE CURRENT NODE              
            tmp = tmp + self.Scan(handler, address + "/"+ID)         
        return tmp 

- /20   /20/17  /20/16  /20/15  /20/19  /20/18  /10     /10/14  /10/13  /10/12  /10/11  /10/10 
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assigning a value to it in the constructor or in any point of the software, actually triggers the actions 
described above. 

    @property  
    def Clients(self): 
        return self.BoardMidTier.Clients 
     
    @Clients.setter  
    def Clients(self, ClientsList):         
        self.BoardMidTier.Clients = {} 
        for client in ClientsList: 
            ID = client.TxRx("?")[2:] 
            if ID != "fail": 
                route = "/{ID}".format(ID=ID) 
                self.BoardMidTier.Clients[route] = client 
 

The keys of the clients dictionary are strings in the format “/ID”  (i.e. “/1”, “/2”, …) and this convention is 
the most important part of the routing method in the network as described later. 

On the other end, when the server list is passed, it is scanned. For each server instance, its callback function 
OnRequest() is associated to the common method Route() of the Application class. Again, the Servers 
member is implemented as a property. 

    @property  
    def Servers(self): 
        return self._Servers 
     
    @Servers.setter  
    def Servers(self, value): 
        self._Servers = value 
        for server in self._Servers: 
            server.OnRequest = self.Route 
 

Finally, the actual routing is performed by the Route(command) method with the following algorithm 

• When a request (command) starts with “/”, routing must be performed, otherwise the command 
must be executed locally by the  Board Simulator. 

• If routing is requested, the message is split into two components: 
o The Address, starting from the first “/” character up to the second (excluded) 
o The Message, which is the remaining part of the command 

• The Address is the key for the clients dictionary used to select the proper client  
• The Message is transmitted using the selected client 

 

 

The side effect of this algorithm is that the Address component of the command is dropped at every 
routing step. This inherently provides the mechanism to perform the routing in a multi-level structure as 

    def Route(self, command): 
        if command.startswith("/"):   # ROUTING REQUESTED 
            path, command  = command.split(" ",1) # NOW command IS THE MESSAGE COMPONENT 
            fulldestination = path.split("/",2) 
            destination = "/"+fulldestination[1]  # ADDRESS COMPONENT IN THE FORMAT “/ID” 
            if len(fulldestination) > 2: 
                command = "/"+fulldestination[2]+" "+command                         
            if destination in self.BoardMidTier.Clients.keys(): # A CLIENT WHICH CAN SEND TO THE ADDRESS EXISTS 
                return  self.BoardMidTier.Clients[destination].TxRx(command) # TRANSMIT MESSAGE, RETURN REPLY 
        else: 
            return self.BoardMidTier.Execute(command) # LOCALLY EXECUTE THROUGH THE SIMULATOR, RETURN REPLY 
        return "- fail"     # IF SOMETHING WENT WRONG RETURN AN ERROR 
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shown in Figure 11 where the first Node with ID 1 receives a message for the Board with ID 3. The Node 1 
has a client associated to the key “/2” which can send data to Node 2. When data is routed from Node 1 to 
Node 2, Address component is dropped and Node 2 receives “/3”. Again the Address component “/3” is 
dropped in Node 2 and Board 3 receives the command in a form which is ready for execution. The reply 
from Board 3 is back-propagated to the Client which originated the request though a chain of returned 
replies at the end of the TxRx() function which is executed in each node. 

 

FIGURE 11 - MULTILEVEL ROUTING 

 

The Application objects actually are event triggered through the callback functions defined in the Server 
objects which usually run in separate threads. So, the application inherently allows to define many levels of 
nodes which run in parallel. This is useful to test the software and to implement simulators of other nodes 
for special purposes. 

The sample script below simulates a small network of two interconnected Mid-Tier Nodes and a real 
Arduino-based DDS board. The structure of the small network and the output are shown in Figure 12.  

  

import modules 
 
Node10 = modules.appclass.AppClass( 
    ID = 10, 
    Servers = [modules.httpmodule.Server("127.0.0.1", 8010,"./htdocs/")],                          
    Clients = [modules.serialmodule.Client("\\\\.\\com37", 115200)] 
    ) 
 
client = modules.httpmodule.Client("http://127.0.0.1:8010/node/") 
print client.TxRx("?") 
 
    
Node20 = modules.appclass.AppClass( 
    ID = 20, 
    Servers = [ 
                modules.serialmodule.Server("\\\\.\\cncb0", 115200), 
                modules.tcpmodule.Server('0.0.0.0', 5000), 
                modules.httpmodule.Server("127.0.0.1", 8020,"./htdocs/") 
                ], 
    Clients = [modules.httpmodule.Client("http://127.0.0.1:8010/node/")] 
    ) 
 
 
print ":: Node 10 ::" 
print Node10.Clients 
print ":: Node 20 ::" 
print Node20.Clients 
 
while True: 
        pass   
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In the same figure, the results of accesses through TCP, Serial connection and HTTP are shown as well. 

 

 

FIGURE 12 - SMALL NETWORK EXAMPLE 
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Implemented Modules 
Currently, three modules have been implemented:  

• Serial port connection 
• TCP socket 
• HTTP request/reply (web server and client) 

Serial port 
The serial port module is very simple and is described as an implementation example in ”The Server class” 
section at page 16. 

Below, the full code of both the Client and Server sides of the module 

 

 

  

''' 
@author: Claudio Francese 
''' 
import time, threading, base, serial 
 
class SerialLink(object): 
    def __init__(self, serialport, baudrate, wait):   
        self.serialport = serialport  
        self.baudrate = baudrate 
 
        try: 
            self.link = serial.Serial(port = self.serialport, baudrate=self.baudrate, timeout=0.05) 
            time.sleep(wait) 
        except: 
            self.link = None 
 
    def Rx(self): 
        if self.link != None: 
            return self.link.read() 
        else: 
            return '' 
 
    def Tx(self, data): 
        if self.link != None: 
            print data 
            self.link.write(data+"\n") 
 
 
class Client(base.ClientModule): 
    def __init__(self, serialport, baudrate, wait=4.0): 
        self.link = SerialLink(serialport, baudrate, wait) 
        super(Client, self).__init__(base.ThreadedReceiver(self, Timeout=1.0)) 
        self.TxFunction = self.link.Tx 
        self.RxFunction = self.link.Rx 
        self.receiver.rxthread.start() 
 
class Server(base.ServerModule): 
    def __init__(self, serialport, baudrate, wait=4.0):   
        self.link = SerialLink(serialport, baudrate, wait) 
        super(Server, self).__init__(base.ThreadedReceiver(self, Timeout=1.0)) 
        self.TxFunction = self.link.Tx 
        self.RxFunction = self.link.Rx 
        self.receiver.rxthread.start() 
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TCP socket 
The Server side of the TCP socket module is based on a previously implemented multithreaded socket 
server (TCPServer). The actual Server Module uses an instance of the TCPServer as the communication link. 
The implementation of the Client side of the module is simple and consists in a socket which is created 
when a command is sent to the server and closed upon reception of the reply. The receiving function is run 
in a thread. An alternative implementation on a reliable network could keep the socket open even after 
receiving the reply, thus speeding-up the overall performance at the price of a permanent allocated 
resource and the risk of possible faults of the software in case of link drops.  

''' 
@author: claudio 
''' 
import time, threading, base, socket, SocketServer 
 
class TCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): 
    class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler): 
        def OnLineReceived(self, data): 
            self.request.send(self.server.parent.OnRequest(data)+"\n") 
              
        def handle(self): 
            cur_thread = threading.current_thread()             # CLIENT RUNS IN A SEPARATE THREAD  
            self.server.clients[cur_thread.name] = self.request # UPDATE DICTIONARY OF CONNECTED CLIENTS  
            receiver = base.SimpleReceiver(self) 
             
            while True: 
                try: 
                    receiver.HandleIncomingData(self.request.recv(1024))    # RX AND PROCESS DATA FROM CLIENT 
                except socket.error:                            # CLIENT DISCONNECTION 
                    break 
            self.server.clients.pop(cur_thread.name)            # REMOVE DISCONNECTED CLIENT FROM DICTIONARY 
         
    def __init__(self, HOST, TCPPort=5000, Data=None):        
        SocketServer.TCPServer.__init__(self, (HOST, int(TCPPort)), TCPServer.ThreadedTCPRequestHandler ) 
        self.clients = {} 
        server_thread = threading.Thread(target=self.serve_forever) 
        # Exit the server thread when the main thread terminates 
        server_thread.daemon = True 
        server_thread.start() 
        self.run = True 
 
class Server(base.ServerModule): 
    def __init__(self, ipaddress, tcpport): 
        self.link = TCPServer(HOST=ipaddress, TCPPort=tcpport) 
        self.link.parent =self 
        super(Server, self).__init__(self.link) 
                 
class Client(base.ClientModule): 
    def __init__(self, ipaddress, tcpport, timeout=1.0):   
        self.ipadddress = ipaddress 
        self.tcpport  = tcpport         
        self.timeout  = timeout 
        self.receiver = base.SimpleReceiver(self, timeout) 
        super(Client, self).__init__(self.receiver) 
     
    def TxFunction(self, data): 
        self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
        self.socket.settimeout(self.timeout) 
        self.socket.connect((self.ipadddress, self.tcpport)) 
        self.socket.sendall(data+"\n") 
        self.reply = None 
        self.rxthread = threading.Thread(target = self.RxThreadFunction) 
        self.rxthread.start() 
             
    def RxThreadFunction(self): 
        try: 
            self.reply = self.socket.recv(1024).strip() 
        except socket.timeout: 
            self.reply = None 
        finally: 
            self.socket.close() 
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HTTP  
The HTTP Server module is the most complex part of the mid-tier software.  The aim of the design is to 
allow the integration  of the module in the common Server Module framework and to provide the 
capability to respond to some preformatted URLs. 

As the Server module replies to GET queries as a web server, a basic file serving mechanism has been 
implemented for URLs of type http://server:port/htdocs/.../.../filename.extension, where port is the TCP 
port the server is listening to. 

The server should also serve a special file (the default file) when no path and file are specified. Thus, 
requesting the URL http://server:port, requests the default file index.html to be returned. 

This behaviour allows to query the server module through a common web-browser. The returned data are 
specified in HTML format. For example, the following index.html could be used to show some information 
to the user. 

<!DOCTYPE html> 
<html> 
<head> 
<meta charset="ISO-8859-1"> 
<title>HTTPSERVER DEFAULT PAGE</title> 
</head> 
<body> 
<h1>Protocol gateway</h1> 
<h2>Place your data here</h2> 
<div> 
Some text 
</div> 
</body> 
</html> 
 

 

The last, and more important URL which must be served has the format 
http://server:port/node/?command and is used to specify the command which the Mid-Tier software 
should process. Processing the URL requests the server to execute its OnRequest() method and the return 
value of that function is sent back to the requesting client reply. 

The following example shows a simple data handler and how the server behaves when the URL 
http://localhost:8080/node?test%20message is accessed through a web-browser. 

import modules.httpmodule as http 
 
def callback(data): 
    return "reply to " + data 
     
server = http.Server("127.0.0.1", 
        8080, "./htdocs/") 
server.OnRequest = callback 
 
while True: 
        pass 
 

 

Before describing in details the implementation of the HTTP Server Module, a last example of a default 
HTML page is given for reference. 

The server allows to serve any type of file, so Stylesheet and Javascript files can be served as well. This 
allows, for example, to provide an HTML simple yet effective user interface to the software. 
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http://server:port/htdocs/.../.../filename.extension
http://localhost:8080/node?test%20message


The following example shows how visiting the default page automatically requests the web-browser to 
fetch data from the server with some AJAX calls. The page contains a form with a text field which can be 
used to send requests to the server, thus providing a user interface. The resulting page is formatted with a 
stylesheet as well. 

 

As the code shows, the node data are fetched trough the JavaScript function 
NodeInfo() which sends the register-read request to the server. The 
command execution is requested through a call to the JavaScript Command() 
function which sends the request to the server and writes the reply in the 
proper place (the <DIV id=”reply”> tag). 

The resulting behaviour of the described html file has already been shown in 
a previous section for other purposes and is reported in the figure aside 
(taken from Figure 12 - Small Network Example). 

<!DOCTYPE html> 
<html><head> 
<meta charset="ISO-8859-1"> 
<title>HTTPSERVER DEFAULT PAGE</title> 
<link href="/htdocs/styles.css" rel="stylesheet" /> 
<script src="/htdocs/jquery.min.js"></script> 
<script src="/htdocs/he.js"></script> 
</head> 
<body> 
<h1><img src="/htdocs/server.png">Protocol gateway</h1> 
<div> 
<h2>Information on this node <button onclick="RefreshAllInfo();return false;">Refresh</button></h2> 
<div id="info"></div> 
</div> 
<script> 
function NodeInfo(label, command) { 
 $.ajax({ 
     async: false, 
     type: 'GET', 
     url: '/node?'+command, 
     success: function(result){ 
      $("#info").append(label + " "+ he.encode(result)+"<br>"); 
      } 
     } 
 ); } 
 
function Command(command) { 
 $.ajax({ 
     async: false, type: 'GET', 
     url: '/node?'+document.getElementById("frm1").elements[0].value, 
     success: function(result){ 
      $("#reply").text(he.encode(result)); 
      } 
     } 
 ); } 
 
function RefreshAllInfo() { 
 $("#info").text(""); 
 NodeInfo("NodeID", "?"); 
 NodeInfo("NodeName", "r 20"); 
 NodeInfo("Clients", "??"); 
 NodeInfo("Firmware Driver", "r 2"); 
 NodeInfo("Firmware Name", "r 3"); 
 NodeInfo("Firmware Version", "r 4"); 
 } 
  
RefreshAllInfo(); 
</script> 
<br> 
<form id="frm1" action="/node/"> 
   <b>Command</b> <br> 
   <input type="text" name="fname" value="?"> 
 <button onclick="Command(); return false;">Execute</button><br><br> 
 <b>Reply</b><div id="reply"></div> 
</form>  
</body></html> 
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The HTTP Server module is based on a previously developed multithreaded HTTP server. For simplicity, the 
implementation of the server module is split into two sections, the Server Module object and the 
multithreaded server. 

The Server Module instantiates the multithreaded http server object and sets the properties which define 
the actions which must be performed when a given URL is requested as shown in the table below 

Server method Associated URL Action 

handler_default http://server:port Sends the file index.html 

handler_htdocs http://server:port/htdocs/.../file Sends the specified file 

handler_node http://server:port/node?command Sends the data generated by OnRequest() 
method 

 

The handler_node function, calls the support function NodeCallback() which simply assembles the 
requested command data form the URL components. The resulting code is shown below. 

 

The other part of the module is the multithreaded http server which relies on the library 
BaseHTTPServer.HTTPServer and BaseHTTPServer.BaseHTTPRequestHandler classes.  

The description of the internals of the library objects is beyond  the scope of this report and further 
information can be found in (3).  

For our purposes, developing the multithreaded server needs to define the handler object for the requests 
which the server receives.  

Thus, the GetHandler class defines the method do_GET() which actually splits the requested URL into its 
components and calls the proper callback function associated with that URL or sends and HTTP error 
message if the URL is not recognised.  

  

class Server(base.ServerModule): 
    def __init__(self, ipaddress, port, htdocs):   
        def HandlerWrapper(*args): 
            GetHandler(self, *args) 
 
        super(Server, self).__init__()         
        self.ip = ipaddress 
        self.port = port 
        self.htdocs = htdocs + ('' if htdocs[-1] == '/' else '/')  
        self.server = HTTPServer((self.ip, self.port), HandlerWrapper) 
        self.thread = threading.Thread(target = self.server.serve_forever) 
        self.thread.daemon = True 
             
        self.handler_default    = lambda handler : handler.SendFile('index.html')  
        self.handler_htdocs     = lambda handler : handler.SendFile("/".join(handler.pathlist[1:])) 
        self.handler_node       = lambda handler : handler.SendData( self.OnRequest(self.NodeCallback(handler)) )  
        self.thread.start() 
                 
    def NodeCallback(self, handler): 
        cmd = urllib.unquote(handler.query) 
        if len(handler.pathlist)>1: 
            cmd = "/"+"/".join(handler.pathlist[1:])+" "+cmd 
        return cmd 
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Some support methods are defined to allow the code to server files as well. 

import base, threading 
import mimetypes, urlparse, urllib, urllib2 
 
from BaseHTTPServer import HTTPServer 
from BaseHTTPServer import BaseHTTPRequestHandler 
             
class GetHandler(BaseHTTPRequestHandler): 
    def __init__(self, server, *args): 
        self.httpserver = server 
        BaseHTTPRequestHandler.__init__(self, *args) 
         
    def Redirect(self,url=None): # Default redirects to home 
        if url == None: 
            url = '/'  
        self.send_response(303) 
        self.send_header('Location', url) 
        self.end_headers() 
     
    def SendData(self, data, mime='text/plain'): 
        self.send_response(200) 
        self.send_header('Content-type',mime) 
        self.end_headers() 
        self.wfile.write(data) 
                 
    def SendFile(self, filename): 
        try: 
            filename = self.httpserver.htdocs + filename 
            with open(filename,'rb') as f: 
                self.SendData(f.read(), mimetypes.guess_type(filename)[0]) 
        except: 
            self.send_error(404) 
        return None 
         
    def log_message(self, format, *args): 
        return 
 
    def send_error(self, code, message=None): 
        self.SendData("- fail " + str(code)) 
         
    def do_GET(self):   # EXTRACT THE CALLBACK FUNCTION            
        parsed_path      = urlparse.urlparse(self.path) 
        self.fullpath    = parsed_path.path 
        self.pathlist    = parsed_path.path.strip("/").split('/') 
        self.querydict   = urlparse.parse_qs(parsed_path.query) 
        self.querylist   = urlparse.parse_qsl(parsed_path.query)    
        self.query       = parsed_path.query            
 
        if '' == self.pathlist[0]:  # HANDLER FOR THE DEFAULT URL 
            self.httpserver.handler_default(self) 
        elif 'htdocs' == self.pathlist[0]: 
            self.httpserver.handler_htdocs(self)            
        elif 'node' == self.pathlist[0]: 
            self.httpserver.handler_node(self) 
        else: 
            self.send_error(400) # Bad request (incomplete path) 
        return 

 

The Client Side of the HTTP Module is much simpler and is shown below. 

  

class Client(base.ClientModule): 
    def __init__(self, baseurl): 
        super(Client, self).__init__(None)         
        self.baseurl = baseurl 
         
    def TxRxTransaction(self, command): 
        try:     
            url = self.baseurl + "?" + urllib.quote(command) 
            response = urllib2.urlopen(url) 
            self.reply = response.read() 
        except: 
            self.reply = None 
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Appendix 
 
Internetworking 
In a distributed setup some actions must be taken to allow access to the resources. As Figure 13 shows, 
when a user application in site A tries to access a Board resource in site B, Mid-Tier(A) needs to establish a 
TCP connection to the listening TCP port of Mid-Tier(B). In usual conditions this does not happen because of 
the security network policies implemented on the Gateway GW(B) in site B. Additionally, the Mid-Tier 
software at both ends could be behind a Firewall (FW(A) and FW(B)) in order to filter-out the undesired or 
harmful network traffic. 

 

FIGURE 13 – INTERNETWORKING 

In this common situations some scenarios are possible and some actions can be implemented 

• Giving public access of Mid-Tier(B) by configuring GW(B) and FW(B). 
This operations must be performed by the network B administrator and is not recommended 
because it could expose to security risks the host Mid-Tier(B) is running on. 

• Using a VPN software on the computer running Mid-Tier(B) to virtually connect it to private 
network behind FW(A). The VPN concentrator in Site A must be connected to the same private 
network of the machine running Mid-Tier(A). 

• Using other tunnelling techniques, for example an additional server which accepts connections 
from the two Mid-Tiers. When the connection to the external server is established, one Mid-Tier 
acts as a Master (thus mimics a Server  Module) while the other as a Slave (thus mimics a Client 
Module). This approach is widely used by chat application or remote desktop software (e.g. 
TeamViewer ™) which use HTTP to connect to the external server, thus  allowing to pass through 
the local firewalls.  
A dedicated module for the Mid-Tier software needs to be developed. 

• Using a dedicated private network, if available. 
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Possible Instruments Abstraction in Python 
A different approach to the register-based access of the board resources is presented and an abstraction 
layer is introduced. Abstraction reduces the programming efforts to the end-user who needs to develop 
his/her application software. This part of the report describes an example of abstraction using the Python 
language.  

At the software level, Figure 14 shows how the single instruments boards could be described as derived 
classes of a common generic board class. At a higher level, a set of boards can be organized into an object 
which describes the locally interconnected devices inside a rack. Finally, the top level of the system 
represents the interconnected racks through the Mid-Tier Software Node thus constituting a network. A 
separate object, implements the communication with the network. 

 

FIGURE 14 - INSTRUMENT NETWORK ABSTRACTION 

The advantage of the described organization is that every object of the network has its own properties and 
methods and some operations in the application software could be described in a more readable form. 

The generic base board can be described as base class , which provides all the common properties and 
methods of a non-specialized board. The controller object, passed in the constructor of the class 
implements the communication with the generic board. 

class Board(object): # Generic instrument board. 
 def __init__(self, controller, id): 
  self.controller = controller 
  self._id=id    
 def GET(self, register): # Get register value 
  return self.controller.GET(self._id,register) 
 def SET(self, register, value): Set register value 
  return self.controller.SET(self._id,register, value) 
 def Reset(self): # Reset the DDS 
  self.controller.RESET(self._id)    
 @property 
 def ID(self): # Get the board I2C address 
  return self._id 
 @property 
 def Name(self): # Get / Set the board name 
  return self.GET( STO_BOARD_NAME ) 
 @Name.setter 
 def Name(self, Name): 
  self.SET(STO_BOARD_NAME, Name) 
 
# other code . . . 
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For example, the implementation of the derived class for a DDS board can start from the base Board class 
and then define the relevant properties  like four channel objects. Each channel object represents one of 
the physical channels of the DDS chip which is present on the board. 

 

The channel class provides all the properties and methods of a given channel. In the example below, only 
the implementation of the channel name and frequency are shown. Access to the DDS functions is achieved 
through the GET/SET methods implemented in the base Board class. 

At this point, once the Channel, Board and DDSBoard  have been defined, a common operation like setting the 
frequency of channel 2 of a board to 1.5 MHz can be written as 

class DDSBoard(Board): # An Arduino Board connected to a DDS         
 def __init__(self, controller, id): 
  super(DDSBoard, self).__init__(controller, id) 
  self._channels = [Channel(self, i) for i in range(4) ] 
                   
 @property 
 def Channels(self): # Get the DDS channels objects 
  return self._channels 
# other code . . . 

class Channel(object): # A DDS Channel - This class implements the properties of a DDS channel. 
 def __init__(self, board, ch): 
  """ 
  Constructor for the channel object. 
  Parameters  
   board : board object 
   ch : DDS channel number (0-3) 
  """   
  self._ch=ch 
  self._Board =board 
   
 @property 
 def Num(self): 
  return self._ch 
 @Num.setter 
 def Num(self, n): 
  self._ch = n 
 
 @property 
 def Name(self): # Get / Set the channel name 
  if self._ch == 0: 
   return self._Board.GET( STO_CH0_NAME ) 
  elif self._ch == 1: 
   return self._Board.GET( STO_CH1_NAME ) 
  # other code . . . 
 @Name.setter 
 def Name(self, Name): 
  if self._ch == 0: 
   self._Board.SET(STO_CH0_NAME, Name) 
  elif self._ch == 1: 
   self._Board.SET(STO_CH1_NAME, Name) 
  # other code . . . 
 
 @property 
 def Frequency(self): # Get / Set the DDS channel tuning word 
  if self._ch == 0: 
   return self._Board.GET( REG_CH0_FREQ ) 
  elif self._ch == 1: 
   return self._Board.GET( REG_CH1_FREQ ) 
  # other code . . . 
 @Frequency.setter 
 def Frequency(self, Frequency): 
  if self._ch == 0: 
   self._Board.SET(REG_CH0_FREQ, Frequency) 
  elif self._ch == 1: 
   self._Board.SET(REG_CH1_FREQ, Frequency) 
  # other code . . . 
# other code . . . 
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where board is the Python object associated to the given physical board. 

The Rack object provides an array of locally connected boards, whatever the type they are. This is done by 
populating the array with the Scan() method of the class. 

The Scan() method lists all the boards in the rack and for each one calls the method BoardClass()with its ID 
as a parameter. The BoardClass() method  queries the specified board for its type by reading its 
REG_FW_DRIVER register and according to the returned value returns the correct board class to Scan(). In the 
end, the array Boards contains the objects describing the connected boards, each descendent of the base 
board class, each abstracting exactly that board.  

In this way, the software abstracts the hardware resources which can be accessed through the Boards array 
property of the object rack and specific board methods and properties (although GET/SET are still available 
for special low-level access). 

board.Channels[2].frequency = 1.5 

class Rack(object): # A set of Boards     
    """  
    This class implements a set of interconnected boards. 
    One board acts as the bus controller. 
    """ 
    def __init__(self, CommunicationObject): 
        """ 
        Constructor for Rack object 
        Parameters: 
            CommunicationObject: Provides Board Communication 
        """ 
        self.controller = CommunicationObject 
        # other initialization code … 
                     
    def BoardClass(self, board): # Return the class of the board with given ID 
        driver = self.controller.GET(board, REG_FW_DRIVER) 
        if 'dds' == driver: 
            import ddsboard 
            return ddsboard.DDSBoard 
        elif fpga' == driver: 
            import fpgaboard 
            return fpgabord.FPGABoard 
        else: 
            import board 
            return board.Board 
 
    def Scan(self): # Search all the boards. For each found board add the instance to the _Boards array 
        self._Boards = {} 
        for b in self.controller.LIST(): 
            driver = self.BoardClass(int(b)) 
            self._Boards[int(b)] = driver(self.controller, b) 
 
# other code . . . 

# controller is instantiated before  
rack = Rack(controller) 
rack.Scan() 
 
for board in rack.Boards: 
    BoardType = board.Firmware["driver"] 
 
    print board.ID, " : ", BoardType ,board.Name 
 
    if BoardType == "dds": 
        for channel in board.Channels: 
            print channel.Num, channel.Name, "  f=", channel.Frequency 
 
    if BoardType == "fpga": 
        for pin in board.Inputs: 
            print "PIN", pin.num, ":", pin.value 
 
# Other code ... 
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Software-defined instruments 
An interesting by-product of the Mid-Tier Layer  framework is the definition of virtual instruments. Such 
nodes behave like ordinary boards but the features are actually defined by the software.  

The implementation of the virtual instruments lies of a the board simulator already present in the mid-tier 
layer framework and an extension of the simulator class which defines the desired behaviour. The aim of 
virtual instruments is a better integration of different instruments and data handlers into the end-user 
application. 

As the scope is too wide to fit in this technical report it will not be discussed in detail here. A few examples 
of virtual instruments are given anyway for reference. 

• IEEE488 controller 
The virtual board can control GPIB-connected instruments thus integrating third party 
instrumentation into the user application. 

• User interface 
This node accesses parameters and/or data by accessing the network nodes. Some examples of 
implementations are data presentation in graphical format or in other formats useful for the end-
user. Control panels with switches and knobs could be implemented as well, possibly using battery 
powered single board computers to run the virtual instrument software. The node could also be 
run into a mobile device to facilitate the access to the experimental setup in the field.  
Another application could be the real-time data presentation onto a dashboard mounted on the 
wall of the lab to show the operating conditions and health of a running experiment, key 
measurements and environmental parameters. 

• Software Interfacing 
This node acts as an interface between the core of an existing user-software and the protocol of 
the boards network for general purposes. 

• Hardware simulator 
This node mimics the behaviour of a hardware which is not available yet. This allows to develop and 
test in advance the overall network which controls an experiment.  

• Computing node 
The node accesses other nodes of the network and performs intermediate calculations. The partial 
results are then made accessible thus reducing the network  load.  

• Database node 
A data storage used to save logs, configurations, measurements, results, etc. Data can be accessed 
in parallel by the boards network and other software. For example, this can be used for 
documentation, automatic report generation, log of operations for quality assurance, etc. 

• Software Repository 
This node contains the software and firmware used by the experimental setup. The aim of this 
node is to provide a centralized storage to get the needed software to operate an experiment. For 
example, a user could connect to the Software Repository Node with an ordinary browser to get 
the required applications and libraries. Reliability of software revision tracking and quality 
assurance could benefit from the centralized software distribution point as well. 
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